

Thermodynamique appliqué Cycles moteurs

Alessandro Parente

Planning

- Fig. 16/11 Cycle de Rankine et Rankine-Hirn (2h)
- 23/11 Cycles de Joule, Ericsson, Otto, Stirling, Diesel (3h)
- 30/11 Cycles frigorifiques et Relations thermodynamiques (3h)
- 7/12 Mélanges de gaz (2h)
- Fig. 13/12 Combustion (2h) + questions

Agenda

Introduction

- Travail réversible pour systèmes fermés et ouverts
- Le diagramme entropique
 - Compression, détente
 - Chauffe, refroidissiment

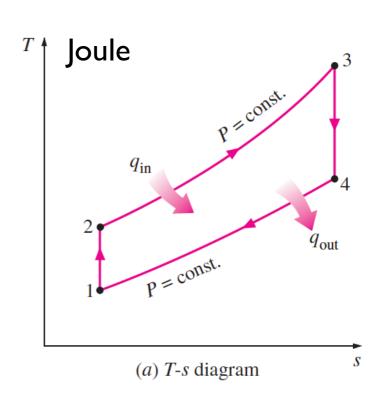
Cycle Rankine-Hirn

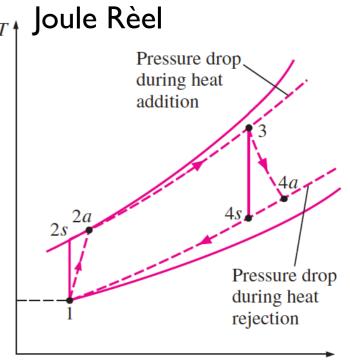
- Analyse énergétique
- Cycle réel vs. cycle ideal
- Améliorations au cycle
 - Baisse de la pression de condenseur
 - Surchauffe de la vapeur
 - Augmentation de la pression maximale
- Alternatives au cycle de Rankine Hirn
 - Cycle à resurchauffe
 - Cycle à soutirage

ULB

Introduction

- Cycle: ensemble de transformations après lesquelles le fluide moteur retourne à son état initiale
 - Générateurs de puissance comme la centrale thermique à vapeur réalisent un cycle
 - Moteurs à combustion interne (moteurs volumétriques et turbines à gaz) n'effectuent pas un cycle: le fluide moteur quitte le dispositif avec une composition/ pression/température différente que à l'entrée.
- Cycle idéalises: cycles qui approximent le processus réel:
 - Approche pratique pour analyser les performances des systèmes moteurs
 - Fluide moteur:
 - Substance à changement de phase
 - → Gaz parfait (C_p constant)





Travail réversible

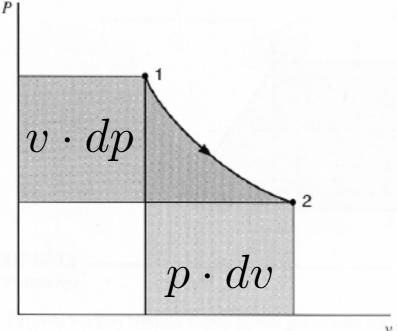
Cycles moteurs:

 Systèmes fermés en évolution temporelle → travail de déplacement de frontière

$$dw_{rev} = -p \cdot dv$$

• Systèmes ouverts en régime permanent, qui font intervenir du travail à l'arbre d'une machine tournante

$$dw_{rev} = v \cdot dp$$



Travail réversible

Expression du travail associé aux systèmes permanents en fonction des propretés du fluide

premier principe pour systèmes ouvertes

$$\delta q_{rev} + \delta w_{rev} = dh + dke + dpe$$

Définition d'entropie

Equation de Gibbs

travail réversible (*v=cte* → équation Bernoulli)

dke et *dpe* ≈ 0 (majorité systèmes TD)

$$\delta q_{rev} = T \cdot ds$$

$$\delta q_{rev} = dh - v \cdot dp$$

$$T \cdot ds = dh - v \cdot dp$$

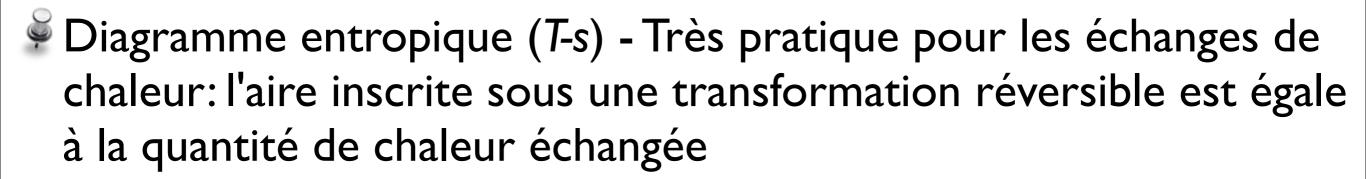
$$\delta w_{rev} = v \cdot dp + dke + dpe$$

$$v = cte$$
 $\delta w_{rev} = v(p_2 - p_1) + \frac{(v_2^2 - v_1^2)}{2} + g(z_2 - z_1)$

$$\delta w_{rev} = v \cdot dp$$

- > 0 compresseur, pompe
- < 0 turbine

Diagramme entropique



$$\delta q_{rev} = T \cdot ds$$

- Transformations adiabatique (compression et détente): lignes droites
- Transformations v=cte ou p=cte (gaz parfait) \rightarrow fonction exponentielle

Entropie d'un gaz parfait (Eq. 7.18, 7.20)

$$ds = c_p \cdot \frac{dT}{T} - R \cdot \frac{dp}{p} = c_v \cdot \frac{dT}{T} + R \cdot \frac{dv}{v}$$

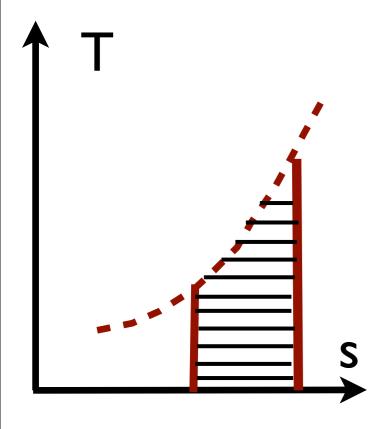
$$p = cte \quad ds = cp \cdot \frac{dT}{T} \quad s = c_p \ln T + B \quad T = k \cdot e^{\frac{s}{c_p}}$$

$$v = cte \quad ds = c_v \cdot \frac{dT}{T} \quad s = c_v \ln T + B \quad T = k \cdot e^{\frac{s}{c_v}}$$

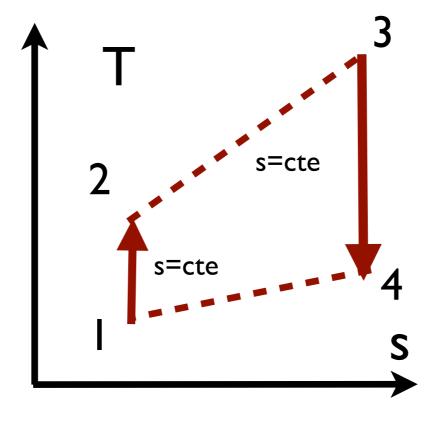
Diagramme entropique

Diagramme entropique (T-s)

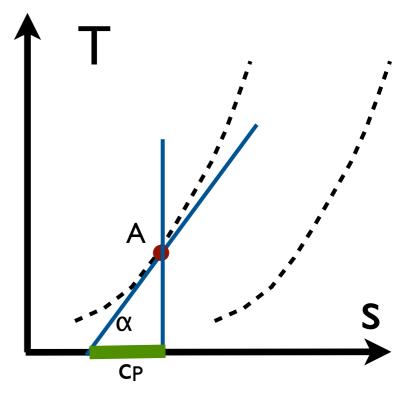
Echanges de chaleur



Compression et détente adiabatiques et réversibles



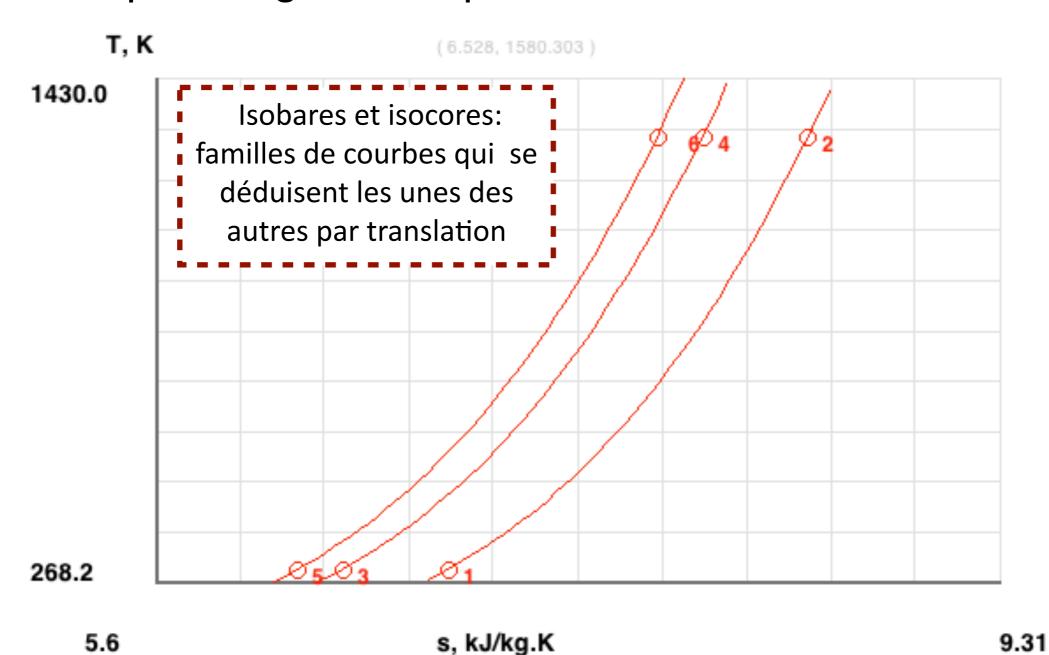
Transformations isobares (et isochores)



$$\frac{T}{c_p} = \frac{dT}{ds} = tg\alpha$$

Diagramme entropique

- Diagramme entropique (*T*-s)
 - Isobares pour un gaz idéal à p=1bar, 5 bar et 10 bar

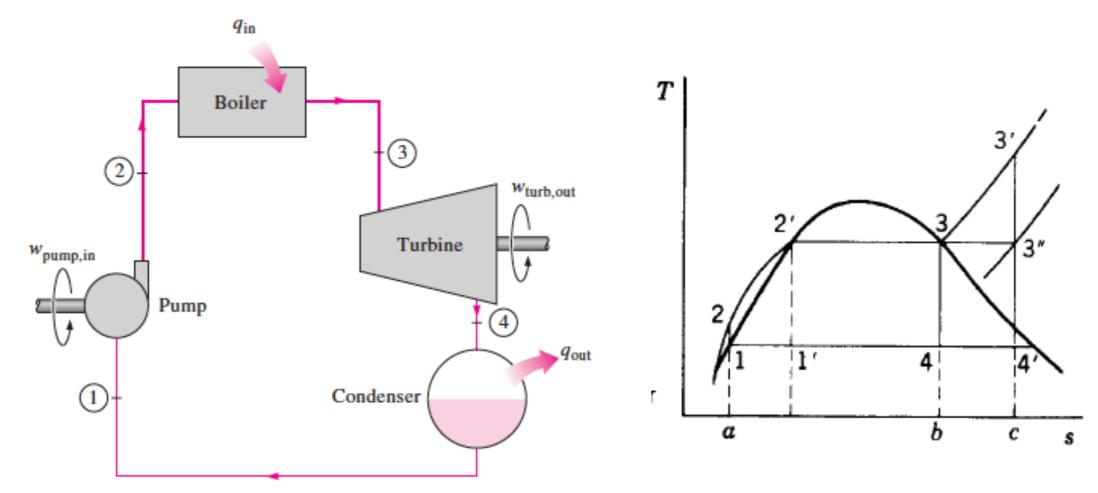


Wednesday 16 November 2011

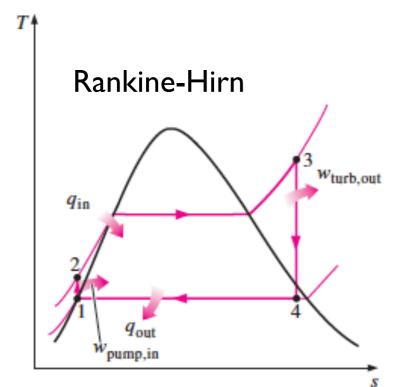
S C

Cycle idéal des centrales thermiques à vapeur d'eau

- 4 transformations de systèmes ouverts en régime permanent
 - → I-2 : pompage adiabatique et réversible dans la pompe, à partir d'un état de liquide saturé
 - → 2-3 : échange de chaleur isobare dans la chaudière jusqu'à l'état de vapeur saturée
 - → 3-4 : détente adiabatique et réversible dans la turbine
 - → 4—I : échange de chaleur isobare dans le condenseur



- Fravail effectué d'autant plus grand que la différence de volume massique entre les phases de détente et de compression est grande $w_{net} = w_{turbine}^* w_{pompe}$
 - Changement de phase afin de maximiser cette différence



$$w_{pompe} = v_L \cdot \int_{p_1}^{p_2} dp = v_L (p_2 - p_1)$$

$$w_{turbine} = \int_{p_4}^{p_3} v_V \cdot dp$$

$$v_L << v_V \to w_{pompe} << |w_{turbine}|$$

Une variante est le cycle de Hirn dans lequel la vapeur est surchauffée avant d'être détendue (centrales électriques)

Analyse énergétique

$$q + w = h_2 - h_1$$

Remarque "pratique" pour les cycles idéals

Les systèmes qui échangent de la chaleur n'échangent pas de travail et vice versa!

Pompe (q=0)

$$w_{pompe} = h_2 - h_1 = v(p_2 - p_1) = 1/\rho(p_2 - p_1)$$

Chaudière (w=0)

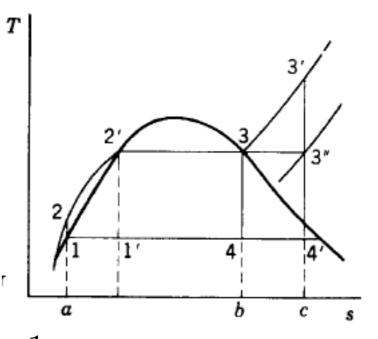
$$q_{in} = h_3 - h_2$$

• Turbine (q=0)

$$w_{turbine}^* = h_3 - h_4$$

Condenseur (w=0)

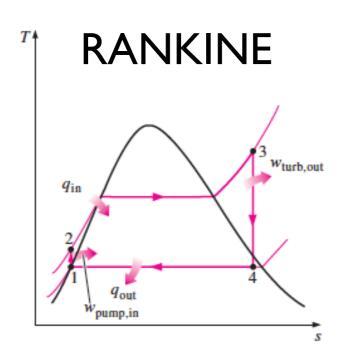
$$q_{out} = h_1 - h_4$$

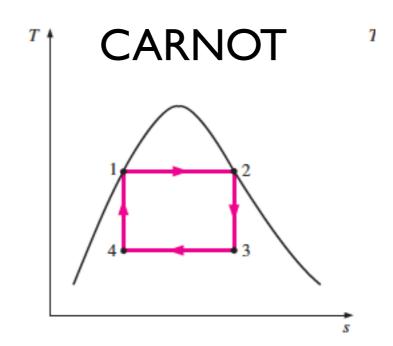


• Efficacité thermique $\epsilon_{th}=rac{aire}{aire} rac{1-2-2'-3-4-1}{a-2-2'-3-b-a}$

$$\epsilon_{th} = \frac{w_{turbine}^* - w_{pompe}}{q_{in}} = \frac{q_{in} - q_{out}}{q_{in}} = 1 - \frac{q_{out}}{q_{in}}$$

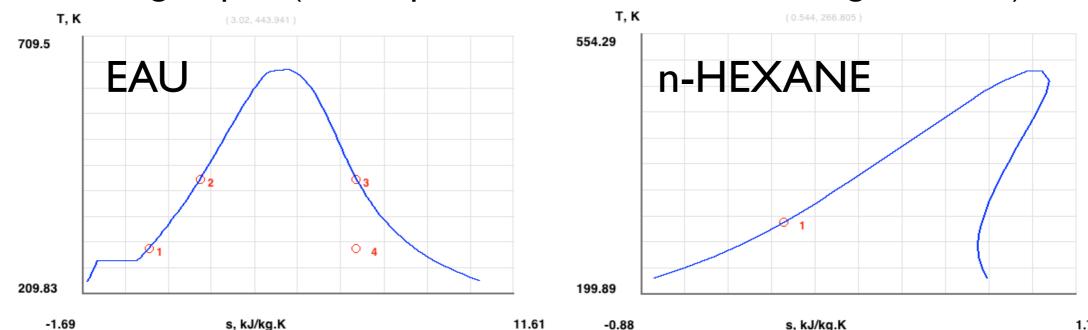
Rendement exergétique du cycle de Rankine (>80 %) inférieure à celui du cycle de Carnot (production d'entropie chauffage 2 – 2')





- Cycle de Carnot pour le centrales thermiques?? Non!
 - Compression d'un mélange liquide/vapeur → grands dangers d'endommagement des matériels
 - Titre de vapeur à la sortie de la turbine pas assez élevé (érosion)

- Inconvénients du cycle de Rankine.
 - Condenseur Le condenseur sous vide pour utiliser l'ambiance comme source froide (en générale eau 298 K) → complications technologiques
 - Condensation partielle dans la turbine Titre de vapeur à la sortie de la turbine inférieur à 0.88 (valeur limite pour éviter l'érosion)
 - T_C < 573 K (titre après détente > 0.88)
 - Machine volumétrique → puissances limitées
 - Fluides organiques (cloche penchée vers la droite du diagramme Ts)



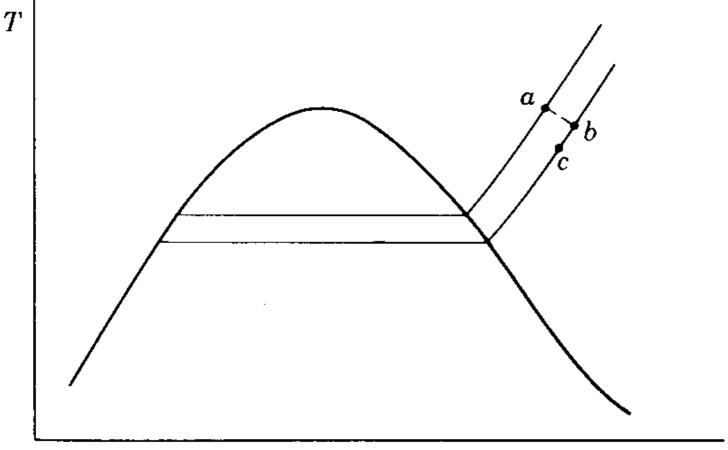
s, kJ/kg.K

Cycle réel vs. cycle ideal

Ecarts entre cycle de Rankine réel et idéal

Pertes en tuyauterie

- Pertes de charge dues à la dissipation visqueuse
- Pertes de chaleur vers l'ambiance



a – b : perte de charge

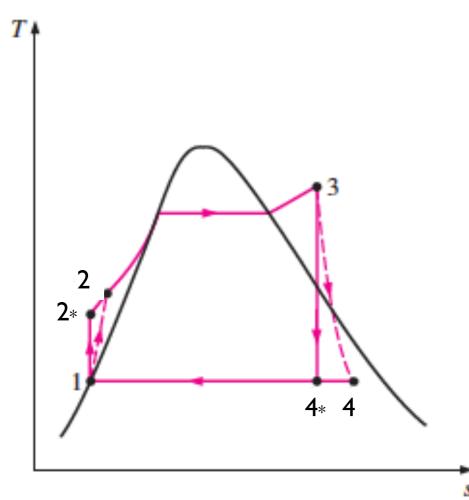
$$h_b = h_a (q = w = 0) et p_b < p_a.$$

b - c transfert de chaleur

$$h_b > h_c (q < 0)$$
, et $p_b = p_c$

Cycle réel vs. cycle ideal

- Écarts entre cycle de Rankine réel et idéal
 - Pertes dans la turbine et dans la pompe
 - Pertes par dissipation visqueuse (rendements isentropiques)



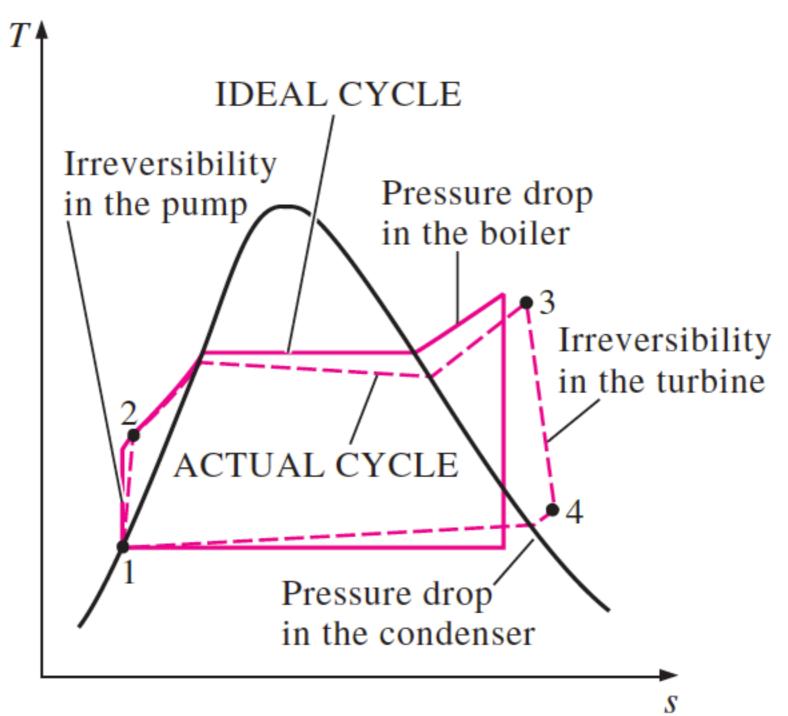
$$\eta_p = \frac{w_{p,ideal}}{w_p} = \frac{h_{2*} - h_1}{h_2 - h_1}$$

$$\eta_t = \frac{w_t^*}{w_{t,ideal}^*} = \frac{h_3 - h_4}{h_3 - h_{4*}}$$

- Pertes dans le condenseur
 - Refroidissement du liquide sous la température de saturation dans le condenseur.

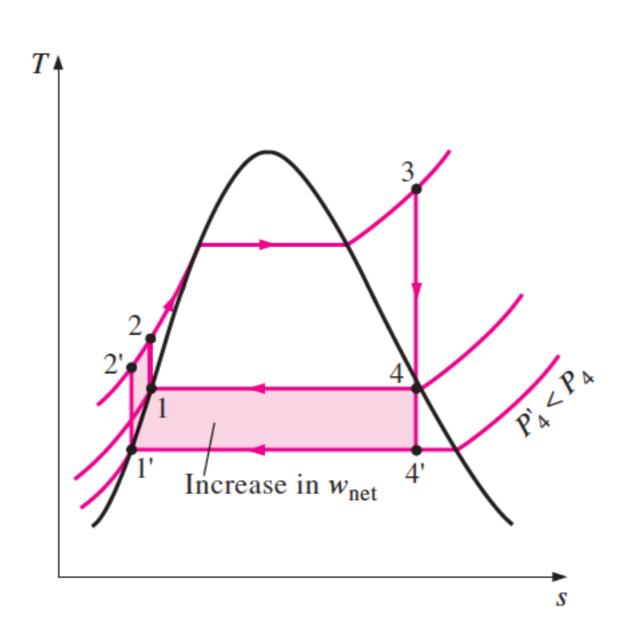
FERO/ LHERMO/ MECHAN

Cycle réel vs. cycle ideal



Améliorations au cycle

Baisse de la pression de condenseur



- Le travail net augmente de la surface en rose (1'-2'-2-1-4'-4)
- La chaleur fournie au liquide augmente de l'aire sous la courbe 2'-2 (dq = T ds)
- L'efficacité thermique augmente

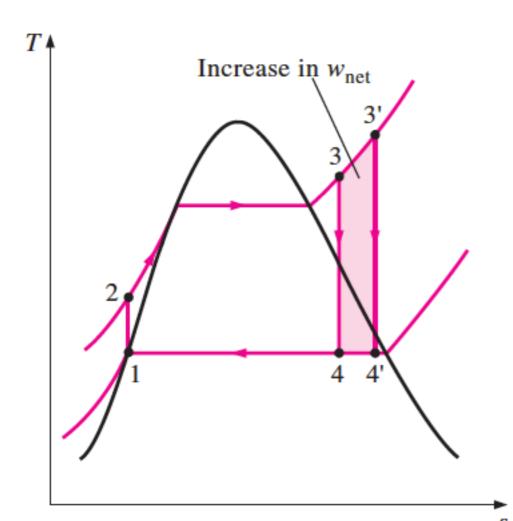
$$\Delta w > \Delta q$$

Attention!

- réduction du titre en baissant p4
- p_4 telle que $x_L < 0.1 \rightarrow$ diminution du rendement, érosion

Améliorations au cycle

Surchauffe de la vapeur (cycle de Rankine-Hirn)



$$\epsilon_{th} = 1 - \frac{q_F}{q_C}$$

$$\epsilon_{th} = 1 - \frac{T_F (s_{4'} - s_1)}{\overline{T_H} (s_{3'} - s_2)} = 1 - \frac{T_F}{\overline{T_H}}$$

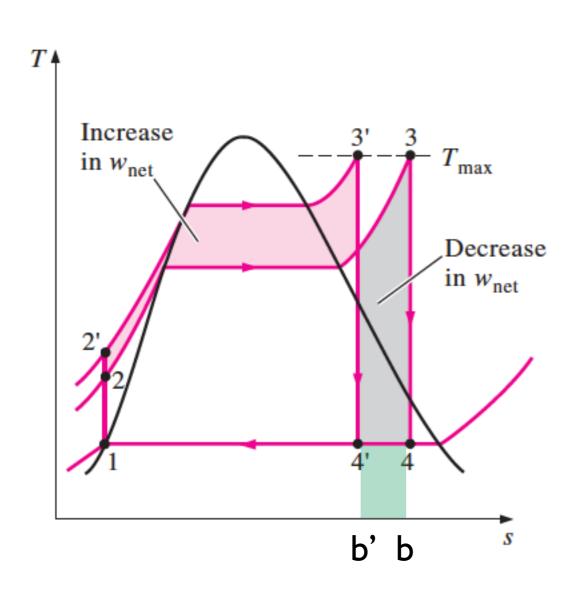
- Le travail net augmente de la surface en rose (3-3'-4'-4)
- La chaleur fournie au liquide augmente de l'aire sous la courbe 3-3' (dq = T ds)
- L'effet net est une augmentation de l'efficacité (la température moyenne lors du chauffage augmente)
- La teneur en eau en 4[°] diminue

Attention!

 L'irréversibilité augmente (la totalité du chauffage est cette fois irréversible) et le rendement exergétique diminue.

Améliorations au cycle

Augmentation de la pression maximale



 Le travail net augmente de la surface en rose et diminue de la surface en gris → W_{net} ~ constant

 La chaleur rejetée diminue de l'aire 4'-4-b-b'-4' → efficacité et le rendement exergétique augmentent

$$\epsilon_{th} = 1 - \frac{q_F}{q_C}$$

Attention!

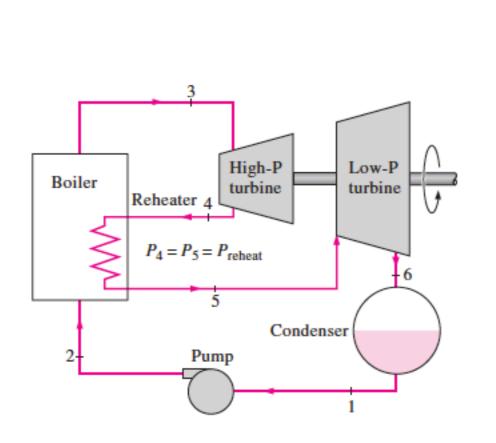
La teneur en eau augmente

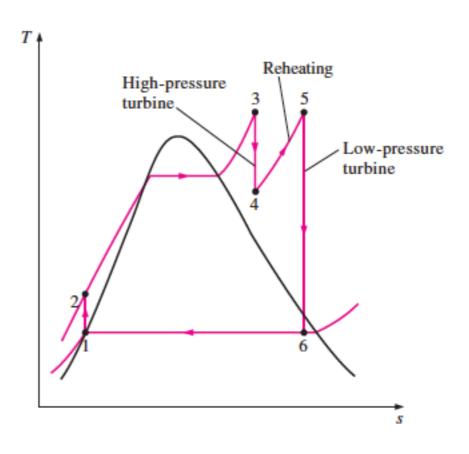
Alternatives

Cycle à resurchauffe

Augmentation de la pression maximum → augmentation de l'efficacité du cycle de Rankine-Hirn et de la teneur en eau à l'échappement

 •Introduction d'une ou plusieurs resurchauffes → efficacité presque constante mais teneur en eau réduite





FERO/ HERMO/ MECHANICS

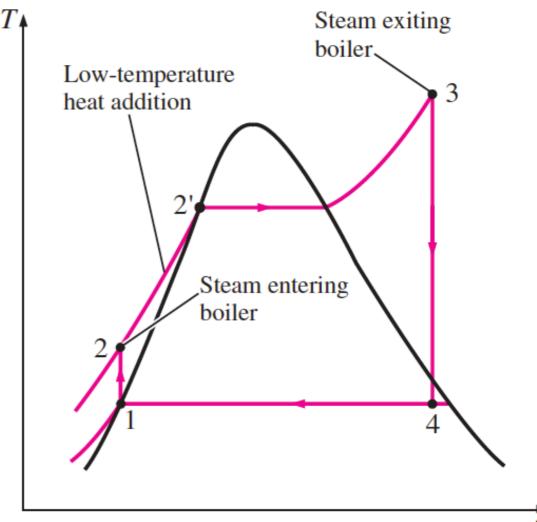
Alternatives

Cycle à soutirage

Perte d'efficacité thermique et de rendement exergetique du cycle de Rankine-Hirn par rapport au cycle de Carnot:

- transfère de chaleur à basse température (transformation 2-2')
- production d'entropie dans la phase de chauffage

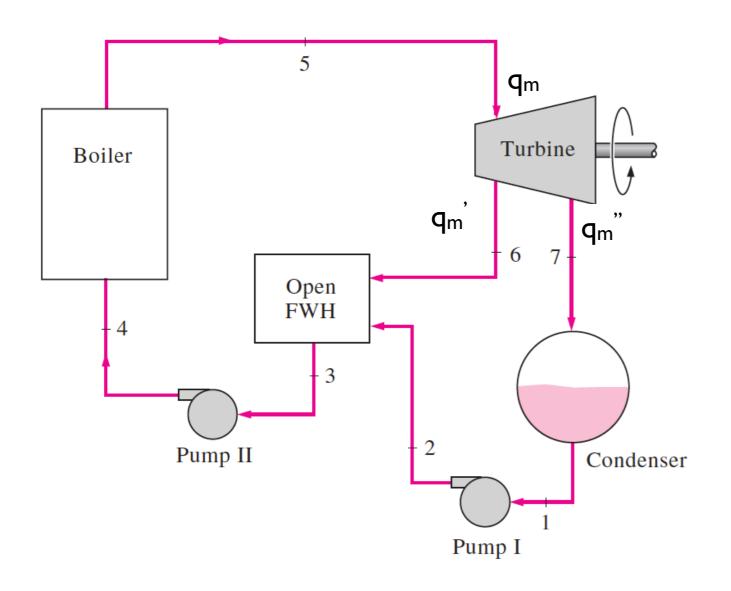
 Prélèvement d'une fraction de vapeur dans la turbine à une pression intermédiaire → réchauffe de l'eau à la sortie de la pompe

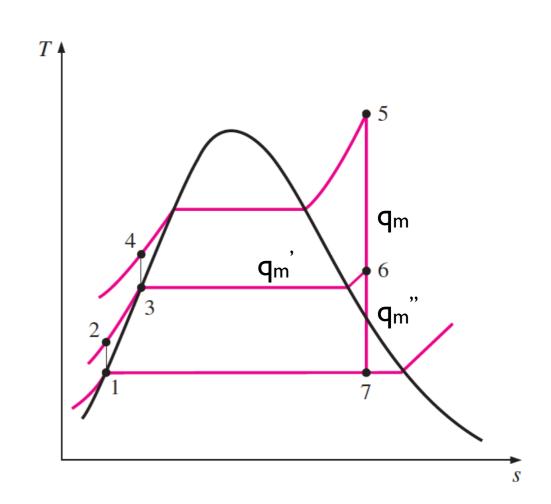


HERMO/

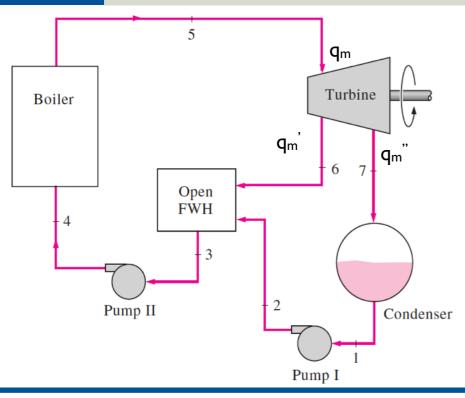
Alternatives

Cycle à soutirage





Alternatives



Cycle de Rankine-Hirn

$$\epsilon_{th} = \frac{h_5 - h_7}{h_5 - h_2}$$

Cycle à soutirage

$$\epsilon_{th} = \frac{q_m''(h_5 - h_7) + q_m'(h_5 - h_6)}{(q_m' + q_m'')(h_5 - h_3)}$$

Mélangeur qm', qm"

$$(q'_m + q''_m) h_3 = q'_m h_6 + q''_m h_2$$
$$q'_m (h_3 - h_6) = q''_m (h_2 - h_3)$$

Rendement du cycle à soutirage vs. cycle de Rankine

- Puissance consommée par la pompe I ~ 0
- Puissance de la pompe auxiliaire (II) ~ 0

$$\epsilon_{th} = \frac{q''_m (h_5 - h_7) + q'_m (h_5 - h_6)}{q''_m (h_5 - h_2) + q''_m (h_2 - h_3) + q'_m (h_5 - h_3)}$$

$$= \frac{q''_m (h_5 - h_7) + q'_m (h_5 - h_6)}{q''_m (h_5 - h_2) + q'_m (h_3 - h_6) + q'_m (h_5 - h_3)}$$

$$= \frac{q''_m (h_5 - h_7) + q'_m (h_5 - h_6)}{q''_m (h_5 - h_2) + q'_m (h_5 - h_6)}$$

$$= \frac{(h_5 - h_7) + \frac{q'_m}{q''_m} (h_5 - h_6)}{(h_5 - h_2) + \frac{q'_m}{q''_m} (h_5 - h_6)}$$

$$> \frac{h_5 - h_7}{h_5 - h_2} = \epsilon_{th}$$

$$car \quad h_5 > h_6 \quad et \quad \epsilon_{th} < 1$$

Alternatives

Cycle à soutirage

• En pratique, plusieurs soutirages et des réchauffeurs d'eau à mélange sont utilisés

