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Abstract

We consider the problem of scheduling periodic task systems on multiprocessors and present a deadline-based scheduling
algorithm for solving this problem. We show that our algorithm successfully schedules onm processors any periodic task system
with utilization at mostm2/(2m − 1).
 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Over the years, the preemptive periodic task model
[11,12] has proven remarkably useful for the model-
ing of recurring processes that occur in hard-real-time
computer application systems. Accordingly, much ef-
fort has been devoted to the development of a com-
prehensive theory dealing with the scheduling of sys-
tems comprised of such independent periodic real-
time tasks. Particularly in the uniprocessor context—
in environments in which all hard-real-time jobs gen-
erated by all the periodic tasks that comprise the hard-
real-time application system must execute on a single
shared processor—there now exists a wide body of re-
sults (necessary and sufficient feasibility tests, opti-
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mal scheduling algorithms, efficient implementations
of these algorithms, etc.) that facilitate the applica-
tion systems designer who is able to model his or her
real-time application system as a collection of inde-
pendent preemptive periodic real-time tasks. Some of
these results have been extended to the multiproces-
sor context—environments in which there are several
identical processors available upon which the real-
time jobs may be executed.

The periodic task model.In the periodic model of
hard real-time tasks, ataskτi = (Ci, Ti) is character-
ized by two parameters—an execution requirementCi

and a periodTi—with the interpretation that the task
generates ajob at each integer multiple ofTi , and each
such job has an execution requirement ofCi units, and
must complete by a deadline equal to the next integer
multiple ofTi . A periodic task system consists of sev-
eral such periodic tasks that are to execute on a speci-
fied processor architecture. The utilization of periodic
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taskτi is defined as the ratio of its execution require-
ment to its period. The utilization of a periodic task
system is the sum of the utilizations of all the periodic
tasks contained in it.

We assume that each job is independent in the
sense that it does not interact in any manner (accessing
shared data, exchanging messages, etc.) with other
jobs of the same or another task. We also assume
that the model allows for jobpreemption; i.e., a job
executing on a processor may be preempted prior
to completing execution, and its execution may be
resumed later, at no cost or penalty.

Identical multiprocessor platform. In this paper, we
study the scheduling of periodic task systems onm

(� 1) identical multiprocessors. We assume that inter-
processor migration of jobs is permitted—i.e., a job
that is executing upon a processor may be preempted
and may later resume execution on a different proces-
sor. We donot permit job-level parallelism, i.e., a job
executes on at most one processor at any instant of
time.

Deadline-based scheduling. Run-time schedulingis
the process of determining, during the execution of a
real-time application system, which job[s] should be
executed at each instant in time. Run-time scheduling
algorithms are typically implemented as follows: at
each time instant, assign apriority to each active1 job,
and allocate the available processors to the highest-
priority jobs.

One of the most popular algorithms used for pri-
ority assignment in run-time scheduling is theearliest
deadline firstscheduling algorithm (EDF) [12,5]. In
EDF, jobs are assigned priorities in inverse proportion
to their deadlines—the earlier the deadline, the higher
the priority. EDF is known to be anoptimalschedul-
ing algorithm for uniprocessors; unfortunately, EDF is
notoptimal on multiprocessors. There are nevertheless
significant advantages to using EDF for scheduling
on multiprocessors if possible; while it is beyond the
scope of this document to describe in detail all these
advantages, some important ones are listed below.

1 Informally, a job becomesactiveat its ready time, and remains
so until it has executed for an amount of time equal to its execution
requirement, or until its deadline has elapsed.

• Very efficient implementations of EDF have been
designed (see, e.g., [13]).

• It can be shown that when a set of jobs is sched-
uled using EDF, then the total number ofpreemp-
tionsis bounded from above by the number of jobs
in the set (and consequently, the total number of
context switchesis bounded at twice the number
of jobs).

• In a similar way, it can be shown that the to-
tal number of interprocessor job migrationsis
bounded from above by the number of jobs.

The last two properties apply to a broader class of al-
gorithms, discussed later in this paper.

There have been two approaches towards schedul-
ing of periodic tasks on multiprocessors:partitioning
and global scheduling. In the partitioning approach,
the tasks are statically partitioned among the proces-
sors, i.e., each task is assigned to a processor and
is always executed on it. Note that this approach is
not work-conserving in the sense that some proces-
sors may be left idle even if there are unfinished jobs
(assigned to other processors). On the other hand, in
global scheduling, the tasks are not partitioned and
are put in a single global queue. The scheduler se-
lects them highest priority jobs for execution, where
m is the number of processors. Unfortunately, well-
known uniprocessor scheduling algorithms such as
EDF perform poorly in this scenario. In fact, in [6],
it was shown that EDF can produce arbitrarily low
processor utilization. Pfair and ERfair scheduling al-
gorithms [3,4,1] are optimal in this scenario; how-
ever, they do not possess the above-mentioned prop-
erties.

Our contribution. In this paper, we propose a new
EDF-based scheduling algorithm to be used for global
scheduling of periodic task systems on multiproces-
sors. We prove that our algorithm successfully sched-
ules any periodic task system with utilization at most
m2/(2m − 1) onm identical processors—asm → ∞,
this bound approachesm/2 from above; hence, it fol-
lows that our algorithm successfully schedules any pe-
riodic task system with cumulative utilization at most
m/2 onm identical processors. Our algorithm retains
the advantages of EDF—low preemption and inter-
processor migration counts; efficient implementation;
etc.
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2. Background

Some very interesting and important results in real-
time multiprocessor scheduling theory were obtained
in the mid 1990s. We make use of two of these results
in this paper; these two results are briefly described
below.

2.1. Resource augmentation

Phillips, Stein, Torng, and Wein [14] explored the
use ofresource-augmentationtechniques for the on-
line scheduling of real-time jobs: the goal was to de-
termine whether an on-line algorithm, if provided with
faster processors than those available to a clairvoy-
ant algorithm, could perform better than is possible on
same-speed processors.2 Although we are not studying
on-line scheduling in this paper—all the parameters of
all the periodic tasks are assumed a priori known—it
nevertheless turns out that a particular result from [14]
is very useful to us in our study of multiprocessor
scheduling. We state this result below.

The focus of [14] was the scheduling of individual
jobs, and not periodic tasks. Accordingly, let us define
a job Jj = (rj , ej , dj ) as being characterized by an
arrival time rj , an execution requirementej , and a
deadlinedj , with the interpretation that this job needs
to execute forej units over the interval[rj , dj ).

Let I denote a set of jobs.I is said to bem-
processor feasible on speed-s processorsif I can be
scheduled onm processors, each of speeds (i.e.,
each processor can completes units of execution per
time unit) such that all jobs inI complete by their
deadlines.

Theorem 1 (Phillips et al.).Any instanceI that is
m-processor feasible on speed-s processors meets all
deadlines when scheduled using the earliest deadline
first scheduling algorithm(EDF) onm speed-(s · (2−
1/m)) processors.

2 An algorithm is clairvoyant if it has the knowledge of all the
future job arrivals; on the other hand, in on-line scheduling, it is
assumed that the future job arrivals are not known beforehand.
Resource augmentation as a technique for improving the perfor-
mance of on-line scheduling algorithms was formally proposed by
Kalyanasundaram and Pruhs [10].

(Unless otherwise stated, in the rest of the paper,
we assume that all processors are of unit speed.)

2.2. Predictable scheduling algorithms

Ha and Liu [8,9,7] have studied the issue of
predictability in the multiprocessor scheduling of real-
time systems from the following perspective.

Definition 1 (Predictability). Let A denote a schedul-
ing algorithm, andI = {J1, J2, . . . , Jn} any set ofn
jobs,Jj = (rj , ej , dj ). Letfj denote the time at which
job Jj completes execution whenI is scheduled using
algorithmA.

Now, consider any setI ′ = {J ′
1, J

′
2, . . . , J

′
n} of n

jobs obtained fromI as follows. JobJ ′
j has an arrival

time rj , an execution requiremente′
j � ej , and a

deadlinedj (i.e., job J ′
j has the same arrival time

and deadline asJj , and an execution requirement no
larger thanJj ’s). Let f ′

j denote the time at which job
J ′

j completes execution whenI ′ is scheduled using
algorithm A. Scheduling algorithmA is said to be
predictableif and only if for any set of jobsI and for
any suchI ′ obtained fromI , it is the case thatf ′

j � fj

for all j, 1 � j � n.

Informally, Definition 1 recognizes the fact that the
specified execution-requirement parameters of jobs
are typically onlyupper boundson the actual exe-
cution-requirements during run-time, rather than the
exact values. For a predictable scheduling algorithm,
one may determine an upper bound on the completion-
times of jobs by analyzing the situation under the
assumption that each job executes for an amount equal
to the upper bound on its execution requirement; it is
guaranteed that the actual completion time of jobs is
no later than this determined value.

Since a periodic task system generates a set of jobs,
Definition 1 may be extended in a straightforward
manner to algorithms for scheduling periodic task sys-
tems. An algorithm for scheduling periodic task sys-
tems is predictable iff for any periodic task system
τ = {τ1, τ2, . . . , τn}, the job completion time in the
case when each job ofτi has an execution requirement
exactly equal toCi is an upper bound on the comple-
tion time of that job when every job ofτi has an exe-
cution requirement ofat mostCi , for all i, 1 � i � n.
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Ha and Liu define a scheduling algorithm to be
priority driven if and only if it satisfies the condition
that for every pair of jobsJi andJj , if Ji has higher
priority thanJj at some instant in time, thenJi always
has higher priority thanJj . Note that EDF is priority-
driven.

The result from the work of Ha and Liu [8,9,7] that
we use can be stated as follows.

Theorem 2 (Ha and Liu).Any priority-driven schedul-
ing algorithm is predictable.

3. Algorithm EDF-US[m/(2m − 1)]

In this section, we propose AlgorithmEDF-US[m/

(2m − 1)], a priority-driven scheduling algorithm
for scheduling periodic task systems, and derive a
utilization-based sufficient feasibility condition for
it. In particular, we prove that any periodic task
system with utilization at mostm2/(2m − 1) can
be scheduled by AlgorithmEDF-US[m/(2m − 1)] to
meet all deadlines onm unit-speed processors. We
now give a brief overview of our approach. First,
we consider a restricted category of periodic task
systems, which we call “light” systems and show that
the “standard” EDF scheduling algorithm successfully
schedules any such system. Then, we apply techniques
introduced by Andersson and Jonsson [2] to extend the
results concerning light systems to arbitrary systems
of periodic tasks. In this process, we modify EDF to
obtain AlgorithmEDF-US[m/(2m − 1)], and derive
the feasibility test.

Definition 2. A periodic task systemτ = {τ1, τ2, . . . ,

τn} is said to be alight system onm processorsif it
satisfies the following two properties.

(P1) U(τ) � m2

2m−1 .

(P2) For eachτi ∈ τ, Ui � m
2m−1.

Theorem 3. Any periodic task systemτ that is light on
m processors is scheduled to meet all deadlines onm

processors by EDF.

Proof. As a direct consequence of properties (P1) and
(P2), we can conclude thatτ can be scheduled to meet
all deadlines onm speed-(m/(2m − 1)) processors:

Pfair and ERfair schedules [3,4,1] and the processor-
sharing schedule that assigns a fractionUi of a
processor toτi at each time-instant bear witness to this
feasibility. Because of the existence of this schedule
and the fact thatm/(2m − 1) × (2 − 1/m) = 1, by
Theorem 1, all jobs ofτ meet their deadlines when
scheduled using EDF onm speed-1 processors.✷

Theorem 3 shows that EDF successfully schedules
any periodic task systemτ with utilization U(τ) �
m2/(2m − 1) on m identical processors,provided
eachτi ∈ τ has a utilizationUi � m/(2m − 1). We
now relax the restriction on the utilization of each
individual task, i.e., we consider task systems that do
not necessarily satisfy property (P2). We first define
Algorithm EDF-US[m/(2m − 1)] as follows.

Algorithm EDF-US[m/(2m− 1)] assigns priorities to
jobs of tasks inτ according to the following rule:

if Ui > m/(2m − 1) then τi ’s jobs are assigned high-
est priority (ties broken arbitrarily)—this is
trivially achieved within an EDF implemen-
tation by setting all deadlines ofτi equal to
−∞ (or any negative number, since the dead-
lines of all the other tasks are positive).

if Ui � m/(2m − 1) then τi ’s jobs are assigned pri-
orities according to EDF.

Note that AlgorithmEDF-US[m/(2m − 1)] is a
priority-driven scheduling algorithm. Also note that
for m = 1, it reduces to plain EDF, sinceUi can never
be greater than 1.

Theorem 4. Algorithm EDF-US[m/(2m − 1)] cor-
rectly schedules onm processors any periodic task
systemτ with utilizationU(τ) � m2/(2m − 1).

Proof. Observe that sinceU(τ) � m2/(2m − 1),
the number of tasks with utilization greater than
m/(2m − 1) is less thanm. Let k0 denote the number

of such tasks. Letm0
def= m − k0.

Let us first analyze the task system̂τ , consisting
only of those tasks inτ that have utilization at most
m/(2m − 1). Therefore, for eachτi ∈ τ̂ , we have

Ui � m

2m − 1
� m0

2m0 − 1
. (1)
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Furthermore, the total utilization of̂τ can be bounded
from above as follows:

U(τ̂ ) � m2

2m − 1
− k0 · m

2m − 1

= m(m − k0)

2m − 1

� (m − k0) · (m − k0)

2(m − k0) − 1

= m2
0

2m0 − 1
. (2)

From inequalities (1) and (2), we conclude thatτ̂ is
a periodic task system that is light onm0 processors.
Hence by Theorem 3,̂τ can be scheduled by Algo-
rithm EDF to meet all deadlines onm0 processors.

Now, consider the task system̃τ obtained fromτ

by replacing each taskτi ∈ τ with utilization Ui >

m/(2m − 1) by a task with the same period, but
with utilization equal to one. (This corresponds to
making the execution requirement of the task equal
to its period.) Note that AlgorithmEDF-US[m/(2m −
1)] assigns identical priorities to corresponding tasks
in τ and τ̃ (where the notion of “corresponding”
is defined in the obvious manner). Also note that
when scheduling̃τ , Algorithm EDF-US[m/(2m − 1)]
devotesk0 (< m) processors exclusively to thek0
tasks that generate jobs of highest priority (since
each such task has a utilization equal to unity). The
jobs generated by the remaining tasks (the tasks in
τ̂ ) are scheduled using EDF and executed upon the
remainingm0 = (m−k0) processors. As we have seen
above, Algorithm EDF schedules the tasks inτ̂ to meet
all deadlines; hence, AlgorithmEDF-US[m/(2m− 1)]
schedules̃τ to meet all deadlines of all jobs.

Finally, observe that an execution of Algorithm
EDF-US[m/(2m − 1)] on task systemτ can be con-
sidered to be an instantiation of a run of Algo-
rithm EDF-US[m/(2m − 1)] on task systemτ̃ , in
which some jobs—in particular, the ones generated by
tasks with utilization one—do not execute to their full
execution requirement. Since AlgorithmEDF-US[m/

(2m − 1)] is priority-driven, by Theorem 2, it is apre-
dictablescheduling algorithm. Hence every job during
the execution of AlgorithmEDF-US[m/(2m − 1)] on
task systemτ completes no later than the correspond-
ing job during the execution of AlgorithmEDF-US[m/

(2m − 1)] on task systemτ̃ . And thus, from the

result in the previous paragraph, we can see that
Algorithm EDF-US[m/(2m − 1)] correctly sched-
ulesτ . ✷

Can we do better than what is implied by The-
orem 4? The exact answer to this question remains
open; however, we show below (Theorem 5) that the
family of algorithms to which EDF andEDF-US[m/

(2m − 1)] belong—priority-driven scheduling algo-
rithms—cannot in general do much better than the
bound of Theorem 4.

Recall that apriority-driven scheduling algorithm
satisfies the condition that for every pair of jobsJi

and Jj , if Ji has higher priority thanJj at some
instant in time, thenJi always has higher priority than
Jj . In other words, individual jobs are assigned fixed
priorities (although different jobs of the same task may
have very different priorities).

Theorem 5. No priority-driven scheduling algorithm
can guarantee correct scheduling of all periodic task
systems with utilization at mostU on m processors if
U > (m + 1)/2.

Proof. Consider the periodic task system comprised
of m + 1 identical tasks, each with execution require-
ment 1+ ε and period 2, whereε is an arbitrarily
small positive number. Each task releases its first job at
time-instant zero. Any priority-driven schedule must
assign these jobs fixed priorities relative to each other
and the task whose job is assigned the lowest priority
at time-instant zero misses its deadline. Note that as
ε → 0, U(τ) → (m + 1)/2; thus, the required result
follows. ✷

4. Conclusions

We have studied the preemptive scheduling of sys-
tems of periodic tasks on a platform comprised of
several identical multiprocessors. We have proposed
Algorithm EDF-US[m/(2m − 1)], a new EDF-based
multiprocessor algorithm for scheduling periodic task
systems. We proved that AlgorithmEDF-US[m/(2m−
1)] successfully schedules any periodic task system
with utilization� m2/(2m−1) onm identical proces-
sors, while retaining the advantages—low preemption
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counts; fewer interprocessor migrations; efficient im-
plementation; etc.—that has made EDF so popular in
uniprocessor real-time systems.
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