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Introduction

Decision: typology

Decision “under certainty”

A: set of alternatives (possible decisions)

X: set of consequences

c(a) ∈ X: consequence of implementing a ∈ A

Problem

help someone compare alternatives in A on the basis of their consequences

Classic problems

|A| “large”: combinatorial optimization, mathematical programming

x ∈ X such that x = (x1, x2, . . . , xm): multicriteria problems
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Introduction

Decision under risk and uncertainty

Problem

la décision ne dispose que pour l’avenir (cf. art. 2 of the French Civil
Code:)

c(a) is not known with certainty

Decision under risk

c(a) is a probability distribution on X

Decision under uncertainty

c(a) is known conditionally upon the occurrence of a number of “scenarios”
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Introduction Model

Decision under uncertainty

Context

impossibility to determine with certainty the consequences of
implementing an alternative

no probability

Nature decide of everything that is not under my control

the consequences of my decisions depend upon my decisions and Nature’s
decisions (“states of Nature” or “scenarios”)

Nature does not care: dropping a slice of bread on the floor (the “tartine
beurrée” exepriment)

Problem

you must choose an alternative before knowing Nature’s decision
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Introduction Model

Model

Model

A: set of alternatives. An element a ∈ A is an alternative that can be
implemented

E: set of states of Nature. An element e ∈ E is a decision that Nature can
take and that can influence the consequences of at least one alternative in
A

X: set of consequences

c: mapping from A× E to X
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Introduction Model

Decision table (finite case: m alternatives, n states)

Decision table

c e1 e2 · · · ei · · · en
a1 c(a1, e1) c(a1, e2) · · · c(a1, ei) · · · c(a1, en)
a2 c(a2, e1) c(a2, e2) · · · c(a2, ei) · · · c(a2, en)
...

...
...

. . .
...

. . .
...

aj c(aj , e1) c(aj , e2) · · · c(aj , ei) · · · c(aj , en)
...

...
...

. . .
...

. . .
...

am c(am, e1) c(am, e2) · · · c(am, ei) · · · c(am, en)

Remark

obtaining such a “decision table” is a huge work in practice
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Introduction Model

Exemple: the omelette

The omelette

A = {Bowl,Thrash,Aux. Bowl}
E = {Good,Bad}

c Good Bad
Bowl O. of 6 No O.

Thrash O. of 5 O. of 5
Aux. Bowl O. of 6 + Bowl to wash O. of 5 + Bowl to wash

Remarks

no probabilities

tastes & beliefs

possibility to acquire additional information (experimentation)
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Introduction Model

Examples

Bank

Default Default
Accept . . . . . .
Refuse . . . . . .

Accept with guarantees . . . . . .

New product

Success Success
Launch . . . . . .

Launch . . . . . .
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Introduction Model

Example

Example

X = R, preference increases with the numbers (e)

c e1 e2 e3
a1 40 70 −20
a2 −10 40 100
a3 20 40 −5

Classic criteria

no information about the likelihood of the states of Nature

no particular model for tastes
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Introduction Dominance

Dominance

Definition

a ∈ A (strictly) dominates b ∈ A (a D b) if:

c(a, e) ≥ c(b, e),∀e ∈ E,

∃e ∈ E such that c(a, e) > c(b, e)

Remark

D is a transitive and asymmetric binary relation

Definition

a ∈ A is efficient if it is not dominated by another alternative in A. When A
and E are finite, the set of efficient alternatives A∗ ⊆ A defined by:

A∗ = {a ∈ A : Not[b D a],∀b ∈ A}
is always nonempty
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Introduction Dominance

Dominance

Remarks

a D b⇒ a � b, whatever the likelihood of the sates of Nature

in real-world problems: A∗ = A

limiting attention to A∗ might not be adequate, e.g., if there are doubts on
the feasibility of some alternatives in A. The set A∗ might not contain
“close contenders”

same problems as in MCDA/MCDM
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Introduction Dominance

Example

c e1 e2 e3 e4 e5 e6 . . . e100
a 100 100 100 100 100 100 . . . 100
b 99 99 99 99 99 99 . . . 99
c 100.5 0 0 0 0 0 . . . 0
d 0 100.5 0 0 0 0 . . . 0

A = {a, b, c, d}
A∗ = {a, c, d} because a D b

b is a “close contender”

go faster

14



Introduction Dominance

Example

c e1 e2 e3 e4 e5 e6 . . . e100
a 100 100 100 100 100 100 . . . 100
b 99 99 99 99 99 99 . . . 99
c 100.5 0 0 0 0 0 . . . 0
d 0 100.5 0 0 0 0 . . . 0

A = {a, b, c, d}
A∗ = {a, c, d} because a D b

b is a “close contender”

go faster

14



Introduction Dominance

Remark

Every alternative that is solution of problem (P )

max
a∈A

∑
e∈E

p(e)c(a, e)

s.t.∑
e∈E

p(e) = 1

p(e) > 0, e ∈ E

(P )

is efficient

Suppose that a is solution of (P ) and that a is not efficient. Since
c(b, e) ≥ c(a, e), ∀e ∈ E and c(b, e′) > c(a, e′) we have∑

e∈E
p(e)c(b, e) >

∑
e∈E

p(e)c(a, e)
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Introduction Dominance

Converse

e2

e1
1

4

4

1

1.8

1.8
b

a

c

A = A∗ = {a, b, c}
b cannot be solution of (P )
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Introduction Max Min

Wald’s criterion (Max Min)

Idea

extreme pessimism: base your choice on the worst situation (Max Min)

choose any alternative a ∈ A solution of:

max
a∈A

min
e∈E

c(a, e)

Example

choose a3
(maximum loss = −5)
a1 (maximum loss = −20)
a2 (maximum loss = −10)

c e1 e2 e3 min
a1 40 70 −20 −20
a2 −10 40 100 −10
a3 20 40 −5 −5
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Introduction Max Min

Remarks

bad use of information

no compensation between consequences in different states of Nature

bias towards status quo

only requires that X can be ordered

Example

c e1 e2 e3 . . . e1 000

a −100 10 000 10 000 . . . 10 000
b −99 −99 −99 . . . −99

18



Introduction Max Min

Remarks

bad use of information

no compensation between consequences in different states of Nature

bias towards status quo

only requires that X can be ordered

Example

c e1 e2 e3 . . . e1 000

a −100 10 000 10 000 . . . 10 000
b −99 −99 −99 . . . −99

18



Introduction Max Min

Other classic criteria

Max Max

Hurwicz

Min Max Regret

Laplace

go faster
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Introduction Max Max

Max Max

Idea

optimism: base your choice on the best possible situation (Max Max)

choose any alternative in a ∈ A solution of:

max
a∈A

max
e∈E

c(a, e)

Example

choose a2
(maximal gain = 100)
a1 (maximal gain = 70)
a3 (maximal gain = 40)

c e1 e2 e3 max
a1 40 70 −20 70
a2 −10 40 100 100
a3 20 40 −5 40
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Introduction Max Max

Remarks

bad use of information

no compensation between consequences in different states of Nature

only requires that X can be ordered
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Introduction Hurwicz

Hurwicz

Idea

compromise between extreme pessimism (Max Min) and extreme
optimism (Max Max)

let α ∈ [0; 1] called “coefficient of pessimism”, choose any alternative
a ∈ A solution of:

max
a∈A

[
αmin

e∈E
c(a, e) + (1− α) max

e∈E
c(a, e)

]

α = 1/2

Choose a2
(90/2 = 45)
a1 (50/2)
a3 (35/2)

c e1 e2 e3 min max α = 1/2
a1 40 70 −20 −20 70 25
a2 −10 40 100 −10 100 45
a3 20 40 −5 −5 40 17, 5
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Introduction Hurwicz

Remarks

bad use of information

compromise between bad solutions

it must be meaningful to take linear combinations!

how to assess the coefficient of pessimism α?

23



Introduction Savage

Savage (Min Max Regret)

Idea

criterion for bureaucrats

choose a2 and e1 obtains

best decision: a1 (40)
decision taken: a2 (−10)
regrets: 40− (−10) = 50

c e1 e2 e3
a1 40 70 −20
a2 −10 40 100
a3 20 40 −5

Definition

Choose any alternative a ∈ A solution of:

min
a∈A

max
e∈E

R(a, e)

avec

R(a, e) = max
b∈A

c(b, e)− c(a, e)

24
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Introduction Savage

Example

c e1 e2 e3
a1 40 70 −20
a2 −10 40 100
a3 20 40 −5

R e1 e2 e3 max
a1 0 0 120 120
a2 50 30 0 50
a3 20 30 105 105

Choose a2 (max regret 50) a1 (120), a3 (105)

Remarks

criterion that is different from Max Min (a3)

it must be meaningful to take differences!

taking differences is an adequate way to measure regrets

choice is set dependent. Adding new alternatives can alter choice in an
unpredictable way
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Introduction Savage

Example

c e1 e2
a1 8 0
a2 2 4

R e1 e2 max
a1 0 4 4
a2 6 0 6

Choice of a1

Example (adding a3)

c e1 e2
a1 8 0
a2 2 4
a3 1 7

R e1 e2 max
a1 0 7 7
a2 6 3 6
a3 7 0 7

initial choice: a1

choice after addition of a3: a2!

risk of “manipulations”
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Introduction Laplace

Laplace

Idea

Principle of “insufficient reason”

Definition

Choose any alternative in A solution of:

max
a∈A

∑
e∈E

1

|E|
c(a, e)

Example

Choose a2
(130/3)
a1 (90/3)
a3 (55/3)

c e1 e2 e3
a1 40 70 −20 90/3
a2 −10 40 100 130/3
a3 20 40 −5 55/3
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Introduction Laplace

Remarks

it must be meaningful to take linear combinations!

either you will become the King of the Belgians or not. Are these two
events equally likely?

criterion that depends on the arbitrary model for states of Nature (E can
always be refined: “E and rain tomorrow” and “E and no rain tomorrow”

Is expected gain a good criterion, even when all states are supposed
equally likely?

go faster

28



Introduction Laplace

Example

Example

c e1 e2 e3 e4
a 2 2 0 1
b 1 1 1 1
c 0 4 0 0
d 1 3 0 0

Results

Wald: b

Max Max: c

Laplace: a

Savage: d
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Introduction Laplace
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Introduction Laplace

Conclusion

Classic Criteria

none really satisfactory!

necessity to model likelihood (beliefs)
necessity to model desirability of consequences (tastes)

Central questions

why is there no probability?

where probabilities come from?

30



Introduction Laplace

Conclusion

Classic Criteria

none really satisfactory!

necessity to model likelihood (beliefs)
necessity to model desirability of consequences (tastes)

Central questions

why is there no probability?

where probabilities come from?

30



Plan

1 Introduction

2 Decision under risk
Model
Classic Criteria
Expected Utility Theory
Risk aversion

3 Decision under uncertainty

4 Extensions



Decision under risk Model

Decision under risk: model

Model

X: set of consequences

X finite = {x1, x2, . . . , xn}
X ⊆ R (e.g., money)

Simple lottery on X

discrete r.v. on X

` = (x1, p1;x2, p2; . . . ;xn, pn)

p`(xi): probability to obtain consequence xi with lottery `

32
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Decision under risk Model

Simple lottery ` on X

`

x1

x2

xn

p`(x1)

p`(x2)

p`(xn)

. . .

33



Decision under risk Model

Lotteries

Set of lotteries

simple lotteries on X

first order lotteries on X: lotteries on simple lotteries

second order lotteries on X: loteries on first order lotteries

etc.

L(X): set of lotteries at all finite orders

L(X) is always infinite

34



Decision under risk Model

Lotteries

Remark

L(X) includes all lotteries that corresponds to the implementation of
alternatives in A and many other “hypothetical” lotteries

Problem

help someone compare lotteries in L(X)

Notation

` ∈ L(X): lotteries (simple or not)

x ∈ X: consequences

p`(x): probability to obtain consequence x with lottery `

35
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Decision under risk Classic Criteria

Classic Criterion

Expected Value (EV )

` � `′ ⇔
∑
x∈X

xp`(x) >
∑
x∈X

xp`′(x)

` ∼ `′ ⇔
∑
x∈X

xp`(x) =
∑
x∈X

xp`′(x)

�: strict preference

∼: indifference

36



Decision under risk Classic Criteria

EV

Advantages

simple

good use of information

can be “decentralized”

Disadvantages

limited to numerical consequences

no clear rationale

contradict observed behavior of “rational” people (diversification,
insurance)

37
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Decision under risk Classic Criteria

Example

100

−50

1/2

1/2

preferred to 0
1

E(`) = 25 E(`′) = 0

100 000

−50 000

1/2

1/2

not preferred to 0
1

E(`) = 25 000 E(`′) = 0
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Decision under risk Classic Criteria

Saint Petersburg Paradox (D. Bernoulli)

Game

a “banker” plays with a “player”. The player must pay a fixed sum to
enter the game.

the banker tosses a coin till “Tails” obtains

the game stops

if “tails” obtains at the nth toss, the banker pays 2ne to the player

how much a rational player should be prepared to pay to enter the game?

EV = 2× 1

2
+ 22 × 1

22
+ · · ·

(50% chances of winning only 2e!)

39
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Decision under risk Classic Criteria

Other classic criterion

Expected Value + Variance

add a measure of dispersion to the measure of central tendency

Problems

less simple

how to deal with the two criteria (efficient solutions or synthesis?)

is variance a good measure of risk? (inter-quartile spreads, semi-variance,
etc.)

40
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Decision under risk Classic Criteria

Example

2 000

−8 000

0.9

0.1

0

10 000

0.9

0.1

EV (`) = 0.9× 2 000 + 0.1×−8 000 = 1 000

= 0.9× 0 + 0.1× 10 000

V ar(`) = 0.9× (2 000− 1 000)2 + 0.1× (−8 000− 1 000)2

= 0.9× 1 0002 + 0.1× 9 0002

= 0.9× (0− 1 000)2 + 0.1× (10 000− 1 000)2

These two lotteries must be judged indifferent
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Decision under risk Classic Criteria

Limit of classic criteria

Central problem

these criteria do not take the psychology of the individual towards risk

what is her wealth?
what is her income?
what is her attitude towards risk?
etc.

42



Decision under risk Classic Criteria

Pseudo-Solution

Pseudo-Solution

directly ask the individual about her preferences

Problems

consistency?

decentralized decisions?

cognitive effort!
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Decision under risk Classic Criteria

Example: choice between

2 000

0

1/2

1/2

and 500
1

Example: choice between

N (878.32; 72.45) and

Bi(1200; 0.75)
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Decision under risk Expected Utility Theory

Expected Utility Theory
J. von Neumann & O. Morgenstern (1945)

Idea

ask the individual about simple choices

model the behavior of the individual using a mathematical model

use the model to process complex choices

Questions

what model?

what rationale?

how to elicit the model?
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Decision under risk Expected Utility Theory

Mathematical model

Idea

replace EV by an “Expected Utility” (EU)

the ’utility“ capture the psychology of the individual towards risk

` � `′ ⇔
∑
x∈X

u(x)p`(x) >
∑
x∈X

u(x)p`′(x)

` ∼ `′ ⇔
∑
x∈X

u(x)p`(x) =
∑
x∈X

u(x)p`′(x)
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Decision under risk Expected Utility Theory

Utility function

u : X → R
u(x) is the “utility” of consequence x ∈ X
the function u is linked to the individual

Advantages

simple

can be decentralized

takes individual characteristics into account

not restricted to numerical consequences

clear rationale (axioms)
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Decision under risk Expected Utility Theory

Theoretical Analysis

How to justify the model?

axiomatic analysis

Interpretation of axioms?

descriptive

normative

prescriptive

48



Decision under risk Expected Utility Theory

Theoretical Analysis

How to justify the model?

axiomatic analysis

Interpretation of axioms?

descriptive

normative

prescriptive

48



Decision under risk Expected Utility Theory

Axiom (A1: Ranking)

For all `, `′ ∈ L(X) at least one the following holds:

` is preferred or indifferent to ` (` % `′)

`′ is preferred or indifferent to ` (`′ % `)

Moreover, % is transitive:

` % `′ and `′ % `′′ ⇒ ` % `′′

∀`, `′, `′′ ∈ L(X)
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Decision under risk Expected Utility Theory

Remark

` � `′ ⇔ [` % `′ and Not[`′ % `]]

strict preference

` ∼ `′ ⇔ [` % `′ and `′ % `]

indifference

A1 implies that ∼ and � are transitive
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Decision under risk Expected Utility Theory

Descriptive Analysis

Difficulties

incomplete preference

nontransitive indifference

intransitive strict preference

Complete Preferences?

the raison d’être of the theory is to help structure preferences!
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Decision under risk Expected Utility Theory

Luce (1956)

Comparaison of cups of coffee

0 1 2

. . .

1000

0 ∼ 1, 1 ∼ 2, . . . , 999 ∼ 1 000⇒ 0 ∼ 1 000

imperfect senses ⇒ nontransitive indifference

go faster
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Decision under risk Expected Utility Theory

Dominance with threshold

Example

x � y ⇔
{
x at least as good as y on all criteria
x better than y on at least one criterion

g1 g2 g3
a 10 10 10
b 11 11 8
c 12 9 9

threshold = 1.1 (below you do not distinguish)

go faster
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Decision under risk Expected Utility Theory

Condorcet’s Paradox

Data

Voter 1: a � b � c
Voter 2: c � a � b
Voter 3: b � c � a

majority : a � b; b � c, c � a
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Decision under risk Expected Utility Theory

Threshold effects

Example

1 Car 15 000e
2 Car + PE1 15 500e
3 Car + PE1 + PE2 16 000e
4 Car + PE1 + PE2 + PE3 16 500e
...
n Car + . . . 18 000e

Preference of a “näıve” consumer

2 � 1, 3 � 2, 4 � 3, n � (n− 1) but 1 � n
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Decision under risk Expected Utility Theory

Analysis

Prescriptive Approach

effectiveness

it is simple to help someone choose on the basis of complete and transitive
preferences

Normative Approach

money pump argument

exchanges starting with c

a c

b

�

��

−ε

−ε−ε

a c

b

�

∼∼

−ε

00
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Decision under risk Expected Utility Theory

Axioms

Axiom (A2 Reduction)

`j : first order lotteries

`1
`2

`k

r1

r2

rk

. . .

x1
x2

xn

q1

q2

qn

. . .

with qi =
∑k

j=1 rjp`j (xi)

⇒ Indifference

Interpretation

“games are played seriously”
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Decision under risk Expected Utility Theory

Axioms

Axiom (A3 Monotonicity)

If (x, 1) � (y, 1) then

x

y

p

1− p

�

x

y

q

1− q

iff p > q (∀x, y ∈ X)

Interpretation

greediness

do not try to outperform randomness
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x
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Decision under risk Expected Utility Theory

Axioms

Axiom (A4 Independence)

L1

`1
`2

`k

. . .

r1

r2

rk

L2

`′1
`2

`k

r1

r2

rk

. . .

If `1 ∼ `′1 then L1 ∼ L2

Interpretation

indifference is indifference
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Decision under risk Expected Utility Theory

Axioms

Axiom (A5 Continuity)

If (x, 1) � (y, 1) � (z, 1) then there is a probability p ∈ ]0; 1[ such that:

y1 ∼
x

z

p

1− p

Remark

A3 implies that this probability is unique

Interpretation

you are not näıve with probabilities (continuum between certainty and
risk)
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Decision under risk Expected Utility Theory

Axioms

Example

x: win 2e

y: win 1e

z: be hung tomorrow at dawn

(x, 1) � (y, 1) � (z, 1)

Problem

is there a probability p ∈ ]0; 1[ such that:

y ∼ (x, p; z, (1− p))
p = 1− 10−100?
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Decision under risk Expected Utility Theory

Consequences of axioms

Theorem (Representation)

Let % be a preference relation on L(X).
This relation satisfies A1-A5
iff
there is a function u : X → R such that:

` % `′ ⇔
∑
x∈X

u(x)p`(x) ≥
∑
x∈X

u(x)p`′(x) (vNM)

Remark

necessity is obvious

u is linked to % and, hence, to the individual

skip proof
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Decision under risk Expected Utility Theory

Proof

5 steps

constructive!

Finite case: X = {x1, x2, . . . , xn}
Consider a lottery ` ∈ L(X)
1)
Using A1, (ranking), A2 (reduction) and A4 (independence), you can always
find a simple lottery such that: ` ∼ (x1, p`(x1);x2, p`(x2); . . . ;xn, p`(x1))
Suppose wlog that:

(xn, 1) � (xn−1, 1) � · · · � (x1, 1)
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Decision under risk Expected Utility Theory

2)
A5 (continuity): since

(xn, 1) � (xn−1, 1) � · · · � (x1, 1)

there is ui ∈ ]0; 1[ such that

(xi, 1) ∼ [xn, ui;x1; (1− ui)]

Let:

un = 1, u1 = 0
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Decision under risk Expected Utility Theory

3)
Using A4 (independence), A1 (ranking) and A2 (reduction), we know that:

` ∼ (x1, p`(x1);x2, p`(x2); . . . ;xn−1, p`(xn−1);xn, p`(xn))

` ∼ [x1, (1−K`);x2, 0; . . . ;xn−1, 0;xn,K`]

with

K` =
n∑

i=1

p`(xi)ui

65



Decision under risk Expected Utility Theory

4)
Use steps 1) to 3) to transform a lottery
`′ ∼ (x1, p`′(x1);x2, p`′(x2); . . . ;xn−1, p`′(xn−1);xn, p`′(xn))
We have:

`′ ∼ [x1, (1−K`′);x2, 0; . . . ;xn−1, 0;xn,K`′ ]

with

K`′ =

n∑
i=1

p`′(xi)ui
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Decision under risk Expected Utility Theory

5)
Using A1 (Ranking) and A3 (Monotonicity) we know that:

` � `′ ⇔
(x1, p`(x1);x2, p`(x2); . . . ;xn, p`(xn)) �

(x1, p`′(x1);x2, p`′(x2); . . . ;xn, p`′(xn))⇔
[x1, (1−K`);x2, 0; . . . ;xn,K`] � [x1, (1−K`′);x2, 0; . . . ;xn,K`′ ]

⇔
K` > K`′ ⇔

n∑
i=1

p`(xi)ui >

n∑
i=1

p`′(xi)ui

and define u letting:

u(xi) = ui
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Decision under risk Expected Utility Theory

Consequences of axioms

Theorem (Uniqueness)

If there are two functions u and v such that (vNM) holds then there are
α, β ∈ R with α > 0 such that:

v(x) = αu(x) + β

∀x ∈ X

Interpretation

preferences can be measured as temperature

Proof

obvious: if u and v are not linked by a positive affine transformation, you can
always find two loteries that will have different expected utilities
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Decision under risk Expected Utility Theory

Assessment of a utility function

Hypotheses

X = R (money)

let u(0) = 0 and u(10 000) = 1

Assessment

x
1 ∼

10 000

0

1/2

1/2

1× u(x) = u(x) = 1/2× u(10 000) + 1/2× u(0) = 1/2
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Decision under risk Expected Utility Theory

Assessment of a utility function

Assessment

y1 ∼
x

0

1/2

1/2

u(y) = 1/2× u(x) + 1/2× u(0) = 1/4
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Decision under risk Expected Utility Theory

Assessment of a utility function

Assessment

z
1 ∼

10 000

x

1/2

1/2

u(z) = 1/2× u(10000) + 1/2× u(x) = 3/4
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Decision under risk Expected Utility Theory

Assessment of a utility function

Control question

we must have:

x
1 ∼

y

z

1/2

1/2

if not: go back and check
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Decision under risk Expected Utility Theory

Assessment of a utility function

General case

x
1 ∼

z

w

p

1− p

u(x) = pu(z) + (1− p)u(w)

4 unknowns

fix the value of 3 of them and find indifference on the 4th

go faster
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Decision under risk Expected Utility Theory

Assessment of a utility function

Going down

0
1 ∼

10 000

a

1/2

1/2

1× u(0) = 1/2× u(10 000) + 1/2× u(a)⇒ u(a) = −1
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Decision under risk Expected Utility Theory

Assessment of a utility function

Going up

10 000
1 ∼

b

0

1/2

1/2

1× u(10 000) = 1/2× u(b) + 1/2× u(0)⇒ u(b) = 2
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Decision under risk Expected Utility Theory

Assessment of a utility function

Remarks

use of simple probabilities: 1/2, 1/3, 1/4

bracketing

checks are necessary
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Decision under risk Risk aversion

Risk aversion

Context

let X = R (money)

suppose that the DM satisfies A1-A5

it is not restrictive to suppose that u is increasing!

P : wealth of the DM

Certainty equivalent of a lottery `: x̂(`)

amount of money that the DM finds equivalent to owning the lottery `
(minimal selling price of lottery `)

E(u(P + x̂(`))) = u(P + x̂(`)) = E(u(P + `))

⇒
x̂(`) = u−1[E(u(P + `))]− P
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Decision under risk Risk aversion

Risk premium π(`) for lottery `

Risk premium

π(`) = E(`)− x̂(`)

Risk aversion

A DM is

risk averse if x̂(`) < E(`)

risk prone if x̂(`) > E(`)

risk neutral if x̂(`) = E(`) (EV)

pour toute loterie ` ∈ L(X)
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Decision under risk Risk aversion

Risk aversion

Theorem (Arrow-Pratt)

A DM is risk averse iff her utility function is concave

Proof

Risk aversion (x̂(`) < E(`))

E[u(P + E(`))] = u(P + E(`)) > E(u(P + `)) = u(P + x̂(`))

u(P + [αx+ (1− α)y]) = u(α(x+ P ) + (1− α)(y + P )) > E(u(P + `)) =
αu(x+ P ) + (1− α)u(y + P )

z = x+ P , w = y + P
u(αz + (1− α)w) > αu(z) + (1− α)u(w)

79



Decision under risk Risk aversion

Risk aversion

Theorem (Arrow-Pratt)

A DM is risk averse iff her utility function is concave

Proof

Risk aversion (x̂(`) < E(`))

E[u(P + E(`))] = u(P + E(`)) > E(u(P + `)) = u(P + x̂(`))

u(P + [αx+ (1− α)y]) = u(α(x+ P ) + (1− α)(y + P )) > E(u(P + `)) =
αu(x+ P ) + (1− α)u(y + P )

z = x+ P , w = y + P
u(αz + (1− α)w) > αu(z) + (1− α)u(w)

79



Decision under risk Risk aversion

x

u(x)

z w1/2z + 1/2w

u(z)

u(w)

1/2u(z) + 1/2u(w)

u(1/2z + 1/2w)

x̂(`)

Risk premium
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Decision under uncertainty

Decision under uncertainty

Subjectivist school

de Finetti, Savage, Aunscombe & Aumann

use results in the context of risk in the context of uncertainty

Idea

G

L

E

E

�
∼
≺

G

L

p

1− p

Minimal greediness

if the first lottery is preferred (not preferred) to the second lottery we have
P (E) > p (resp. P (E) < p)

the subjective probability of the event is the value p for which these two
lotteries are indifferent

82
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Decision under uncertainty

Subjectivist school

Idea

under uncertainty, use subjective probabilities

back to the case of decision under risk

Questions

are subjective probabilities probabilities?

are subjective probabilities “true” probabilities?

rationale?

go faster
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Decision under uncertainty

Subjectivist school

Idea

under uncertainty, use subjective probabilities

back to the case of decision under risk

Questions

are subjective probabilities probabilities?

are subjective probabilities “true” probabilities?

rationale?

go faster
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Decision under uncertainty Reminder on Probabilities

Reminder

Random experiment

experiment for which it is impossible to predict the result before you run it

Examples

toss of a coin

price of $/e in one year

next month sales
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Decision under uncertainty Reminder on Probabilities

Definitions

S: set of elementary events = sets of all possible results of the experiment

toss of a coin: S = {H,T}
rolling a dice: S = {1, 2, 3, 4, 5, 6}
price of $/e in one year: S = R+

S: sets of events based on S (allowing to speak of the union, intersection,
of elementary events)

Properties

S ∈ S
A ∈ S ⇒ S \A ∈ S
A,B ∈ S ⇒ A ∪B ∈ S

(algebra, σ-algebra)
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Decision under uncertainty Reminder on Probabilities

Definition

A probability P is a mapping from S to R, associating to each event A its
probability P (A) and such that:

1 P (A) ≥ 0

2 P (S) = 1

3 A ∩B = ∅⇒ P (A ∪B) = P (A) + P (B)

(Kolmogorov’s axioms)

go faster

86



Decision under uncertainty Reminder on Probabilities

Reminder

Definition

The probability of “A given B”, denoted by P (A/B), is defined by:

P (A/B) =
P (A ∩B)

P (B)

Property

P (A/B) =
P (B/A)P (A)

P (B)
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Decision under uncertainty Reminder on Probabilities

Total probabilities

If A1, A2, ..., An partition S then:

P (A) =

n∑
i=1

P (A/Ai)P (Ai)

Bayes’ formula

P (A/B) =
P (B/A)P (A)∑n

i=1 P (B/Ai)P (Ai)
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Decision under uncertainty Reminder on Probabilities

Probabilities?

Source of probabilities?

two main schools

classic school
subjectivist school

89



Decision under uncertainty Classic school

Classic school

Sources of probabilities

logical source

frequentist source

Logical source

Principle of “insufficient reason”

P (Tails) = P (Heads) = 1/2

P (E) = Number of favorable cases/Number of cases

Problems

restricted to “perfect objects”

problem of proof: what is a “perfect object”?

limited practical impact (ex.: price of $/e in one year?)
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Decision under uncertainty Classic school

Classic school

Frequentist source

Law of large numbers

n identical and independent repetitions of event E of probability p:

lim
n→∞

P

(∣∣∣∣n(E)

n
− p
∣∣∣∣ > ε

)
= 0

“if you do not p, experiment”
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Decision under uncertainty Classic school

Problems

events that cannot be “repeated”

proof problem (past = future)

different results if “identical”?

rôle of information unclear
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Decision under uncertainty Classic school

Exemple: thumbtack

10 000e if Tails

−5 000e if Heads

heads heads

Question

would you accept to perform 1 000 tosses of the thumbtack before taking a
decision?
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Decision under uncertainty Subjectivist school

Subjectivist school

Facts

2 different and equally rational persons cas have different probability
judgements on the same event

experiments transform probability judgements: thumbtack

language has a great variety of expression to speak of likelihood

Definition: subjective probability

a probability is a subjective measure of the likelihood of an event
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Decision under uncertainty Subjectivist school

Subjective Probabilities

Problems

why probabilities? (Kolmogorov’s axioms)

how to assess probabilities?

Idea

comparing “uncertain” lotteries with “risky lotteries” (with probabilities
coming from consensual random experiments; coins, cards, dices, urns,
etc.)
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Decision under uncertainty Subjectivist school

Comparison

G

L

E

E

�
∼
≺

G

L

p

1− p

Minimal greediness

if the first lottery is preferred to the second: P (E) > p

if the second lottery is preferred to the first: P (E) < p

subjective probability of E is the value for which they are indifferent
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Decision under uncertainty Subjectivist school

Problems

are these numbers probabilities?

are these numbers true probabilities?

rationale?

use?
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Decision under uncertainty Subjectivist school

Results

Idea

add to L(X) “uncertain lotteries”

impose (modified) axioms A1-A5 to this new set of lotteries

Theorem (Savage, Aunscombe & Aumann)

There are a function u : X → R and a Probability measure P on S such that
the comparison of two lotteries (risky or uncertain) is done comparing their
Expected Utilities (p for risky lotteries, P for risky lotteries)

The probability measure is unique. The utility function is unique up to a
positive affine transformation.

tastes: u (subjective)

beliefs: P (subjective)
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Decision under uncertainty Subjectivist school

Consequences

same analysis as in the risky case replacing (whenever needed)
“probabilities” by “subjective probabilities”

exchangeable events and subjective vs objective probabilities (de Finetti)
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Decision under uncertainty Subjectivist school

Idea of proof

Example (A ∩B = ∅)

L1 F P
A G L
B L G

A or B L L

L2 F P
A G L
B G L

A or B L L

A2 ⇒ [G if Tails;L if Heads] ∼ [L if Tails;G if Heads]
A4 ⇒ L1 ∼ L2
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Decision under uncertainty Subjectivist school

F

P

G

L

G

L

A

A

B

B

L

A ∪B

A ∪B

G

L

F

P

Consequences

A4⇒ L1 ∼ L2

Let u(G) = 1 and u(P ) = 0

We have:

E[u(L1)] =0.5[P (A)u(G) + (1− P (A))u(L)]+

0.5[P (B)u(G) + (1− P (B))u(L)]

0.5[P (A) + P (B)]

E[u(L2)] =0.5P (A ∪B)

⇒
P (A) + P (B) = P (A ∪B)
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Decision under uncertainty Subjectivist school

Bayesian Decision Theory

creativity: A
objectives: X

beliefs: P
tastes: u

evaluation: (S)EU
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Decision under uncertainty Applications

Applications

risk aversion

stochastic dominance

economics of finance and insurance

value of information

Bayesian statistics

all this must be skipped today :-(
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Extensions Decision under risk

Allais’ paradox (106e)

Experiment

A 1
1

B

1

5

0

0.1

0.89

0.01

C
1

0

0.11

0.89

D
5

0

0.1

0.9

Modal Result

A � B and D � C

Interpretation

A � B ⇒
u(1) > 0.89u(1) +
0.1u(5) + 0.01u(0)

⇒ u(1) > 10/11

D � C ⇒
0.1u(5) + 0.9u(0) >
0.11u(1) + 0.89u(0)

⇒ u(1) < 10/11
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Extensions Decision under risk

Allais’ paradox

Reformulation

A

1

1

0.11

0.89

B

1

0.11

0.89

5

0

10/11

1/11

C

1

0

0.11

0.89

D

0

0.11

0.89

5

0

10/11

1/11

skip examples
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Extensions Decision under risk

Allais’s paradox

Reformulation

urn with 89 balls R and 11 balls N

R N

X Q 1

Y Q
5 with 10/11
0 with 1/11

Should the choice between X and Y depend upon Q?

Q = 0: X = C and Y = D

Q = 1: X = A and Y = B
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Extensions Decision under risk

Violation of independence

Normative analysis

(x; 1) � (y; 1) and (y, p; z, (1− p)) � (x, p; z, (1− p))
(x; 1) � (y; 1)⇒ (x− ε; 1) � (y; 1)

(y, p; z, (1− p)) � (x, p; z, (1− p))⇒
(y, p; z − ε, (1− p)) � (x, p; z, (1− p))

Exchanges starting with (x, p; z, (1− p))
(x, p; z, (1− p)) exchanged for (y, p; z − ε, (1− p))

if E does not obtain: gain = (z − ε)
if E obtains: gain = y and y is exchanged for (x− ε)

you had (x, p; z, (1− p)) you have (x− ε, p; z − ε, (1− p))!
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Extensions Decision under risk

Rational violation of independence

Mom’s decision

two kids: A and B

only one gift to be given to either A or B

Mom’s preferences

(A, 1) ∼ (B, 1)

(B, 1/2;A, 1/2) � (A, 1/2;A, 1/2)

⇒ rational violation of independence
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Extensions Decision under risk

EURDP

Definition

distortion of probabilities according to their rank

φ increasing bijection on [0, 1]

(x1, p1;x2, p2; . . . ;xn, pn)

x(1) ≤ x(2) ≤ · · · ≤ x(n)
where (·) is a permutation on {1, 2, . . . , n}

(x(1), p(1);x(2), p(2); . . . ;x(n), p(n))
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Extensions Decision under risk

EURDP

Computation

φ increasing bijection on [0, 1]

EURDP = u(x(1))φ(p(1) + p(2) + . . . p(n)) +

(u(x(2))− u(x(1)))φ(p(2) + . . . p(n)) +

(u(x(3))− u(x(2)))φ(p(3) + . . . p(n)) +

(u(x(4))− u(x(3)))φ(p(4) + . . . p(n)) +

. . .

(u(x(n))− u(x(n−1)))φ(p(n))

Motivation

distorting cumulative probabilities is inevitable if inconsistencies are to be
avoided

111
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Extensions Decision under risk

Allais’ paradox and EURDP

Allais

A : (1, 1) preferred to B : (0, 0.01; 1, 0.89; 5, 0.1)

D : (0, 0.9; 5, 0.1) preferred to C : (0, 0.89; 1, 0.11)

EURDP (A) = u(1)

EURDP (B) = u(0) + (u(1)− u(0))φ(0.99) + (u(5)− u(1))φ(0.1)

EURDP (C) = u(0) + (u(1)− u(0))φ(0.11)

EURDP (D) = u(0) + (u(5)− u(0))φ(0.1)
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Allais’ paradox and EURDP

EURDP (A) = u(1)

EURDP (B) = u(0) + (u(1)− u(0))φ(0.99) + (u(5)− u(1))φ(0.1)

EURDP (C) = u(0) + (u(1)− u(0))φ(0.11)

EURDP (D) = u(0) + (u(5)− u(0))φ(0.1)

u(5) = 1, u(0) = 0, φ(x) = x2

EURDP (A) = u(1) EURDP (B) = 0.01− 0.9701u(1)

EURDP (C) = 0.112u(1) EURDP (D) = 0.12

u(1) > 0.01− 0.9701u(1)⇒ u(1) > 0.33

0.12 > 0.112u(1)⇒ u(1) < 0.826
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Interpretation

EU & EURDP

φ(x) = x2

(x1, p;x2, (1− p)) avec x1 < x2

EU = pu(x1) + (1− p)u(x2)

EURDP = u(x1) + (u(x2)− u(x1))φ(1− p)
= (1− φ(1− p))u(x1) + φ(1− p)u(x2)

φ(x) = x2 convex ⇒
φ(1− p) < (1− p) and (1− φ(1− p)) > p

bad consequences are overweighed

good consequences are underweighed

Pessimism
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Interpretation

Interpretation: EURDP

u captures attitude towards consequences

φ captures attitude towards risk

with EU u plays both rôles

EURDP

huge literature on the axiomatic foundations and experimental validity

distorting probabilities

envisage other models of likelihood
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Extensions Decision under uncertainty

Belief functions

Example

you know that a proportion αk of vehicles are of type k

you know that a vehicle of type k has a length between `−k and `+k
an available slot in which a vehicle of length L can park

Probability that a car can park?

between ∑
k:`+k≤L

αk

and ∑
k:`−k ≤L

αk
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Extensions Decision under uncertainty

Belief functions

ϕ([`−k , `
+
k ]) = αk

inferior probability

p−([0, L]) =
∑

[`−k ,`+k ]⊆[0,L]

ϕ([`−k , `
+
k ])

superior probability

p+([0, L]) =
∑

[`−k ,`+k ]∩[0,L]6=∅

ϕ([`−k , `
+
k ])

inferior probability and Möbius masses

p−(A) =
∑
B⊆A

ϕ(B)⇔ ϕ(A) =
∑
B⊆A

(−1)|A\B|p−(B)
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Extensions Decision under uncertainty

Belief functions

p−(A) =
∑
B⊆A

ϕ(B) p+(A) =
∑

B∩A 6=∅
ϕ(B)

knowing p− is equivalent to knowing p+

p+(A) = 1− p−(A)

knowing p− is equivalent to knowing ϕ

ϕ(A) =
∑
B⊆A

(−1)|A\B|p−(B)
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Extensions Decision under uncertainty

Belief functions

Definition

p−: Belief function (Bel)

p+: Plausibility function (Pl)

ϕ: Möbius masses

p−(∅) = 0, p−(S) = 1

B ⊆ A⇒ p−(B) ≤ p−(A)

p−(A ∪B) ≥ p−(A) + p−(B)− p−(A ∩B)

p−(A ∪B ∪ C) ≥
p−(A)+p−(B)+p−(C)−p−(A∩B)−p−(A∩C)−p−(B∩C)+p−(A∩B∩C)

p− monotone at all orders

ϕ(∅) = 0, ϕ(B) ≥ 0∑
B⊆S ϕ(B) = 1
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Extensions Decision under uncertainty

Belief functions

Probabilities

ϕ(A) > 0⇒ |A| = 1: masses only on singletons

p− = p+: probabilities

Possibilities

ϕ(A) > 0 and ϕ(B) > 0 ⇒ A ⊆ B or B ⊆ A: embedded masses

p−: necessity measure

p+: possibility measure

Nec(A ∪B) = min(Nec(A), Nec(B))

Pos(A ∪B) = max(Pos(A), Pos(B))
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Belief functions

Probabilities

ϕ(A) > 0⇒ |A| = 1: masses only on singletons

p− = p+: probabilities

Possibilities

ϕ(A) > 0 and ϕ(B) > 0 ⇒ A ⊆ B or B ⊆ A: embedded masses

p−: necessity measure

p+: possibility measure

Nec(A ∪B) = min(Nec(A), Nec(B))

Pos(A ∪B) = max(Pos(A), Pos(B))

120



Extensions Decision under uncertainty

Ellsberg’s Paradox

Experiment

90 balls in an urn: 30 are R and 60 are B or Y

a1: 100 if R or a2: 100 if B

a3: 100 if R or Y or a4: 100 if B or Y

model answer: a1 � a2 and a4 � a3

incompatible with SEU!

E[u(a1)] = P (R)u(100) E[u(a2)] = P (B)u(100)

a1 � a2⇒ P (R) > P (B)

E[u(a3)] = P (R)u(100) + P (Y )u(100) E[u(a4)] = P (B)u(100) + P (Y )u(100)

a4 � a3⇒ P (B) > P (R)

Aversion to ambiguity
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Extensions Decision under uncertainty

Choquet Expected Utility (CEU)

Capacity

C : 2S → [0, 1]

A ⊆ B ⇒ C(A) ≤ C(B)

C(∅) = 0, C(S) = 1
Capacity: belief function that is not necessarily monotone
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Extensions Decision under uncertainty

CEU

(x(1), E(1);x(2), E(2); . . . ;x(n), E(n)) avec x(1) ≤ x(2) ≤ · · · ≤ x(n)
CEU = u(x(1))C(E(1) ∪ E(2) ∪ · · · ∪ E(n)) +

(u(x(2))− u(x(1)))C(E(2) ∪ E(3) ∪ · · · ∪ E(n)) +

(u(x(3))− u(x(2)))C(E(3) ∪ E(4) ∪ · · · ∪ E(n)) +

... +

(u(x(n))− u(x(n−1)))C(E(n))
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CEU and Ellsberg

90 balls in an urn: 30 are R and 60 are B or Y

a1: 100 if R or a2: 100 if B

a3: 100 if R or Y or a4: 100 if B or Y

a1 � a2 and a4 � a3

a1 � a2⇒ C(R) > C(B)

a4 � a3⇒ C(B ∪ Y ) > C(R ∪B)

Particular cases

A ∩B = ∅⇒ C(A) + C(B) = C(A ∪B): Probability

C(A ∩B) = max(C(A), C(B)): Possibility

C(A ∩B) = f(C(A), C(B)): Decomposable Capacity

C monotone: Belief functions

124



Extensions Decision under uncertainty

Capacity

Möbius masses

ϕ(A) =
∑
B⊆A

−1|A\B|C(B)

Ellsberg

∅ R B Y R ∪B R ∪ Y B ∪ Y S
C 0 1/3 0 0 1/3 1/3 2/3 1
ϕ 0 1/3 0 0 0 0 2/3 0
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Extensions Decision under uncertainty

Extensions

Cumulative prospect theory

rank dependence

sign dependence: reference effects
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