MATH-H-405 - Decision engineering

Session 2 & 3: Multi-criteria decision aid

Exercice 1 - Treshold model

Show that the following preference model built with a treshold model:

$$\forall a, b \in A \begin{cases} aPb \Leftrightarrow g(a) > g(b) + q\\ aIb \Leftrightarrow |g(a) - g(b)| \le q. \end{cases}$$

respects the following properties:

- $aPb, bPc, aId \Rightarrow dPc$
- $aPb, bIc, cPd \Rightarrow aPd$

Exercise 2 - The Datum point algorithm

Considering the following multi-criteria problem:

$$\max X_1 + 2X_2, \max X_1$$

under the following constraints:

Compute the efficient solutions set. Which are the solutions that are the closest to the Datum point considering the L_1 and L_2 distance.

Exercise 3 - Using the weighted sum

In a multi-criteria problem (where all the criteria are to be maximized), all the solutions of the Pareto frontier can be found by maximizing a weighted sum with well-chosen weights. Demonstrate or give a counterexample.

Exercise 4 - ELECTRE I

A company wants to rank 5 candidates A, B, C, D, E for a promotion (see table below). Five selection criteria have been chosen. Which are the results given by the ELECTRE I method, with a concordance index of 0.6 and a discordance index of 6?

	А	В	С	D	Е	Weight
Reputation of the diploma	7	14	15	11	16	15
Skills	12	18	6	8	10	15
Personality	13	13	14	19	10	25
Spoken languages	18	16	19	13	19	25
Seniority	10	20	16	14	20	20

Exercice 5 - Additive model/representability

We consider the additive model: $U(a) = \sum_{j=1}^{n} U_j(g_j(a))$. On the basis of the table below, a decision maker gives you the following preferences:

 $a_9Pa_6Pa_8Pa_5Pa_3Ia_7Pa_2Ia_4Pa_1$

	a_1	a_2	a_3		a_5	a_6	a_7	a_8	a_9
g_1	1	1	1	2	2	2	3	3	3
g_2	1	3	5	1	3	5	1	3	5

- 1. Verify the hypothesis of preferential independence
- 2. Compute the values of the marginal utilities so that we can represent the global preferences of the decision maker.

Reference: "Multicriteria decision-aid", P. Vincke

Exercise 6 - Properties of the net flow of PROMETHEE $_{N}$

Demonstrate that $\sum_{i=1}^{N} \phi(a_i) = 0.$

Exercise 7 - Parallel between the voting theory and the multi-criteria ranking problems

Which Arrow's conditions are respected by the PROMETHEE II method?

Exercise 8 - Rank reversal

Demonstrate that a rank reversal between two actions a and b in the PROMETHEE II ranking can not occur when removing a third alternative action if:

$$|\phi(a) - \phi(b)| > \frac{2}{n-1}.$$

Exercise 9 - Preferential independence

As an employer, you want to hire workers on the basis of their age, their degree and their professional experience. Give a situation where the preferential independence hypothesis is not respected.

Exercise 10 - Consistent family of criteria - cohesion

For a family of criteria, give an example where the cohesion hypothesis is not respected.

Exercise 11 - Consistent family of criteria - exhaustivity

For a family of criteria, give an example where the exhaustivity hypothesis is not respected.

Exercise 12 - Dominance in PROMETHEE

Demonstrate: $aDb \Rightarrow \phi(a) > \phi(b)$

Exercise 13 - PROMETHEE II properties

Demonstrate that the deletion of a non discriminating criterion does not change the PROMETHEE II ranking.

Exercise 14 - Management of financial portfolios

Let us consider N financial assets and note X_i the proportion invested in the asset *i* with a mean return μ_i and a variance σ_i^2 . Let σ_{ij} be the correlation between the asset *i* and the asset *j*. Let us define the vector of mean returns μ and the variance-covariance matrix Σ as follows:

$$\mu = \begin{pmatrix} \mu_1 \\ \mu_2 \\ \vdots \\ \mu_N \end{pmatrix} \text{ and } \Sigma = \begin{pmatrix} \sigma_1^2 & \sigma_{12} & \dots & \sigma_{1N} \\ \sigma_{21} & \sigma_2^2 & \dots & \sigma_{2N} \\ \vdots & \vdots & \dots & \vdots \\ \sigma_{N1} & \sigma_{N2} & \dots & \sigma_N^2 \end{pmatrix}.$$

A portfolio P is represented by the vector $X(X_1, X_2, ..., X_N)$ with $\sum_{i=1}^N X_i = 1$. Its mean return μ_p and its variance σ_P^2 are computed as follows:

$$\mu_{p} = \sum_{i=1}^{N} X_{i} \mu_{i} = X \mu$$

$$\sigma_{P}^{2} = \sum_{i=1}^{N} \sum_{j=1, i \neq j}^{N} X_{i} X_{j} \sigma_{ij} + \sum_{i=1}^{N} X i^{2} \sigma_{i}^{2} = X \Sigma X'.$$

Establish the expression of the efficient frontier.