### Decision under risk and uncertainty (A ridiculously sketchy introduction)

Denis Bouyssou

CNRS Paris, France

ULB — February 2011

# Decision: typology

#### Decision "under certainty"

- A: set of alternatives (possible decisions)
- X: set of consequences
- $c(a) \in X$ : consequence of implementing  $a \in A$

#### Problem

• help someone compare alternatives in A on the basis of their consequences

#### Classic problems

- |A| "large": combinatorial optimization, mathematical programming
- $x \in X$  such that  $x = (x_1, x_2, \dots, x_m)$ : multicriteria problems

# Decision: typology

#### Decision "under certainty"

- A: set of alternatives (possible decisions)
- X: set of consequences
- $c(a) \in X$ : consequence of implementing  $a \in A$

#### Problem

 $\bullet\,$  help someone compare alternatives in A on the basis of their consequences

#### Classic problems

- |A| "large": combinatorial optimization, mathematical programming
- $x \in X$  such that  $x = (x_1, x_2, \dots, x_m)$ : multicriteria problems

# Decision: typology

#### Decision "under certainty"

- A: set of alternatives (possible decisions)
- X: set of consequences
- $c(a) \in X$ : consequence of implementing  $a \in A$

### Problem

 $\bullet\,$  help someone compare alternatives in A on the basis of their consequences

#### Classic problems

- $\bullet ~|A|$  "large": combinatorial optimization, mathematical programming
- $x \in X$  such that  $x = (x_1, x_2, \dots, x_m)$ : multicriteria problems

### Decision under risk and uncertainty

#### Problem

- la décision ne dispose que pour l'avenir (cf. art. 2 of the French Civil Code:)
  - c(a) is not known with certainty

#### Decision under risk

• c(a) is a probability distribution on X

#### Decision under uncertainty

• c(a) is known conditionally upon the occurrence of a number of "scenarios"

## Decision under risk and uncertainty

#### Problem

- la décision ne dispose que pour l'avenir (cf. art. 2 of the French Civil Code:)
  - c(a) is not known with certainty

#### Decision under risk

• c(a) is a probability distribution on X

#### Decision under uncertainty

• c(a) is known conditionally upon the occurrence of a number of "scenarios"

### Decision under risk and uncertainty

#### Problem

- la décision ne dispose que pour l'avenir (cf. art. 2 of the French Civil Code:)
  - c(a) is not known with certainty

#### Decision under risk

• c(a) is a probability distribution on X

#### Decision under uncertainty

• c(a) is known conditionally upon the occurrence of a number of "scenarios"

- 2 Decision under risk
- B Decision under uncertainty
- Extensions

2 Decision under risk

B Decision under uncertainty

### I Extensions

- 2 Decision under risk
- 3 Decision under uncertainty

### 1 Extensions

- 2 Decision under risk
- 3 Decision under uncertainty

### 4 Extensions

### Plan

### 1 Introduction

- Model
- Dominance
- Classic criteria
- Max Min
- Max Max
- Hurwicz
- Savage
- Laplace
- 2 Decision under risk
- **3** Decision under uncertainty
- Extensions

# Decision under uncertainty

#### Context

- impossibility to determine with certainty the consequences of implementing an alternative
- no probability
- Nature decide of everything that is not under my control
- the consequences of my decisions depend upon my decisions and Nature's decisions ("states of Nature" or "scenarios")
- Nature does not care: dropping a slice of bread on the floor (the "tartine beurrée" exepriment)

#### 

#### Model

# Decision under uncertainty

#### Context

- impossibility to determine with certainty the consequences of implementing an alternative
- no probability
- Nature decide of everything that is not under my control
- the consequences of my decisions depend upon my decisions and Nature's decisions ("states of Nature" or "scenarios")
- Nature does not care: dropping a slice of bread on the floor (the "tartine beurrée" exepriment)

#### Problem

• you must choose an alternative before knowing Nature's decision

#### Model

- A: set of alternatives. An element  $a \in A$  is an alternative that can be implemented
- E: set of states of Nature. An element  $e \in E$  is a decision that Nature can take and that can influence the consequences of at least one alternative in A
- X: set of consequences
- c: mapping from  $A \times E$  to X

# Decision table (finite case: m alternatives, n states)

#### Decision table

| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                             |       |               |               |       |               |       |               |
|---------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------|---------------|-------|---------------|-------|---------------|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                              | c     | $e_1$         | $e_2$         | • • • | $e_i$         | • • • | $e_n$         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                              | $a_1$ | $c(a_1, e_1)$ | $c(a_1, e_2)$ | •••   | $c(a_1, e_i)$ | •••   | $c(a_1, e_n)$ |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                              | $a_2$ | $c(a_2, e_1)$ | $c(a_2, e_2)$ |       | $c(a_2, e_i)$ |       | $c(a_2, e_n)$ |
| $a_j$ $c(a_j, e_1)$ $c(a_j, e_2)$ $\cdots$ $c(a_j, e_i)$ $\cdots$ $c(a_j, e_n)$<br>$\vdots$ $\vdots$ $\vdots$ $\ddots$ $\vdots$ $\ddots$ $\vdots$ | ;     | ;             | ;             | ·     | :             | ·     | ;             |
|                                                                                                                                                   | $a_i$ | $c(a_i, e_1)$ | $c(a_1, e_2)$ |       |               |       | $c(a_i, e_n)$ |
| • • • • • • • • • • • • • • • • • • • •                                                                                                           | :     | :             | :             |       | •             | •.    | :             |
| $a_{mn} = c(a_{mn}, e_1) = c(a_{mn}, e_2) = \cdots = c(a_{mn}, e_i) = \cdots = c(a_{mn}, e_m)$                                                    | :     | :             | :             |       | •             | ••    | :             |
| $a_m = c(a_m, c_1) = c(a_m, c_2) = c(a_m, c_n)$                                                                                                   | $a_m$ | $c(a_m, e_1)$ | $c(a_m, e_2)$ | •••   | $c(a_m, e_i)$ | • • • | $c(a_m, e_n)$ |

#### Remark

• obtaining such a "decision table" is a huge work in practice

#### Model

# Exemple: the omelette

### The omelette

 $A = \{Bowl, Thrash, Aux. Bowl\}$  $E = \{Good, Bad\}$ 

| <i>c</i>  | Good                     | Bad                      |
|-----------|--------------------------|--------------------------|
| Bowl      | O. of 6                  | No O.                    |
| Thrash    | O. of 5                  | O. of 5                  |
| Aux. Bowl | O. of $6 + Bowl$ to wash | O. of $5 + Bowl$ to wash |

#### Model

# Exemple: the omelette

### The omelette

 $A = \{Bowl, Thrash, Aux. Bowl\}$  $E = \{Good, Bad\}$ 

| c         | Good                     | Bad                      |
|-----------|--------------------------|--------------------------|
| Bowl      | O. of 6                  | No O.                    |
| Thrash    | O. of 5                  | O. of 5                  |
| Aux. Bowl | O. of $6 + Bowl$ to wash | O. of $5 + Bowl$ to wash |

#### Remarks

- no probabilities
- tastes & beliefs
- possibility to acquire additional information (experimentation)

# Examples

| Bank              |         |                               |
|-------------------|---------|-------------------------------|
|                   | Default | $\overline{\mathrm{Default}}$ |
| Accept<br>Refuse  |         |                               |
| Refuse            |         |                               |
| Accept with guara | antees  |                               |

| New pr | oduct |        |         |                               |  |
|--------|-------|--------|---------|-------------------------------|--|
|        |       |        | Success | $\overline{\mathrm{Success}}$ |  |
|        |       | Launch | •••     |                               |  |
|        |       | Launch | •••     | •••                           |  |

| Example                                 |       |        |       |        |  |
|-----------------------------------------|-------|--------|-------|--------|--|
| $X = \mathbb{R}$ , preference increases | with  | the nu | imbe  | rs (€) |  |
|                                         | с     | $e_1$  | $e_2$ | $e_3$  |  |
|                                         | $a_1$ | 40     | 70    | -20    |  |
|                                         | $a_2$ | -10    | 40    | 100    |  |
|                                         | $a_3$ | 20     | 40    |        |  |

#### Classic criteria

- no information about the likelihood of the states of Nature
- no particular model for tastes

| Example                                 |       |        |       |        |  |  |
|-----------------------------------------|-------|--------|-------|--------|--|--|
| $X = \mathbb{R}$ , preference increases | with  | the nu | imbe  | rs (€) |  |  |
|                                         | c     | $e_1$  | $e_2$ | $e_3$  |  |  |
|                                         | $a_1$ |        | 70    | -20    |  |  |
|                                         | $a_2$ | -10    |       | 100    |  |  |
|                                         | $a_3$ | 20     | 40    | -5     |  |  |

### Classic criteria

- no information about the likelihood of the states of Nature
- no particular model for tastes

### Dominance

#### Definition

 $a \in A$  (strictly) dominates  $b \in A$  (a D b) if:

- $c(a,e) \ge c(b,e), \forall e \in E,$
- $\exists e \in E$  such that c(a, e) > c(b, e)

#### Remark

 ${\cal D}$  is a transitive and asymmetric binary relation

#### Definition

 $a \in A$  is efficient if it is not dominated by another alternative in A. When A and E are finite, the set of efficient alternatives  $A^* \subseteq A$  defined by:  $A^* = \{a \in A : \operatorname{Not}[b \ D \ a], \forall b \in A\}$ 

is always nonempty

### Dominance

#### Definition

 $a \in A$  (strictly) dominates  $b \in A$  (a D b) if:

- $c(a,e) \ge c(b,e), \forall e \in E,$
- $\exists e \in E$  such that c(a, e) > c(b, e)

### Remark

 ${\cal D}$  is a transitive and asymmetric binary relation

#### Definition

 $a \in A$  is efficient if it is not dominated by another alternative in A. When A and E are finite, the set of efficient alternatives  $A^* \subseteq A$  defined by:  $A^* = \{a \in A : \operatorname{Not}[b \ D \ a], \forall b \in A\}$ 

is always nonempty

#### Definition

 $a \in A$  (strictly) dominates  $b \in A$  (a D b) if:

- $\bullet \ c(a,e) \geq c(b,e), \forall e \in E,$
- $\exists e \in E$  such that c(a, e) > c(b, e)

### Remark

 ${\cal D}$  is a transitive and asymmetric binary relation

### Definition

 $a \in A$  is efficient if it is not dominated by another alternative in A. When A and E are finite, the set of efficient alternatives  $A^* \subseteq A$  defined by:  $A^* = \{a \in A : \operatorname{Not}[b \ D \ a], \forall b \in A\}$ 

is always nonempty

#### Remarks

- $a D b \Rightarrow a \succ b$ , whatever the likelihood of the sates of Nature
- in real-world problems:  $A^* = A$
- limiting attention to  $A^*$  might not be adequate, e.g., if there are doubts on the feasibility of some alternatives in A. The set  $A^*$  might not contain "close contenders"
- same problems as in MCDA/MCDM

### Example

| c | $e_1$ | $e_2$ | $e_3$ | $e_4$ | $e_5$ | $e_6$ | $e_{100}$ |
|---|-------|-------|-------|-------|-------|-------|-----------|
| a | 100   | 100   | 100   | 100   | 100   | 100   | 100       |
| b | 99    | 99    | 99    | 99    | 99    | 99    | 99        |
| c | 100.5 | 0     | 0     | 0     | 0     | 0     | 0         |
| d | 0     | 100.5 | 0     | 0     | 0     | 0     | 0         |

• 
$$A = \{a, b, c, d\}$$

• 
$$A^* = \{a, c, d\}$$
 because  $a D b$ 

 $\bullet~b$  is a "close contender"

### Example

| c | $e_1$ | $e_2$ | $e_3$ | $e_4$ | $e_5$ | $e_6$ | $e_{100}$ |
|---|-------|-------|-------|-------|-------|-------|-----------|
| a | 100   | 100   | 100   | 100   | 100   | 100   | 100       |
| b | 99    | 99    | 99    | 99    | 99    | 99    | 99        |
| c | 100.5 | 0     | 0     | 0     | 0     | 0     | 0         |
| d | 0     | 100.5 | 0     | 0     | 0     | 0     | 0         |

• 
$$A = \{a, b, c, d\}$$

• 
$$A^* = \{a, c, d\}$$
 because  $a D b$ 

 $\bullet~b$  is a "close contender"

▶ go faster

#### Remark

Every alternative that is solution of problem (P)

$$\max_{a \in A} \sum_{e \in E} p(e)c(a, e)$$
  
s.t.  
$$\sum_{e \in E} p(e) = 1$$
  
$$p(e) > 0, e \in E$$

#### is efficient

Suppose that a is solution of (P) and that a is not efficient. Since  $c(b,e) \ge c(a,e), \forall e \in E$  and c(b,e') > c(a,e') we have  $\sum_{e \in E} p(e)c(b,e) > \sum_{e \in E} p(e)c(a,e)$ 

(P)

#### Remark

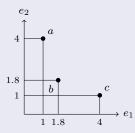
Every alternative that is solution of problem (P)

$$\max_{a \in A} \sum_{e \in E} p(e)c(a, e)$$
  
s.t.  
$$\sum_{e \in E} p(e) = 1$$
  
$$p(e) > 0, e \in E$$

is efficient

Suppose that a is solution of (P) and that a is not efficient. Since  $c(b,e) \ge c(a,e), \forall e \in E$  and c(b,e') > c(a,e') we have  $\sum_{e \in E} p(e)c(b,e) > \sum_{e \in E} p(e)c(a,e)$  (P)

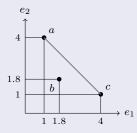
#### Converse



• 
$$A = A^* = \{a, b, c\}$$

• b cannot be solution of (P)

#### Converse



• 
$$A = A^* = \{a, b, c\}$$

• b cannot be solution of (P)

## Wald's criterion (Max Min)

#### Idea

- extreme pessimism: base your choice on the worst situation (Max Min)
- choose any alternative  $a \in A$  solution of:

 $\max_{a \in A} \min_{e \in E} c(a, e)$ 

#### Max Min

# Wald's criterion (Max Min)

#### Idea

- extreme pessimism: base your choice on the worst situation (Max Min)
- choose any alternative  $a \in A$  solution of:

 $\max_{a \in A} \min_{e \in E} c(a, e)$ 

| Example                       |                |       |       |       |     |
|-------------------------------|----------------|-------|-------|-------|-----|
| choose $a_3$                  | $\overline{c}$ | $e_1$ | $e_2$ | $e_3$ | min |
| (maximum loss = -5)           | $a_1$          | 40    | 70    | -20   | -20 |
| $a_1 \pmod{\text{bss}} = -20$ | $a_2$          | -10   | 40    | 100   | -10 |
| $a_2 \pmod{\log 10} = -10$    | $a_3$          | 20    | 40    | -5    | -5  |
|                               | -              |       |       |       |     |

#### Remarks

- bad use of information
- no compensation between consequences in different states of Nature
- $\bullet$  bias towards status~quo
- $\bullet$  only requires that X can be ordered

#### Example

#### Remarks

- bad use of information
- no compensation between consequences in different states of Nature
- bias towards *status quo*
- only requires that X can be ordered

| Example |   |       |       |       |                |  |
|---------|---|-------|-------|-------|----------------|--|
|         | c | $e_1$ | $e_2$ | $e_3$ | <br>$e_{1000}$ |  |
|         | a | -100  | 10000 | 10000 | <br>10000      |  |
|         | b | -99   | -99   | -99   | <br>-99        |  |

## Other classic criteria

- Max Max
- Hurwicz
- Min Max Regret
- Laplace

## Other classic criteria

- Max Max
- Hurwicz
- Min Max Regret
- Laplace

▶ go faster

## Max Max

#### Idea

- optimism: base your choice on the best possible situation (Max Max)
- choose any alternative in  $a \in A$  solution of:

 $\max_{a \in A} \max_{e \in E} c(a, e)$ 

## Max Max

#### Idea

- optimism: base your choice on the best possible situation (Max Max)
- choose any alternative in  $a \in A$  solution of:

 $\max_{a \in A} \max_{e \in E} c(a, e)$ 

| Example                       |       |       |       |       |     |
|-------------------------------|-------|-------|-------|-------|-----|
| choose $a_2$                  | c     | $e_1$ | $e_2$ | $e_3$ | max |
| (maximal gain = 100)          | $a_1$ | 40    | 70    | -20   | 70  |
| $a_1 \pmod{\text{gain} = 70}$ | $a_2$ | -10   | 40    | 100   | 100 |
| $a_3 \pmod{\text{gain} = 40}$ | $a_3$ | 20    | 40    | -5    | 40  |

#### Remarks

- bad use of information
- no compensation between consequences in different states of Nature
- $\bullet$  only requires that X can be ordered

## Hurwicz

#### Idea

- compromise between extreme pessimism (Max Min) and extreme optimism (Max Max)
- let  $\alpha \in [0; 1]$  called "coefficient of pessimism", choose any alternative  $a \in A$  solution of:

$$\max_{a \in A} \left[ \alpha \min_{e \in E} c(a, e) + (1 - \alpha) \max_{e \in E} c(a, e) \right]$$

#### $\alpha = 1/2$

## Hurwicz

#### Idea

- compromise between extreme pessimism (Max Min) and extreme optimism (Max Max)
- let  $\alpha \in [0; 1]$  called "coefficient of pessimism", choose any alternative  $a \in A$  solution of:

$$\max_{a \in A} \left[ \alpha \min_{e \in E} c(a, e) + (1 - \alpha) \max_{e \in E} c(a, e) \right]$$

#### $\alpha = 1/2$

| Choose $a_2$ | <i>c</i> | $e_1$ | $e_2$ | $e_3$ | min | max | $\alpha = 1/2$ |
|--------------|----------|-------|-------|-------|-----|-----|----------------|
| (90/2 = 45)  | $a_1$    | 40    | 70    | -20   | -20 | 70  | 25             |
| $a_1 (50/2)$ | $a_2$    | -10   | 40    | 100   | -10 | 100 | 45             |
| $a_3 (35/2)$ | $a_3$    | 20    | 40    | -5    | -5  | 40  | 17, 5          |
|              |          |       |       |       |     |     |                |

#### Remarks

- bad use of information
- compromise between bad solutions
- it must be meaningful to take linear combinations!
- how to assess the coefficient of pessimism  $\alpha$ ?

## Savage (Min Max Regret)

#### Idea

- criterion for bureaucrats
- choose  $a_2$  and  $e_1$  obtains
  - best decision:  $a_1$  (40)
  - decision taken:  $a_2$  (-10)
  - regrets: 40 (-10) = 50

#### Definition

Choose any alternative  $a \in A$  solution of: min max R(a,

avec

$$R(a, e) = \max_{b \in A} c(b, e) - c(a, e)$$

## Savage (Min Max Regret)

#### Idea

- criterion for bureaucrats
- choose  $a_2$  and  $e_1$  obtains
  - best decision:  $a_1$  (40)
  - decision taken:  $a_2$  (-10)
  - regrets: 40 (-10) = 50

|       | $e_1$ | $e_2$ | $e_3$ |
|-------|-------|-------|-------|
| $a_1$ | 40    | 70    | -20   |
| $a_2$ | -10   | 40    | 100   |
| $a_3$ | 20    | 40    | -5    |
|       |       |       |       |

#### Definition

Choose any alternative  $a \in A$  solution of:  $\min_{a \in A} \max_{e \in E} R(a, e)$ 

 $R(a, e) = \max_{b \in A} c(b, e) - c(a, e)$ 

## Savage (Min Max Regret)

#### Idea

- criterion for bureaucrats
- choose  $a_2$  and  $e_1$  obtains
  - best decision:  $a_1$  (40)
  - decision taken:  $a_2$  (-10)
  - regrets: 40 (-10) = 50

| c     | $e_1$ | $e_2$ | $e_3$ |
|-------|-------|-------|-------|
| $a_1$ | 40    | 70    | -20   |
| $a_2$ | -10   | 40    | 100   |
| $a_3$ | 20    | 40    | -5    |
|       |       |       |       |

#### Definition

Choose any alternative  $a \in A$  solution of:

 $\min_{a \in A} \max_{e \in E} R(a, e)$ 

avec

$$R(a, e) = \max_{b \in A} c(b, e) - c(a, e)$$

| c     | $e_1$ | $e_2$ | $e_3$ | R     | $e_1$ | $e_2$ | $e_3$ | max |
|-------|-------|-------|-------|-------|-------|-------|-------|-----|
| $a_1$ | 40    | 70    | -20   | $a_1$ | 0     | 0     | 120   | 120 |
| $a_2$ | -10   | 40    | 100   | $a_2$ | 50    | 30    | 0     | 50  |
| $a_3$ | 20    | 40    | -5    | $a_3$ | 20    | 30    | 105   | 105 |

Choose  $a_2$  (max regret 50)  $a_1$  (120),  $a_3$  (105)

| c     | $e_1$ | $e_2$ | $e_3$ | R     | $e_1$ | $e_2$ | $e_3$ | max |
|-------|-------|-------|-------|-------|-------|-------|-------|-----|
| $a_1$ | 40    | 70    | -20   | $a_1$ | 0     | 0     | 120   | 120 |
| $a_2$ | -10   | 40    | 100   | $a_2$ | 50    | 30    | 0     | 50  |
| $a_3$ | 20    | 40    | -5    | $a_3$ | 20    | 30    | 105   | 105 |

Choose  $a_2$  (max regret 50)  $a_1$  (120),  $a_3$  (105)

#### Remarks

- criterion that is different from Max Min  $(a_3)$
- it must be meaningful to take differences!
- taking differences is an adequate way to measure regrets
- choice is set dependent. Adding new alternatives can alter choice in an unpredictable way

| <i>c</i> | $e_1$ | $e_2$ | <br>R     | $e_1$ | $e_2$ | max |
|----------|-------|-------|-----------|-------|-------|-----|
| $a_1$    | 8     | 0     | <br>$a_1$ | 0     | 4     | 4   |
| $a_2$    | 2     | 4     | $a_2$     | 6     | 0     | 6   |

#### • Choice of $a_1$

| <i>c</i> | $e_1$ | $e_2$ | <br>R     | $e_1$ | $e_2$ | max |
|----------|-------|-------|-----------|-------|-------|-----|
| $a_1$    | 8     | 0     | <br>$a_1$ | 0     | 4     | 4   |
| $a_2$    | 2     | 4     | $a_2$     | 6     | 0     | 6   |

• Choice of  $a_1$ 

| C     | $e_1$ | $e_2$ |   | R     | $e_1$          | $e_2$ | max |
|-------|-------|-------|---|-------|----------------|-------|-----|
| $a_1$ | 8     | 0     | ( | $a_1$ | 0              | 7     | 7   |
| $a_2$ | 2     | 4     | ( | $a_2$ | 6              | 3     | 6   |
| $a_3$ | 1     | 7     | ( | $a_3$ | $\overline{7}$ | 0     | 7   |

• risk of "manipulations"

#### Idea

• Principle of "insufficient reason"

#### Definition

Choose any alternative in A solution of:

 $\max_{a \in A} \sum_{e \in E} \frac{1}{|E|} c(a, e)$ 

#### Example

Choose  $a_2$ c $e_1$  $e_2$  $e_3$ (130/3) $a_1$ 4070-2090/3 $a_1$ (90/3) $a_2$ -1040100130/3 $a_3$ (55/3) $a_3$ 2040-555/3

#### Idea

• Principle of "insufficient reason"

#### Definition

### Choose any alternative in A solution of:

$$\max_{a \in A} \sum_{e \in E} \frac{1}{|E|} c(a, e)$$

#### Example

#### Idea

• Principle of "insufficient reason"

#### Definition

Choose any alternative in A solution of:

$$\max_{a \in A} \sum_{e \in E} \frac{1}{|E|} c(a, e)$$

#### Example

| Choose $a_2$ | c     | $e_1$ | $e_2$ | $e_3$ |       |
|--------------|-------|-------|-------|-------|-------|
| (130/3)      | $a_1$ | 40    | 70    | -20   | 90/3  |
| $a_1 (90/3)$ | $a_2$ | -10   | 40    | 100   | 130/3 |
| $a_3 (55/3)$ | $a_3$ | 20    | 40    | -5    | 55/3  |

#### Remarks

- it must be meaningful to take linear combinations!
- either you will become the King of the Belgians or not. Are these two events equally likely?
- criterion that depends on the arbitrary model for states of Nature (E can always be refined: "E and rain tomorrow" and "E and no rain tomorrow"
- Is expected gain a good criterion, even when all states are supposed equally likely?

 $\blacktriangleright$ go faster

#### Example

| c              | $e_1$ | $e_2$ | $e_3$ | $e_4$ |
|----------------|-------|-------|-------|-------|
| $\overline{a}$ | 2     | 2     | 0     | 1     |
| b              | 1     | 1     | 1     | 1     |
| c              | 0     | 4     | 0     | 0     |
| d              | 1     | 3     | 0     | 0     |

#### Results

- Wald: b
- Max Max: *c*
- Laplace: a
- Savage: d

#### Example

| $c$ $e_1$ $e_2$ $e_1$ | $e_4$ |
|-----------------------|-------|
| a 2 2 (               | 1     |
| b 1 1 1               | 1     |
| c  0  4  0            | 0     |
| d 1 3 (               | 0     |

### Results

- $\bullet$  Wald: b
- $\bullet$  Max Max: c
- $\bullet$  Laplace: a
- $\bullet$  Savage: d

#### Classic Criteria

- none really satisfactory!
  - necessity to model likelihood (beliefs)
  - necessity to model desirability of consequences (tastes)

#### Central questions

- why is there no probability?
- where probabilities come from?

#### Classic Criteria

- none really satisfactory!
  - necessity to model likelihood (beliefs)
  - necessity to model desirability of consequences (tastes)

#### Central questions

- why is there no probability?
- where probabilities come from?

### **1** Introduction

### 2 Decision under risk

- Model
- Classic Criteria
- Expected Utility Theory
- Risk aversion

3 Decision under uncertainty

### Extensions

Model

## Decision under risk: model

#### Model

- X: set of consequences
- X finite =  $\{x_1, x_2, \dots, x_n\}$
- $X \subseteq \mathbb{R}$  (e.g., money)

#### Simple lottery on X

- discrete r.v. on X
- $\ell = (x_1, p_1; x_2, p_2; \dots; x_n, p_n)$
- $p_{\ell}(x_i)$ : probability to obtain consequence  $x_i$  with lottery  $\ell$

Model

## Decision under risk: model

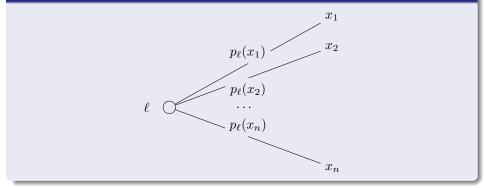
#### Model

- X: set of consequences
- X finite =  $\{x_1, x_2, \dots, x_n\}$
- $X \subseteq \mathbb{R}$  (e.g., money)

#### Simple lottery on X

- $\bullet$  discrete r.v. on X
- $\ell = (x_1, p_1; x_2, p_2; \dots; x_n, p_n)$
- $p_{\ell}(x_i)$ : probability to obtain consequence  $x_i$  with lottery  $\ell$

### Simple lottery $\ell$ on X



#### Set of lotteries

- $\bullet$  simple lotteries on X
- first order lotteries on X: lotteries on simple lotteries
- second order lotteries on X: loteries on first order lotteries
- $\bullet~{\rm etc.}$
- L(X): set of lotteries at all finite orders
  - L(X) is always infinite

#### Remark

• L(X) includes all lotteries that corresponds to the implementation of alternatives in A and many other "hypothetical" lotteries

#### Problem

• help someone compare lotteries in L(X)

#### Notation

- $\ell \in L(X)$ : lotteries (simple or not)
- $x \in X$ : consequences
- $p_{\ell}(x)$ : probability to obtain consequence x with lottery  $\ell$

#### Remark

• L(X) includes all lotteries that corresponds to the implementation of alternatives in A and many other "hypothetical" lotteries

#### Problem

• help someone compare lotteries in L(X)

#### Notation

- $\ell \in L(X)$ : lotteries (simple or not)
- $x \in X$ : consequences
- $p_{\ell}(x)$ : probability to obtain consequence x with lottery  $\ell$

#### Remark

• L(X) includes all lotteries that corresponds to the implementation of alternatives in A and many other "hypothetical" lotteries

#### Problem

• help someone compare lotteries in L(X)

#### Notation

- $\ell \in L(X)$ : lotteries (simple or not)
- $x \in X$ : consequences
- $p_{\ell}(x)$ : probability to obtain consequence x with lottery  $\ell$

## Classic Criterion

### Expected Value (EV)

$$\begin{split} \ell \succ \ell' \Leftrightarrow \sum_{x \in X} x p_\ell(x) > \sum_{x \in X} x p_{\ell'}(x) \\ \ell \sim \ell' \Leftrightarrow \sum_{x \in X} x p_\ell(x) = \sum_{x \in X} x p_{\ell'}(x) \end{split}$$

- $\succ$ : strict preference
- $\sim$ : indifference



#### Advantages

- $\bullet$  simple
- good use of information
- can be "decentralized"

#### Disadvantages

- limited to numerical consequences
- no clear rationale
- contradict observed behavior of "rational" people (diversification, insurance)

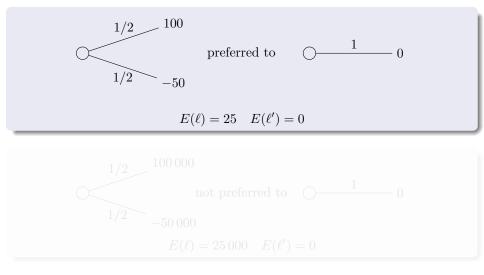
## EV

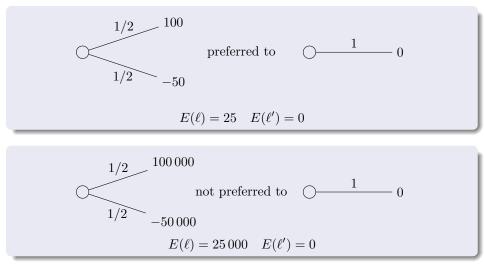
#### Advantages

- $\bullet \ {\rm simple}$
- good use of information
- can be "decentralized"

#### Disadvantages

- limited to numerical consequences
- no clear rationale
- contradict observed behavior of "rational" people (diversification, insurance)





## Saint Petersburg Paradox (D. Bernoulli)

#### Game

- a "banker" plays with a "player". The player must pay a fixed sum to enter the game.
- the banker tosses a coin till "Tails" obtains
- the game stops
- if "tails" obtains at the *n*th toss, the banker pays  $2^n \in$  to the player
- how much a rational player should be prepared to pay to enter the game?

# $\frac{1}{2^{2}} \times {}^{2}2 + \frac{1}{2} \times 2 - \frac{1}{2^{3}}$ (5.2 $\pm 500$ ) (5.2 $\pm 500$ )

## Saint Petersburg Paradox (D. Bernoulli)

#### Game

- a "banker" plays with a "player". The player must pay a fixed sum to enter the game.
- the banker tosses a coin till "Tails" obtains
- the game stops
- if "tails" obtains at the *n*th toss, the banker pays  $2^n \in$  to the player
- how much a rational player should be prepared to pay to enter the game?

 $EV = 2 \times \frac{1}{2} + 2^2 \times \frac{1}{2^2} + \cdots$  hances of winning only  $2 \in !$ 

## Saint Petersburg Paradox (D. Bernoulli)

#### Game

- a "banker" plays with a "player". The player must pay a fixed sum to enter the game.
- the banker tosses a coin till "Tails" obtains
- the game stops
- if "tails" obtains at the *n*th toss, the banker pays  $2^n \in$  to the player
- how much a rational player should be prepared to pay to enter the game?

50% chances of winning only  $2 \in !$ )

## Saint Petersburg Paradox (D. Bernoulli)

#### Game

- a "banker" plays with a "player". The player must pay a fixed sum to enter the game.
- the banker tosses a coin till "Tails" obtains
- the game stops
- if "tails" obtains at the *n*th toss, the banker pays  $2^n \in$  to the player
- how much a rational player should be prepared to pay to enter the game?

$$EV = 2 \times \frac{1}{2} + 2^2 \times \frac{1}{2^2} + \cdots$$
only  $2 \in \mathbb{N}$ 

(50% chances of winning only  $2 \in !$ )

## Other classic criterion

#### Expected Value + Variance

• add a measure of dispersion to the measure of central tendency

#### Problems

- less simple
- how to deal with the two criteria (efficient solutions or synthesis?)
- is variance a good measure of risk? (inter-quartile spreads, semi-variance, etc.)

## Other classic criterion

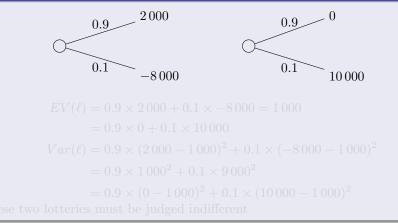
#### Expected Value + Variance

• add a measure of dispersion to the measure of central tendency

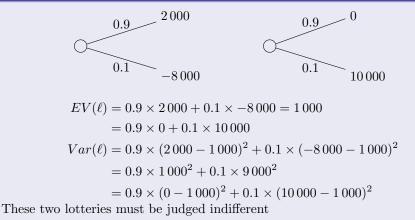
## Problems

- $\bullet$  less simple
- how to deal with the two criteria (efficient solutions or synthesis?)
- is variance a good measure of risk? (inter-quartile spreads, semi-variance, etc.)









## Limit of classic criteria

#### Central problem

#### • these criteria do not take the psychology of the individual towards risk

- what is her wealth?
- what is her income?
- what is her attitude towards risk?
- $\bullet~{\rm etc.}$

# Pseudo-Solution

## Pseudo-Solution

## • directly ask the individual about her preferences

#### Problems

- consistency?
- decentralized decisions?
- cognitive effort!

# Pseudo-Solution

### Pseudo-Solution

• directly ask the individual about her preferences

#### Problems

- consistency?
- decentralized decisions?
- cognitive effort!

### Example: choice between



#### Example: choice between

- $\mathcal{N}(878.32; 72.45)$  and
- Bi(1200; 0.75)



### Example: choice between



### Example: choice between

- $\mathcal{N}(878.32; 72.45)$  and
- Bi(1200; 0.75)

### Expected Utility Theory J. von Neumann & O. Morgenstern (1945)

#### Idea

- ask the individual about simple choices
- model the behavior of the individual using a mathematical model
- use the model to process complex choices

#### Questions

- what model?
- what rationale?
- how to elicit the model?

### Expected Utility Theory J. von Neumann & O. Morgenstern (1945)

#### Idea

- ask the individual about simple choices
- model the behavior of the individual using a mathematical model
- use the model to process complex choices

#### Questions

- what model?
- what rationale?
- how to elicit the model?

## Mathematical model

### Idea

- $\bullet$  replace EV by an "Expected Utility" (EU)
- the 'utility" capture the psychology of the individual towards risk

$$\ell \succ \ell' \Leftrightarrow \sum_{x \in X} u(x) p_{\ell}(x) > \sum_{x \in X} u(x) p_{\ell'}(x)$$
$$\ell \sim \ell' \Leftrightarrow \sum_{x \in X} u(x) p_{\ell}(x) = \sum_{x \in X} u(x) p_{\ell'}(x)$$

### Utility function

- $\bullet \ u: X \to \mathbb{R}$
- u(x) is the "utility" of consequence  $x \in X$
- the function u is linked to the individual

#### Advantages

- simple
- can be decentralized
- takes individual characteristics into account
- not restricted to numerical consequences
- clear rationale (axioms)

### Utility function

- $\bullet \ u: X \to \mathbb{R}$
- u(x) is the "utility" of consequence  $x \in X$
- the function u is linked to the individual

#### Advantages

- simple
- can be decentralized
- takes individual characteristics into account
- not restricted to numerical consequences
- clear rationale (axioms)

# Theoretical Analysis

### How to justify the model?

• axiomatic analysis

#### Interpretation of axioms?

- descriptive
- normative
- prescriptive

# Theoretical Analysis

#### How to justify the model?

• axiomatic analysis

### Interpretation of axioms?

- descriptive
- normative
- prescriptive

#### Axiom (A1: Ranking)

For all  $\ell, \ell' \in L(X)$  at least one the following holds:

- $\ell$  is preferred or indifferent to  $\ell$  ( $\ell \succeq \ell'$ )
- $\ell'$  is preferred or indifferent to  $\ell$  ( $\ell' \succeq \ell$ )

Moreover,  $\succeq$  is transitive:

 $\ell \succeq \ell' \text{ and } \ell' \succeq \ell'' \Rightarrow \ell \succeq \ell''$ 

 $\forall \ell, \ell', \ell'' \in L(X)$ 

#### Remark

- $\ell \succ \ell' \Leftrightarrow [\ell \succeq \ell' \text{ and } \operatorname{Not}[\ell' \succeq \ell]]$ 
  - strict preference
- $\ell \sim \ell' \Leftrightarrow [\ell \succeq \ell' \text{ and } \ell' \succeq \ell]$ 
  - indifference
- A1 implies that  $\sim$  and  $\succ$  are transitive

# Descriptive Analysis

#### Difficulties

- incomplete preference
- nontransitive indifference
- intransitive strict preference

#### Complete Preferences?

• the raison d'être of the theory is to help structure preferences!

# Descriptive Analysis

#### Difficulties

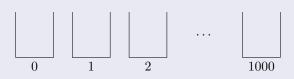
- incomplete preference
- nontransitive indifference
- intransitive strict preference

### Complete Preferences?

• the raison d'être of the theory is to help structure preferences!

# Luce (1956)





 $0\sim 1, 1\sim 2, \ldots, 999\sim 1\,000 \Rightarrow 0\sim 1\,000$ 

• imperfect senses  $\Rightarrow$  nontransitive indifference

▶ go faster

#### Example

 $x \succ y \Leftrightarrow \begin{cases} x \text{ at least as good as } y \text{ on all criteria} \\ x \text{ better than } y \text{ on at least one criterion} \end{cases}$ 

|   | $g_1$ | $g_2$ | $g_3$ |
|---|-------|-------|-------|
| a | 10    | 10    | 10    |
| b | 11    | 11    | 8     |
| c | 12    | 9     | 9     |

• threshold = 1.1 (below you do not distinguish)

### Example

| $x \succ y \Leftrightarrow \left\{ \begin{array}{c} z \\ z \\ z \end{array} \right\}$ | x at least as good as $y$ on all criteria                                                |
|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
|                                                                                       | x at least as good as $y$ on all criteria<br>x better than $y$ on at least one criterion |

|   | $g_1$ | $g_2$ | $g_3$ |
|---|-------|-------|-------|
| a | 10    | 10    | 10    |
| b | 11    | 11    | 8     |
| c | 12    | 9     | 9     |

• threshold = 1.1 (below you do not distinguish)

•  $a \succ b$ 

### Example

 $x \succ y \Leftrightarrow \begin{cases} x \text{ at least as good as } y \text{ on all criteria} \\ x \text{ better than } y \text{ on at least one criterion} \end{cases}$ 

|   | $g_1$ | $g_2$ | $g_3$ |
|---|-------|-------|-------|
| a | 10    | 10    | 10    |
| b | 11    | 11    | 8     |
| c | 12    | 9     | 9     |

• threshold = 1.1 (below you do not distinguish)

• 
$$a \succ b$$
,  $b \succ c$ 

### Example

 $x \succ y \Leftrightarrow \begin{cases} x \text{ at least as good as } y \text{ on all criteria} \\ x \text{ better than } y \text{ on at least one criterion} \end{cases}$ 

|   | $g_1$ | $g_2$ | $g_3$ |
|---|-------|-------|-------|
| a | 10    | 10    | 10    |
| b | 11    | 11    | 8     |
| c | 12    | 9     | 9     |

- threshold = 1.1 (below you do not distinguish)
- $a \succ b$ ,  $b \succ c$ ,  $c \succ a$

### Example

 $x \succ y \Leftrightarrow \begin{cases} x \text{ at least as good as } y \text{ on all criteria} \\ x \text{ better than } y \text{ on at least one criterion} \end{cases}$ 

|   | $g_1$ | $g_2$ | $g_3$ |
|---|-------|-------|-------|
| a | 10    | 10    | 10    |
| b | 11    | 11    | 8     |
| c | 12    | 9     | 9     |

• threshold = 1.1 (below you do not distinguish)

• 
$$a \succ b$$
,  $b \succ c$ ,  $c \succ a$ 

## Condorcet's Paradox

#### Data

- Voter 1:  $a \succ b \succ c$
- Voter 2:  $c \succ a \succ b$
- Voter 3:  $b \succ c \succ a$

majority :  $a \succ b$ ;  $b \succ c, c \succ a$ 

# Threshold effects

| Example    |                                                  |                                                                                                              |
|------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| 3          | CarCar + PE1Car + PE1 + PE2Car + PE1 + PE2 + PE3 | $\begin{array}{c} 15\ 000 \Subset \\ 15\ 500 \Subset \\ 16\ 000 \Subset \\ 16\ 500 \blacksquare \end{array}$ |
| $\vdots$ n | Car +                                            | 18 000 €                                                                                                     |

Preference of a "naïve" consumer

 $2 \succ 1, 3 \succ 2, 4 \succ 3, n \succ (n-1)$  but  $1 \succ n$ 

# Threshold effects

| Example |                                                  |                                                                                                           |
|---------|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
|         | CarCar + PE1Car + PE1 + PE2Car + PE1 + PE2 + PE3 | $     \begin{array}{l}       15000 € \\       15500 € \\       16000 € \\       16500 €     \end{array} $ |
| :<br>n  | Car +                                            | 18 000 €                                                                                                  |

### Preference of a "naïve" consumer

$$2 \succ 1, 3 \succ 2, 4 \succ 3, n \succ (n-1)$$
 but  $1 \succ n$ 

### Prescriptive Approach

- effectiveness
  - it is simple to help someone choose on the basis of complete and transitive preferences

#### Normative Approach

- money pump argument
  - exchanges starting with c





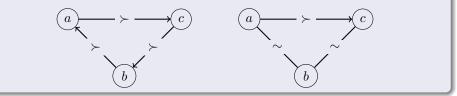
・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

#### Prescriptive Approach

- effectiveness
  - it is simple to help someone choose on the basis of complete and transitive preferences

#### Normative Approach

- money pump argument
  - $\bullet\,$  exchanges starting with c

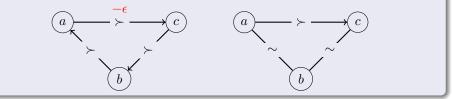


### Prescriptive Approach

- effectiveness
  - it is simple to help someone choose on the basis of complete and transitive preferences

#### Normative Approach

- money pump argument
  - $\bullet\,$  exchanges starting with c

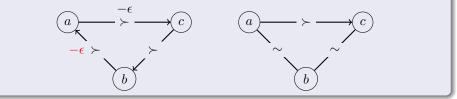


### Prescriptive Approach

- effectiveness
  - it is simple to help someone choose on the basis of complete and transitive preferences

#### Normative Approach

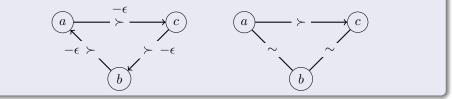
- money pump argument
  - $\bullet\,$  exchanges starting with c



#### Prescriptive Approach

- effectiveness
  - it is simple to help someone choose on the basis of complete and transitive preferences

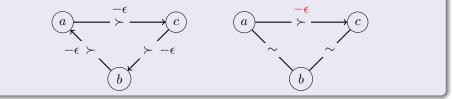
- money pump argument
  - $\bullet\,$  exchanges starting with c



#### Prescriptive Approach

- effectiveness
  - it is simple to help someone choose on the basis of complete and transitive preferences

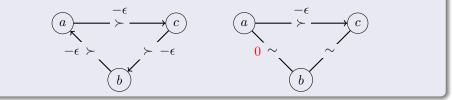
- money pump argument
  - $\bullet\,$  exchanges starting with c



#### Prescriptive Approach

- effectiveness
  - it is simple to help someone choose on the basis of complete and transitive preferences

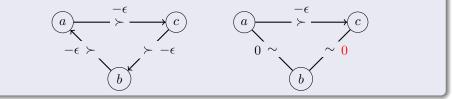
- money pump argument
  - exchanges starting with c



#### Prescriptive Approach

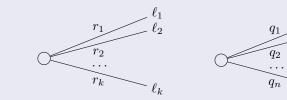
- effectiveness
  - it is simple to help someone choose on the basis of complete and transitive preferences

- money pump argument
  - $\bullet\,$  exchanges starting with c



### Axiom (A2 Reduction)

### $\ell_j$ : first order lotteries



with 
$$q_i = \sum_{j=1}^k r_j p_{\ell_j}(x_i)$$

 $\Rightarrow$  Indifference

#### Interpretation

• "games are played seriously"

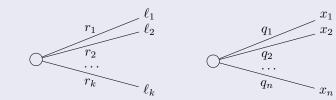
 $x_1$ 

 $x_2$ 

 $-x_n$ 

### Axiom (A2 Reduction)

### $\ell_j$ : first order lotteries



with 
$$q_i = \sum_{j=1}^k r_j p_{\ell_j}(x_i)$$

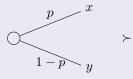
 $\Rightarrow$  Indifference

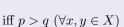
### Interpretation

• "games are played seriously"

### Axiom (A3 Monotonicity)

### If $(x,1) \succ (y,1)$ then





#### Interpretation

- greediness
- do not try to outperform randomness

x

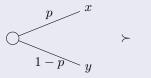
y = y

q

1-q

### Axiom (A3 Monotonicity)

If  $(x,1) \succ (y,1)$  then



$$\text{iff } p > q \ (\forall x, y \in X)$$

### Interpretation

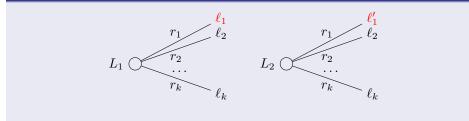
- $\bullet~{\rm greediness}$
- do not try to outperform randomness

x

q

1-q y

### Axiom (A4 Independence)

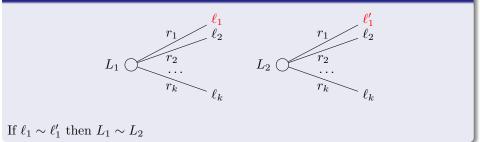


### If $\ell_1 \sim \ell_1'$ then $L_1 \sim L_2$

#### Interpretation

• indifference is indifference

### Axiom (A4 Independence)



#### Interpretation

• indifference is indifference

### Axiom (A5 Continuity)

If  $(x,1) \succ (y,1) \succ (z,1)$  then there is a probability  $p \in ]0;1[$  such that:

$$\bigcirc \frac{1}{1-p} y \qquad \sim \qquad \bigcirc \frac{p}{1-p} x$$

#### Remark

• A3 implies that this probability is unique

#### Interpretation

• you are not naïve with probabilities (continuum between certainty and risk)

### Axiom (A5 Continuity)

If  $(x,1) \succ (y,1) \succ (z,1)$  then there is a probability  $p \in ]0;1[$  such that:

$$\bigcirc \frac{1}{1-p} y \qquad \sim \qquad \bigcirc \frac{p}{1-p} x$$

#### Remark

• A3 implies that this probability is unique

#### Interpretation

• you are not naïve with probabilities (continuum between certainty and risk)

### Axiom (A5 Continuity)

If  $(x,1) \succ (y,1) \succ (z,1)$  then there is a probability  $p \in ]0;1[$  such that:



#### Remark

• A3 implies that this probability is unique

#### Interpretation

• you are not naïve with probabilities (continuum between certainty and risk)

#### Example

- *x*: win 2€
- *y*: win 1€
- z: be hung tomorrow at dawn

$$(x,1)\succ(y,1)\succ(z,1)$$

#### Problem

- is there a probability  $p \in ]0; 1[$  such that:  $y \sim (x, p; z, (1-p))$
- $p = 1 10^{-100}$ ?

### Example

- *x*: win 2€
- *y*: win 1€
- z: be hung tomorrow at dawn

$$(x,1)\succ(y,1)\succ(z,1)$$

### Problem

• is there a probability  $p \in ]0; 1[$  such that:

$$y \sim (x, p; z, (1-p))$$

•  $p = 1 - 10^{-100}$ ?

#### Theorem (Representation)

Let  $\succeq$  be a preference relation on L(X). This relation satisfies A1-A5 iff there is a function  $u: X \to \mathbb{R}$  such that:  $\ell \succeq \ell' \Leftrightarrow \sum_{x \in X} u(x)p_{\ell}(x) \ge \sum_{x \in X} u(x)p_{\ell'}(x)$  (vNM)

#### Remark

- necessity is obvious
- u is linked to  $\succeq$  and, hence, to the individual

#### Theorem (Representation)

Let  $\succeq$  be a preference relation on L(X). This relation satisfies A1-A5 iff there is a function  $u: X \to \mathbb{R}$  such that:  $\ell \succeq \ell' \Leftrightarrow \sum_{x \in X} u(x)p_{\ell}(x) \ge \sum_{x \in X} u(x)p_{\ell'}(x)$  (vNM)

#### Remark

- necessity is obvious
- u is linked to  $\succeq$  and, hence, to the individual

#### Theorem (Representation)

Let  $\succeq$  be a preference relation on L(X). This relation satisfies A1-A5 iff there is a function  $u: X \to \mathbb{R}$  such that:  $\ell \succeq \ell' \Leftrightarrow \sum_{x \in X} u(x)p_{\ell}(x) \ge \sum_{x \in X} u(x)p_{\ell'}(x)$  (vNM)

#### Remark

- necessity is obvious
- u is linked to  $\succeq$  and, hence, to the individual

🍽 skip proof

# Proof

#### 5 steps

• constructive!

#### Finite case: $X = \{x_1, x_2, ..., x_n\}$

Consider a lottery  $\ell \in L(X)$ 

1)

Using A1, (ranking), A2 (reduction) and A4 (independence), you can always find a simple lottery such that:  $\ell \sim (x_1, p_\ell(x_1); x_2, p_\ell(x_2); \ldots; x_n, p_\ell(x_1))$ Suppose wlog that:

$$(x_n, 1) \succ (x_{n-1}, 1) \succ \cdots \succ (x_1, 1)$$

# Proof

#### 5 steps

• constructive!

Finite case:  $X = \{x_1, x_2, ..., x_n\}$ 

Consider a lottery  $\ell \in L(X)$ 

1)

Using A1, (ranking), A2 (reduction) and A4 (independence), you can always find a simple lottery such that:  $\ell \sim (x_1, p_\ell(x_1); x_2, p_\ell(x_2); \ldots; x_n, p_\ell(x_1))$ Suppose wlog that:

$$(x_n, 1) \succ (x_{n-1}, 1) \succ \cdots \succ (x_1, 1)$$

2)  
A5 (continuity): since  
$$(x_n, 1) \succ (x_{n-1}, 1) \succ \cdots \succ (x_1, 1)$$
  
there is  $u_i \in ]0; 1[$  such that  
 $(x_i, 1) \sim [x_n, u_i; x_1; (1 - u_i)]$ 

Let:

$$u_n = 1, u_1 = 0$$

(ロ)

# 3) Using A4 (independence), A1 (ranking) and A2 (reduction), we know that: $\ell \sim (x_1, p_\ell(x_1); x_2, p_\ell(x_2); \dots; x_{n-1}, p_\ell(x_{n-1}); x_n, p_\ell(x_n))$ $\ell \sim [x_1, (1 - K_\ell); x_2, 0; \dots; x_{n-1}, 0; x_n, K_\ell]$ with

$$K_{\ell} = \sum_{i=1}^{n} p_{\ell}(x_i) u_i$$

### 4) Use steps 1) to 3) to transform a lottery $\ell' \sim (x_1, p_{\ell'}(x_1); x_2, p_{\ell'}(x_2); \dots; x_{n-1}, p_{\ell'}(x_{n-1}); x_n, p_{\ell'}(x_n))$ We have:

$$\ell' \sim [x_1, (1 - K_{\ell'}); x_2, 0; \dots; x_{n-1}, 0; x_n, K_{\ell'}]$$

with

$$K_{\ell'} = \sum_{i=1}^{n} p_{\ell'}(x_i) u_i$$

5)Using A1 (Ranking) and A3 (Monotonicity) we know that:  $\ell \succ \ell' \Leftrightarrow$  $(x_1, p_\ell(x_1); x_2, p_\ell(x_2); \ldots; x_n, p_\ell(x_n)) \succ$  $(x_1, p_{\ell'}(x_1); x_2, p_{\ell'}(x_2); \ldots; x_n, p_{\ell'}(x_n)) \Leftrightarrow$  $[x_1, (1-K_\ell); x_2, 0; \ldots; x_n, K_\ell] \succ [x_1, (1-K_{\ell'}); x_2, 0; \ldots; x_n, K_{\ell'}]$  $\Leftrightarrow$  $K_{\ell} > K_{\ell'} \Leftrightarrow$  $\sum_{i=1}^{n} p_{\ell}(x_i)u_i > \sum_{i=1}^{n} p_{\ell'}(x_i)u_i$ and define u letting:  $u(x_i) = u_i$ 

#### Theorem (Uniqueness)

If there are two functions u and v such that (vNM) holds then there are  $\alpha, \beta \in \mathbb{R}$  with  $\alpha > 0$  such that:

$$v(x) = \alpha u(x) + \beta$$

 $\forall x \in X$ 

#### Interpretation

preferences can be measured as temperature

#### Proof

obvious: if u and v are not linked by a positive affine transformation, you can always find two loteries that will have different expected utilities

#### Theorem (Uniqueness)

If there are two functions u and v such that (vNM) holds then there are  $\alpha, \beta \in \mathbb{R}$  with  $\alpha > 0$  such that:

$$v(x) = \alpha u(x) + \beta$$

 $\forall x \in X$ 

#### Interpretation

#### preferences can be measured as temperature

#### $\operatorname{Proof}$

obvious: if u and v are not linked by a positive affine transformation, you can always find two loteries that will have different expected utilities

#### Theorem (Uniqueness)

If there are two functions u and v such that (vNM) holds then there are  $\alpha, \beta \in \mathbb{R}$  with  $\alpha > 0$  such that:

$$v(x) = \alpha u(x) + \beta$$

 $\forall x \in X$ 

#### Interpretation

preferences can be measured as temperature

#### Proof

obvious: if u and v are not linked by a positive affine transformation, you can always find two loteries that will have different expected utilities

### Hypotheses

- $X = \mathbb{R} \pmod{2}$
- let u(0) = 0 and  $u(10\,000) = 1$

#### Assessment



 $1 \times u(x) = u(x) = 1/2 \times u(10\,000) + 1/2 \times u(0) = 1/2$ 

・ロト・西ト・山下・山下・山下

### Hypotheses

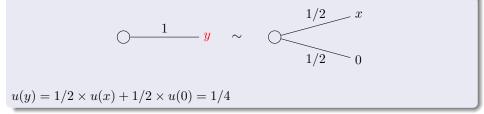
- $X = \mathbb{R}$  (money)
- let u(0) = 0 and  $u(10\,000) = 1$

#### Assessment

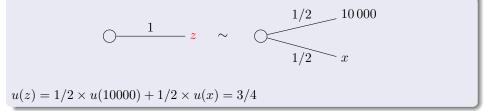
$$0 - \frac{1}{x} \sim 0 = \frac{1/2}{1/2} = \frac{10\,000}{1/2}$$

$$1 \times u(x) = u(x) = \frac{1}{2} \times u(10\,000) + \frac{1}{2} \times u(0) = \frac{1}{2}$$





#### Assessment

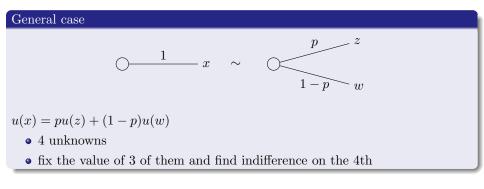


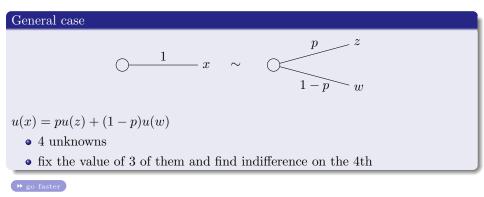
### Control question

• we must have:

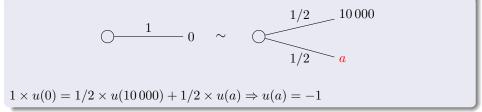


• if not: go back and check

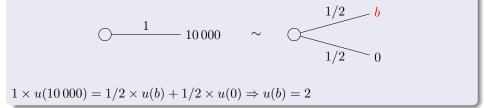




### Going down



### Going up



# Assessment of a utility function

### Remarks

- use of simple probabilities: 1/2, 1/3, 1/4
- bracketing
- checks are necessary

# Risk aversion

### Context

- let  $X = \mathbb{R}$  (money)
- suppose that the DM satisfies A1-A5
- it is not restrictive to suppose that u is increasing!
- P: wealth of the DM

### Certainty equivalent of a lottery $\ell$ : $\hat{x}(\ell)$

• amount of money that the DM finds equivalent to owning the lottery  $\ell$ (minimal selling price of lottery  $\ell$ )  $E(u(P + \hat{x}(\ell))) = u(P + \hat{x}(\ell)) = E(u(P + \ell))$ 

$$\hat{x}(\ell) = u^{-1}[E(u(P+\ell))] - P$$

# Risk aversion

### Context

- let  $X = \mathbb{R}$  (money)
- suppose that the DM satisfies A1-A5
- it is not restrictive to suppose that u is increasing!
- P: wealth of the DM

## Certainty equivalent of a lottery $\ell$ : $\hat{x}(\ell)$

• amount of money that the DM finds equivalent to owning the lottery  $\ell$ (minimal selling price of lottery  $\ell$ )  $E(u(P + \hat{x}(\ell))) = u(P + \hat{x}(\ell)) = E(u(P + \ell))$ 

$$(u(P+x(\ell))) = u(P+x(\ell)) = E(u(P+\ell))$$
$$\Rightarrow$$

$$\hat{x}(\ell) = u^{-1}[E(u(P+\ell))] - P$$

# Risk premium $\pi(\ell)$ for lottery $\ell$

### Risk premium

$$\pi(\ell) = E(\ell) - \hat{x}(\ell)$$

#### Risk aversion

A DM is

- risk averse if  $\hat{x}(\ell) < E(\ell)$
- risk prone if  $\hat{x}(\ell) > E(\ell)$
- risk neutral if  $\hat{x}(\ell) = E(\ell)$  (EV)

pour toute loterie  $\ell \in L(X)$ 

# Risk premium $\pi(\ell)$ for lottery $\ell$

## Risk premium

$$\pi(\ell) = E(\ell) - \hat{x}(\ell)$$

### Risk aversion

## A DM is

- risk averse if  $\hat{x}(\ell) < E(\ell)$
- risk prone if  $\hat{x}(\ell) > E(\ell)$
- risk neutral if  $\hat{x}(\ell) = E(\ell)$  (EV)

### pour toute loterie $\ell \in L(X)$

# Risk aversion

## Theorem (Arrow-Pratt)

A DM is risk averse iff her utility function is concave

#### Proof

Risk aversion  $(\hat{x}(\ell) < E(\ell))$   $E[u(P + E(\ell))] = u(P + E(\ell)) > E(u(P + \ell)) = u(P + \hat{x}(\ell))$   $u(P + [\alpha x + (1 - \alpha)y]) = u(\alpha(x + P) + (1 - \alpha)(y + P)) > E(u(P + \ell)) =$   $\alpha u(x + P) + (1 - \alpha)u(y + P)$ z = x + P, w = y + P

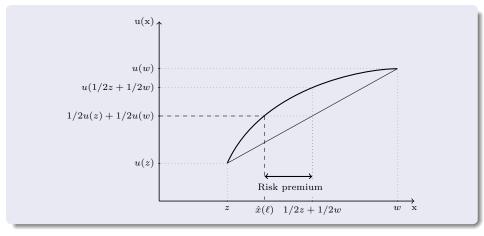
# Risk aversion

## Theorem (Arrow-Pratt)

A DM is risk averse iff her utility function is concave

### Proof

Risk aversion 
$$(\hat{x}(\ell) < E(\ell))$$
  
 $E[u(P + E(\ell))] = u(P + E(\ell)) > E(u(P + \ell)) = u(P + \hat{x}(\ell))$   
 $u(P + [\alpha x + (1 - \alpha)y]) = u(\alpha(x + P) + (1 - \alpha)(y + P)) > E(u(P + \ell)) =$   
 $\alpha u(x + P) + (1 - \alpha)u(y + P)$   
 $z = x + P, w = y + P$   
 $u(\alpha z + (1 - \alpha)w) > \alpha u(z) + (1 - \alpha)u(w)$ 



# **1** Introduction

# 2 Decision under risk

# 3 Decision under uncertainty

- Reminder on Probabilities
- Classic school
- Subjectivist school
- Applications

## 4 Extensions

Decision under uncertainty

# Decision under uncertainty

## Subjectivist school

- de Finetti, Savage, Aunscombe & Aumann
- use results in the context of risk in the context of uncertainty



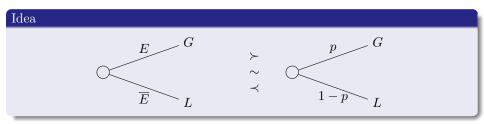
### Minimal greediness

- if the first lottery is preferred (not preferred) to the second lottery we have  $P(E) > p \ ({\rm resp.}\ P(E) < p)$
- the subjective probability of the event is the value p for which these two lotteries are indifferent

# Decision under uncertainty

# Subjectivist school

- de Finetti, Savage, Aunscombe & Aumann
- use results in the context of risk in the context of uncertainty



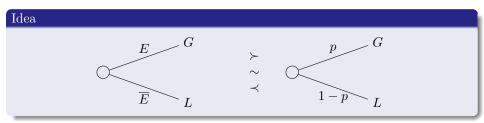
### Minimal greediness

- if the first lottery is preferred (not preferred) to the second lottery we have P(E) > p (resp. P(E) < p)
- $\bullet$  the subjective probability of the event is the value p for which these two lotteries are indifferent

# Decision under uncertainty

# Subjectivist school

- de Finetti, Savage, Aunscombe & Aumann
- use results in the context of risk in the context of uncertainty



## Minimal greediness

- if the first lottery is preferred (not preferred) to the second lottery we have  $P(E) > p \ ({\rm resp.}\ P(E) < p)$
- the subjective probability of the event is the value p for which these two lotteries are indifferent

### Idea

- under uncertainty, use subjective probabilities
- back to the case of decision under risk

### Questions

- are subjective probabilities probabilities?
- are subjective probabilities "true" probabilities?
- rationale?

### Idea

- under uncertainty, use subjective probabilities
- back to the case of decision under risk

## Questions

- are subjective probabilities probabilities?
- are subjective probabilities "true" probabilities?
- rationale?

### Idea

- under uncertainty, use subjective probabilities
- back to the case of decision under risk

## Questions

- are subjective probabilities probabilities?
- are subjective probabilities "true" probabilities?
- rationale?

▶ go faster

# Reminder

## Random experiment

• experiment for which it is impossible to predict the result before you run it

#### Examples

- toss of a coin
- price of  $() \in \mathbb{N}$  one year
- next month sales

# Reminder

## Random experiment

• experiment for which it is impossible to predict the result before you run it

### Examples

- toss of a coin
- price of  $\neq 0$  in one year
- next month sales

#### Definitions

- S: set of elementary events = sets of all possible results of the experiment
  - toss of a coin:  $S = \{H, T\}$
  - rolling a dice:  $S = \{1, 2, 3, 4, 5, 6\}$
  - price of  $\$/\Subset$  in one year:  $S = \mathbb{R}_+$
- S: sets of events based on S (allowing to speak of the union, intersection, of elementary events)

#### Properties

- $S \in S$
- $A \in S \Rightarrow S \setminus A \in S$
- $\bullet \ A,B\in \mathcal{S} \Rightarrow A\cup B\in \mathcal{S}$

(algebra,  $\sigma$ -algebra)

#### Definitions

- S: set of elementary events = sets of all possible results of the experiment
  - toss of a coin:  $S = \{H, T\}$
  - rolling a dice:  $S = \{1, 2, 3, 4, 5, 6\}$
  - price of  $\$/\Subset$  in one year:  $S = \mathbb{R}_+$
- S: sets of events based on S (allowing to speak of the union, intersection, of elementary events)

#### Properties

- $\bullet \ S \in \mathcal{S}$
- $A \in \mathcal{S} \Rightarrow S \setminus A \in \mathcal{S}$
- $A, B \in \mathcal{S} \Rightarrow A \cup B \in \mathcal{S}$

(algebra,  $\sigma$ -algebra)

### Definition

A probability P is a mapping from S to  $\mathbb{R}$ , associating to each event A its probability P(A) and such that:

$$P(A) \ge 0$$

$$P(S) = 1$$

$$A \cap B = \varnothing \Rightarrow P(A \cup B) = P(A) + P(B)$$

(Kolmogorov's axioms)

▶ go faster

# Reminder

### Definition

The probability of "A given B", denoted by P(A/B), is defined by:  $P(A/B) = \frac{P(A \cap B)}{P(B)}$ 

#### Property

$$P(A/B) = \frac{P(B/A)P(A)}{P(B)}$$

# Reminder

### Definition

The probability of "A given B", denoted by P(A/B), is defined by:  $P(A/B) = \frac{P(A \cap B)}{P(B)}$ 

### Property

$$P(A/B) = \frac{P(B/A)P(A)}{P(B)}$$

・ロト・西ト・ヨト・ヨー うへぐ

### Total probabilities

If  $A_1, A_2, ..., A_n$  partition S then:  $P(A) = \sum_{i=1}^n P(A/A_i) P(A_i)$ 

#### Bayes' formula

$$P(A/B) = \frac{P(B/A)P(A)}{\sum_{i=1}^{n} P(B/A_i)P(A_i)}$$

・ロト・西ト・山下・山下・山下

### Total probabilities

If  $A_1, A_2, ..., A_n$  partition S then:  $P(A) = \sum_{i=1}^n P(A/A_i) P(A_i)$ 

## Bayes' formula

$$P(A/B) = \frac{P(B/A)P(A)}{\sum_{i=1}^{n} P(B/A_i)P(A_i)}$$

・<</li>
 ・<</li>
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・</<

# Probabilities?

## Source of probabilities?

- two main schools
  - classic school
  - subjectivist school

## Sources of probabilities

- logical source
- frequentist source

#### Logical source

Principle of "insufficient reason"

- P(Tails) = P(Heads) = 1/2
- P(E) = Number of favorable cases/Number of cases

#### Problems

- restricted to "perfect objects"
- problem of proof: what is a "perfect object"?
- limited practical impact (ex.: price of  $\$ \in$  in one year?)

## Sources of probabilities

- logical source
- frequentist source

#### Logical source

Principle of "insufficient reason"

- P(Tails) = P(Heads) = 1/2
- P(E) = Number of favorable cases/Number of cases

#### $\mathbf{Problems}$

- restricted to "perfect objects"
- problem of proof: what is a "perfect object"?
- limited practical impact (ex.: price of \$ in one year?)

## Sources of probabilities

- logical source
- frequentist source

### Logical source

Principle of "insufficient reason"

- P(Tails) = P(Heads) = 1/2
- P(E) = Number of favorable cases/Number of cases

## Problems

- restricted to "perfect objects"
- problem of proof: what is a "perfect object"?
- limited practical impact (ex.: price of  $\$/\in$  in one year?)

### Frequentist source

### Law of large numbers

• n identical and independent repetitions of event E of probability p:

$$\lim_{n \to \infty} P\left( \left| \frac{n(E)}{n} - p \right| > \varepsilon \right) = 0$$

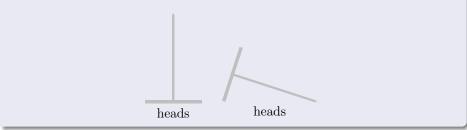
• "if you do not p, experiment"

#### Problems

- events that cannot be "repeated"
- proof problem (past = future)
- different results if "identical"?
- rôle of information unclear

# Exemple: thumbtack

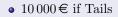
- $10\,000 \in$  if Tails
- $-5000 \in$  if Heads



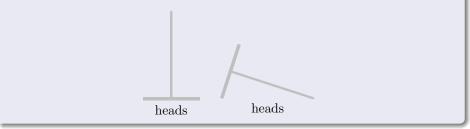
### Question

would you accept to perform 1000 tosses of the thumbtack before taking a decision?

# Exemple: thumbtack



•  $-5000 \in$  if Heads



## Question

would you accept to perform 1 000 tosses of the thumbtack before taking a decision?

#### Facts

- 2 different and equally rational persons cas have different probability judgements on the same event
- experiments transform probability judgements: thumbtack
- language has a great variety of expression to speak of likelihood

#### Definition: subjective probability

• a probability is a subjective measure of the likelihood of an event

#### Facts

- 2 different and equally rational persons cas have different probability judgements on the same event
- experiments transform probability judgements: thumbtack
- language has a great variety of expression to speak of likelihood

### Definition: subjective probability

• a probability is a subjective measure of the likelihood of an event

# Subjective Probabilities

### Problems

- why probabilities? (Kolmogorov's axioms)
- how to assess probabilities?

#### Idea

• comparing "uncertain" lotteries with "risky lotteries" (with probabilities coming from consensual random experiments; coins, cards, dices, urns, etc.)

# Subjective Probabilities

### Problems

- why probabilities? (Kolmogorov's axioms)
- how to assess probabilities?

### Idea

• comparing "uncertain" lotteries with "risky lotteries" (with probabilities coming from consensual random experiments; coins, cards, dices, urns, etc.)

### Comparison



#### Minimal greediness

- if the first lottery is preferred to the second: P(E) > p
- if the second lottery is preferred to the first: P(E) < p
- subjective probability of E is the value for which they are indifferent

#### Comparison



#### Minimal greediness

- if the first lottery is preferred to the second: P(E) > p
- if the second lottery is preferred to the first: P(E) < p
- subjective probability of E is the value for which they are indifferent

### Problems

- are these numbers probabilities?
- are these numbers true probabilities?
- rationale?
- $\bullet$  use?

## Results

#### Idea

- add to L(X) "uncertain lotteries"
- impose (modified) axioms A1-A5 to this new set of lotteries

#### Fheorem (Savage, Aunscombe & Aumann)

There are a function  $u: X \to \mathbb{R}$  and a Probability measure P on S such that the comparison of two lotteries (risky or uncertain) is done comparing their Expected Utilities (p for risky lotteries, P for risky lotteries)

The probability measure is **unique**. The utility function is unique up to a positive affine transformation.

- tastes: u (subjective)
- beliefs: P (subjective)

## Results

#### Idea

- add to L(X) "uncertain lotteries"
- impose (modified) axioms A1-A5 to this new set of lotteries

### Theorem (Savage, Aunscombe & Aumann)

There are a function  $u: X \to \mathbb{R}$  and a Probability measure P on S such that the comparison of two lotteries (risky or uncertain) is done comparing their Expected Utilities (p for risky lotteries, P for risky lotteries)

The probability measure is **unique**. The utility function is unique up to a positive affine transformation.

- tastes: u (subjective)
- beliefs: P (subjective)

## Results

#### Idea

- add to L(X) "uncertain lotteries"
- impose (modified) axioms A1-A5 to this new set of lotteries

### Theorem (Savage, Aunscombe & Aumann)

There are a function  $u: X \to \mathbb{R}$  and a Probability measure P on S such that the comparison of two lotteries (risky or uncertain) is done comparing their Expected Utilities (p for risky lotteries, P for risky lotteries)

The probability measure is **unique**. The utility function is unique up to a positive affine transformation.

- tastes: u (subjective)
- beliefs: P (subjective)

- same analysis as in the risky case replacing (whenever needed) "probabilities" by "subjective probabilities"
- exchangeable events and subjective vs objective probabilities (de Finetti)

# Idea of proof

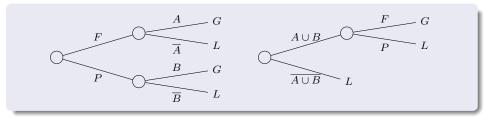
| Example $(A \cap B =$ | Ø)                           |   |                |                              |   |                |  |
|-----------------------|------------------------------|---|----------------|------------------------------|---|----------------|--|
|                       | $L_1$                        | F | $\overline{P}$ | $L_2$                        | F | $\overline{P}$ |  |
|                       | A                            | G | L              | $\overline{A}$               | G | L              |  |
|                       | B                            | L | G              | B                            | G | L              |  |
|                       | $\overline{A \text{ or } B}$ | L | L              | $\overline{A \text{ or } B}$ | L | L              |  |

A2  $\Rightarrow$  [G if Tails; L if Heads]  $\sim$  [L if Tails; G if Heads] A4  $\Rightarrow$  L<sub>1</sub>  $\sim$  L<sub>2</sub>

# Idea of proof

| Example $(A \cap B =$ | Ø)                                                |        |   |                                                |   |   |  |
|-----------------------|---------------------------------------------------|--------|---|------------------------------------------------|---|---|--|
|                       | $ \begin{array}{c} L_1 \\ A \\ B \\ \end{array} $ | G<br>L | G | $ \begin{array}{c} L_2\\ A\\ B\\ \end{array} $ | G | L |  |
|                       | $\overline{A} \text{ or } \overline{B}$           | L      | L | A  or  B                                       | L | L |  |

A2  $\Rightarrow$  [G if Tails; L if Heads]  $\sim$  [L if Tails; G if Heads] A4  $\Rightarrow$  L1  $\sim$  L2



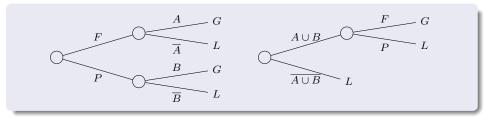
•  $A4 \Rightarrow L_1 \sim L_2$ 

• Let 
$$u(G) = 1$$
 and  $u(P) = 0$ 

• We have:

```
\begin{split} E[u(L1)] =& 0.5[P(A)u(G) + (1 - P(A))u(L)] + \\ & 0.5[P(B)u(G) + (1 - P(B))u(L)] \\ & 0.5[P(A) + P(B)] \\ E[u(L2)] =& 0.5P(A \cup B) \end{split}
```

 $\stackrel{\Rightarrow}{P(A) + P(B) = P(A \cup B)}$ 



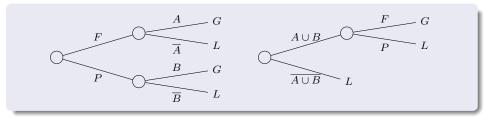
•  $A4 \Rightarrow L_1 \sim L_2$ 

• Let 
$$u(G) = 1$$
 and  $u(P) = 0$ 

• We have:

```
\begin{split} E[u(L1)] = &0.5[P(A)u(G) + (1 - P(A))u(L)] + \\ &0.5[P(B)u(G) + (1 - P(B))u(L)] \\ &0.5[P(A) + P(B)] \\ E[u(L2)] = &0.5P(A \cup B) \end{split}
```

 $\overrightarrow{P(A) + P(B)} = P(A \cup B)$ 



•  $A4 \Rightarrow L_1 \sim L_2$ 

• Let 
$$u(G) = 1$$
 and  $u(P) = 0$ 

• We have:

$$\begin{split} E[u(L1)] = &0.5[P(A)u(G) + (1 - P(A))u(L)] - \\ &0.5[P(B)u(G) + (1 - P(B))u(L)] \\ &0.5[P(A) + P(B)] \\ E[u(L2)] = &0.5P(A \cup B) \end{split}$$

 $\Rightarrow P(A) + P(B) = P(A \cup B)$ 

## Bayesian Decision Theory

| A     |
|-------|
| X     |
| P     |
| u     |
| (S)EU |
|       |

# Applications

- $\bullet\,$ risk aversion
- stochastic dominance
- economics of finance and insurance
- value of information
- Bayesian statistics

• all this must be skipped today

# Applications

- risk aversion
  stochastic dominance
  economics of finance and insurance
  value of information
  Bayesian statistics
- all this must be skipped today :-(

### 1 Introduction

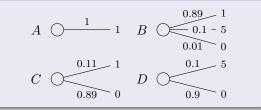
- 2 Decision under risk
- **3** Decision under uncertainty

### 4 Extensions

- Decision under risk
- Decision under uncertainty

# Allais' paradox $(10^6 \in)$





#### Modal Result

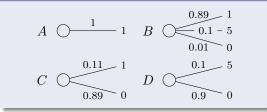
•  $A \succ B$  and  $D \succ C$ 

#### nterpretation

- $A \succ B \Rightarrow$ 
  - u(1) > 0.89u(1) + 0.1u(5) + 0.01u(0) $\Rightarrow u(1) > 10/11$
- $D \succ C \Rightarrow$  0.1u(5) + 0.9u(0) > 0.11u(1) + 0.89u(0) $\Rightarrow u(1) < 10/11$

# Allais' paradox $(10^6 \in)$

#### Experiment



### Modal Result

• 
$$A \succ B$$
 and  $D \succ C$ 

#### Interpretation

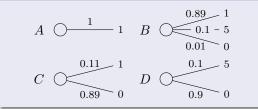
A ≻ B ⇒u(1) > 0.89u(1) +0.1u(5) + 0.01u(0⇒ u(1) > 10/11

• 
$$D \succ C \Rightarrow$$
  
 $0.1u(5) + 0.9u(0) >$   
 $0.11u(1) + 0.89u(0)$   
 $\Rightarrow u(1) < 10/11$ 

#### ▲□▶▲□▶▲□▶▲□▶ ▲□ シへ⊙

# Allais' paradox $(10^6 \in)$

#### Experiment



### Modal Result

• 
$$A \succ B$$
 and  $D \succ C$ 

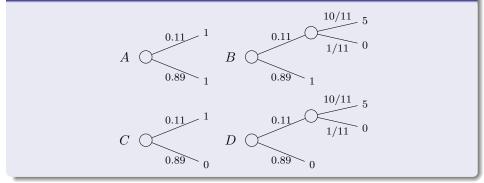
### Interpretation

- $A \succ B \Rightarrow$ 
  - u(1) > 0.89u(1) +0.1u(5) + 0.01u(0) $\Rightarrow u(1) > 10/11$

• 
$$D \succ C \Rightarrow$$
  
 $0.1u(5) + 0.9u(0) >$   
 $0.11u(1) + 0.89u(0)$   
 $\Rightarrow u(1) < 10/11$ 

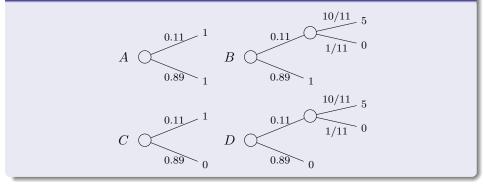
# Allais' paradox

### Reformulation



# Allais' paradox

### Reformulation



➡ skip examples

# Allais's paradox

### Reformulation

 $\bullet\,$  urn with 89 balls R and 11 balls N

|   | R | N                                               |
|---|---|-------------------------------------------------|
| X | Q | 1                                               |
| Y | Q | $5 \text{ with } 10/11 \\ 0 \text{ with } 1/11$ |

Should the choice between X and Y depend upon Q?

## Violation of independence

#### Normative analysis

•  $(x;1) \succ (y;1)$  and  $(y,p;z,(1-p)) \succ (x,p;z,(1-p))$ 

• 
$$(x;1) \succ (y;1) \Rightarrow (x-\varepsilon;1) \succ (y;1)$$

• 
$$(y, p; z, (1-p)) \succ (x, p; z, (1-p)) \Rightarrow$$
  
 $(y, p; z - \varepsilon, (1-p)) \succ (x, p; z, (1-p))$ 

#### Exchanges starting with (x, p; z, (1-p))

• you had (x, p; z, (1-p)) you have  $(x - \varepsilon, p; z - \varepsilon, (1-p))!$ 

## Violation of independence

#### Normative analysis

•  $(x; 1) \succ (y; 1)$  and  $(y, p; z, (1 - p)) \succ (x, p; z, (1 - p))$ 

• 
$$(x;1) \succ (y;1) \Rightarrow (x-\varepsilon;1) \succ (y;1)$$

• 
$$(y, p; z, (1-p)) \succ (x, p; z, (1-p)) \Rightarrow$$
  
 $(y, p; z - \varepsilon, (1-p)) \succ (x, p; z, (1-p))$ 

### Exchanges starting with (x, p; z, (1-p))

• 
$$(x, p; z, (1-p))$$
 exchanged for  $(y, p; z - \varepsilon, (1-p))$ 

- if E does not obtain: gain =  $(z \varepsilon)$
- if E obtains: gain = y and y is exchanged for  $(x \varepsilon)$

• you had (x, p; z, (1-p)) you have  $(x - \varepsilon, p; z - \varepsilon, (1-p))!$ 

### Rational violation of independence

#### Mom's decision

- $\bullet$  two kids: A and B
- only one gift to be given to either A or B

#### Mom's preferences

- $(A,1) \sim (B,1)$
- $(B, 1/2; A, 1/2) \succ (A, 1/2; A, 1/2)$
- $\Rightarrow$  rational violation of independence

### Rational violation of independence

#### Mom's decision

- $\bullet$  two kids: A and B
- only one gift to be given to either A or B

### Mom's preferences

- $(A,1) \sim (B,1)$
- $(B, 1/2; A, 1/2) \succ (A, 1/2; A, 1/2)$
- $\Rightarrow$  rational violation of independence

## EURDP

### Definition

- distortion of probabilities according to their rank
- $\phi$  increasing bijection on [0, 1]

 $\begin{array}{c} (x_1, p_1; x_2, p_2; \ldots; x_n, p_n) \\ x_{(1)} \leq x_{(2)} \leq \cdots \leq x_{(n)} \\ \text{where } (\cdot) \text{ is a permutation on } \{1, 2, \ldots, n\} \\ (x_{(1)}, p_{(1)}; x_{(2)}, p_{(2)}; \ldots; x_{(n)}, p_{(n)}) \end{array}$ 

## EURDP

### Computation

•  $\phi$  increasing bijection on [0, 1]

$$EURDP = u(x_{(1)})\phi(p_{(1)} + p_{(2)} + \dots + p_{(n)}) + (u(x_{(2)}) - u(x_{(1)}))\phi(p_{(2)} + \dots + p_{(n)}) + (u(x_{(3)}) - u(x_{(2)}))\phi(p_{(3)} + \dots + p_{(n)}) + (u(x_{(4)}) - u(x_{(3)}))\phi(p_{(4)} + \dots + p_{(n)}) + \dots + (u(x_{(n)}) - u(x_{(n-1)}))\phi(p_{(n)})$$

#### Motivation

• distorting cumulative probabilities is inevitable if inconsistencies are to be avoided

## EURDP

### Computation

•  $\phi$  increasing bijection on [0, 1]

$$EURDP = u(x_{(1)})\phi(p_{(1)} + p_{(2)} + \dots + p_{(n)}) + (u(x_{(2)}) - u(x_{(1)}))\phi(p_{(2)} + \dots + p_{(n)}) + (u(x_{(3)}) - u(x_{(2)}))\phi(p_{(3)} + \dots + p_{(n)}) + (u(x_{(4)}) - u(x_{(3)}))\phi(p_{(4)} + \dots + p_{(n)}) + \dots + (u(x_{(n)}) - u(x_{(n-1)}))\phi(p_{(n)})$$

### Motivation

• distorting cumulative probabilities is inevitable if inconsistencies are to be avoided

## Allais' paradox and EURDP

### Allais

- A: (1,1) preferred to B: (0, 0.01; 1, 0.89; 5, 0.1)
- D: (0, 0.9; 5, 0.1) preferred to C: (0, 0.89; 1, 0.11)

$$EURDP(A) = u(1)$$
  

$$EURDP(B) = u(0) + (u(1) - u(0))\phi(0.99) + (u(5) - u(1))\phi(0.1)$$
  

$$EURDP(C) = u(0) + (u(1) - u(0))\phi(0.11)$$
  

$$EURDP(D) = u(0) + (u(5) - u(0))\phi(0.1)$$

## Allais' paradox and EURDP

$$\begin{split} EURDP(A) &= u(1) \\ EURDP(B) &= u(0) + (u(1) - u(0))\phi(0.99) + (u(5) - u(1))\phi(0.1) \\ EURDP(C) &= u(0) + (u(1) - u(0))\phi(0.11) \\ EURDP(D) &= u(0) + (u(5) - u(0))\phi(0.1) \end{split}$$

• 
$$u(5) = 1, u(0) = 0, \phi(x) = x^2$$
  
 $EURDP(A) = u(1)$   $EURDP(B) = 0.01 - 0.9701u(1)$   
 $EURDP(C) = 0.11^2u(1)$   $EURDP(D) = 0.1^2$   
 $u(1) > 0.01 - 0.9701u(1) \Rightarrow u(1) > 0.33$   
 $0.1^2 > 0.11^2u(1) \Rightarrow u(1) < 0.826$ 

## Interpretation

### EU & EURDP

- $\phi(x) = x^2$
- $(x_1, p; x_2, (1-p))$  avec  $x_1 < x_2$
- $EU = pu(x_1) + (1-p)u(x_2)$

$$EURDP = u(x_1) + (u(x_2) - u(x_1))\phi(1-p)$$
  
=  $(1 - \phi(1-p))u(x_1) + \phi(1-p)u(x_2)$ 

• 
$$\phi(x) = x^2 \text{ convex} \Rightarrow$$

- $\phi(1-p) < (1-p)$  and  $(1-\phi(1-p)) > p$
- bad consequences are overweighed
- good consequences are underweighed

Pessimism

## Interpretation

#### Interpretation: EURDP

- $\bullet~u$  captures attitude towards consequences
- $\phi$  captures attitude towards risk
- $\bullet\,$  with EU  $u\,$  plays both rôles

#### EURDP

- huge literature on the axiomatic foundations and experimental validity
- distorting probabilities
- envisage other models of likelihood

#### Interpretation: EURDP

- $\bullet~u$  captures attitude towards consequences
- $\phi$  captures attitude towards risk
- with EU u plays both rôles

#### EURDP

- huge literature on the axiomatic foundations and experimental validity
- distorting probabilities
- envisage other models of likelihood

# Belief functions

#### Example

- you know that a proportion  $\alpha_k$  of vehicles are of type k
- you know that a vehicle of type k has a length between  $\ell_k^-$  and  $\ell_k^+$
- $\bullet\,$  an available slot in which a vehicle of length L can park

| Probability that a car can park? |                                     |
|----------------------------------|-------------------------------------|
| • between                        |                                     |
|                                  | $\sum_{k:\ell_k^+ \leq L} \alpha_k$ |
|                                  | $k : \ell_k^+ \leq L$               |
| and                              | $\Sigma$                            |
|                                  | $\sum_{k:\ell_k^- \le L} \alpha_k$  |
|                                  | $k:\ell_k^- \leq L$                 |

## Belief functions

$$\varphi([\ell_k^-, \ell_k^+]) = \alpha_k$$

• inferior probability

$$p^{-}([0,L]) = \sum_{[\ell_{k}^{-},\ell_{k}^{+}] \subseteq [0,L]} \varphi([\ell_{k}^{-},\ell_{k}^{+}])$$

• superior probability

$$p^+([0,L]) = \sum_{[\ell_k^-, \ell_k^+] \cap [0,L] \neq \varnothing} \varphi([\ell_k^-, \ell_k^+])$$

• inferior probability and Möbius masses

$$p^{-}(A) = \sum_{B \subseteq A} \varphi(B) \Leftrightarrow \varphi(A) = \sum_{B \subseteq A} (-1)^{|A \setminus B|} p^{-}(B)$$

$$p^{-}(A) = \sum_{B \subseteq A} \varphi(B) \quad p^{+}(A) = \sum_{B \cap A \neq \varnothing} \varphi(B)$$

• knowing  $p^-$  is equivalent to knowing  $p^+$ 

$$p^+(A) = 1 - p^-(\overline{A})$$

 $\bullet$  knowing  $p^-$  is equivalent to knowing  $\varphi$ 

$$\varphi(A) = \sum_{B \subseteq A} (-1)^{|A \setminus B|} p^{-}(B)$$

#### Definition

- $p^-$ : Belief function (Bel)
- $p^+$ : Plausibility function (Pl)
- $\varphi$ : Möbius masses
- $p^-(\emptyset) = 0, \, p^-(S) = 1$
- $B \subseteq A \Rightarrow p^-(B) \le p^-(A)$
- $p^-(A \cup B) \ge p^-(A) + p^-(B) p^-(A \cap B)$
- $p^-(A \cup B \cup C) \ge p^-(A) + p^-(B) + p^-(C) p^-(A \cap B) p^-(A \cap C) p^-(B \cap C) + p^-(A \cap B \cap C)$
- $p^-$  monotone at all orders

• 
$$\varphi(\varnothing) = 0, \, \varphi(B) \ge 0$$

•  $\sum_{B \subseteq S} \varphi(B) = 1$ 

#### Definition

- $p^-$ : Belief function (Bel)
- $p^+$ : Plausibility function (Pl)
- $\varphi$ : Möbius masses
- $p^-(\varnothing) = 0, \, p^-(S) = 1$
- $B \subseteq A \Rightarrow p^-(B) \le p^-(A)$
- $p^-(A \cup B) \ge p^-(A) + p^-(B) p^-(A \cap B)$
- $p^-(A \cup B \cup C) \ge p^-(A) + p^-(B) + p^-(C) p^-(A \cap B) p^-(A \cap C) p^-(B \cap C) + p^-(A \cap B \cap C)$
- $p^-$  monotone at all orders

$$\bullet \ \varphi(\varnothing)=0, \, \varphi(B)\geq 0$$

•  $\sum_{B \subseteq S} \varphi(B) = 1$ 

#### Definition

- $p^-$ : Belief function (Bel)
- $p^+$ : Plausibility function (Pl)
- $\varphi$ : Möbius masses
- $\bullet \ p^-(\varnothing)=0, \ p^-(S)=1$
- $B \subseteq A \Rightarrow p^-(B) \le p^-(A)$
- $p^-(A \cup B) \ge p^-(A) + p^-(B) p^-(A \cap B)$
- $p^-(A \cup B \cup C) \ge p^-(A) + p^-(B) + p^-(C) p^-(A \cap B) p^-(A \cap C) p^-(B \cap C) + p^-(A \cap B \cap C)$
- $p^-$  monotone at all orders

• 
$$\varphi(\varnothing) = 0, \, \varphi(B) \ge 0$$

• 
$$\sum_{B\subseteq S} \varphi(B) = 1$$

#### Probabilities

- $\varphi(A) > 0 \Rightarrow |A| = 1$ : masses only on singletons
- $p^- = p^+$ : probabilities

#### Possibilities

- $\varphi(A) > 0$  and  $\varphi(B) > 0 \Rightarrow A \subseteq B$  or  $B \subseteq A$ : embedded masses
- $p^-$ : necessity measure
- $p^+$ : possibility measure

 $Nec(A \cup B) = \min(Nec(A), Nec(B))$  $Pos(A \cup B) = \max(Pos(A), Pos(B))$ 

#### Probabilities

- $\varphi(A) > 0 \Rightarrow |A| = 1$ : masses only on singletons
- $p^- = p^+$ : probabilities

#### Possibilities

- $\varphi(A) > 0$  and  $\varphi(B) > 0 \Rightarrow A \subseteq B$  or  $B \subseteq A$ : embedded masses
- $p^-$ : necessity measure
- $p^+$ : possibility measure

 $Nec(A \cup B) = \min(Nec(A), Nec(B))$  $Pos(A \cup B) = \max(Pos(A), Pos(B))$ 

# Ellsberg's Paradox

#### Experiment

- 90 balls in an urn: 30 are R and 60 are B or Y
- a1: 100 if R or a2: 100 if B
- a3: 100 if R or Y or a4: 100 if B or Y
- model answer:  $a1 \succ a2$  and  $a4 \succ a3$
- incompatible with SEU!

 $E[u(a1)] = P(R)u(100) \quad E[u(a2)] = P(B)u(100)$ 

 $a1 \succ a2 \Rightarrow P(R) > P(B)$ 

 $E[u(a3)] = P(R)u(100) + P(Y)u(100) \quad E[u(a4)] = P(B)u(100) + P(Y)u(100)$ 

 $a4 \succ a3 \Rightarrow P(B) > P(R)$ 

Aversion to ambiguity

## Ellsberg's Paradox

#### Experiment

- 90 balls in an urn: 30 are R and 60 are B or Y
- a1: 100 if R or a2: 100 if B
- a3: 100 if R or Y or a4: 100 if B or Y
- model answer:  $a1 \succ a2$  and  $a4 \succ a3$
- incompatible with SEU!

$$\begin{split} E[u(a1)] &= P(R)u(100) \quad E[u(a2)] = P(B)u(100) \\ a1 \succ a2 \Rightarrow P(R) > P(B) \\ E[u(a3)] &= P(R)u(100) + P(Y)u(100) \quad E[u(a4)] = P(B)u(100) + P(Y)u(100) \\ a4 \succ a3 \Rightarrow P(B) > P(R) \end{split}$$

Aversion to ambiguity

## Choquet Expected Utility (CEU)

#### Capacity

 $C: 2^S \to [0,1]$   $A \subseteq B \Rightarrow C(A) \leq C(B)$   $C(\emptyset) = 0, C(S) = 1$ Capacity: belief function that is not necessarily monotone



$$\begin{aligned} (x_{(1)}, E_{(1)}; x_{(2)}, E_{(2)}; \dots; x_{(n)}, E_{(n)}) & \text{avec } x_{(1)} \leq x_{(2)} \leq \dots \leq x_{(n)} \\ CEU &= u(x_{(1)})C(E_{(1)} \cup E_{(2)} \cup \dots \cup E_{(n)}) + \\ & (u(x_{(2)}) - u(x_{(1)}))C(E_{(2)} \cup E_{(3)} \cup \dots \cup E_{(n)}) + \\ & (u(x_{(3)}) - u(x_{(2)}))C(E_{(3)} \cup E_{(4)} \cup \dots \cup E_{(n)}) + \\ & \vdots + \\ & (u(x_{(n)}) - u(x_{(n-1)}))C(E_{(n)}) \end{aligned}$$

(ロ)

# CEU and Ellsberg

- 90 balls in an urn: 30 are R and 60 are B or Y
- a1: 100 if R or a2: 100 if B
- a3: 100 if R or Y or a4: 100 if B or Y
- $a1 \succ a2$  and  $a4 \succ a3$

 $a1 \succ a2 \Rightarrow C(R) > C(B)$  $a4 \succ a3 \Rightarrow C(B \cup Y) > C(R \cup B)$ 

#### Particular cases

- $A \cap B = \emptyset \Rightarrow C(A) + C(B) = C(A \cup B)$ : Probability
- $C(A \cap B) = \max(C(A), C(B))$ : Possibility
- $C(A \cap B) = f(C(A), C(B))$ : Decomposable Capacity
- C monotone: Belief functions



### Möbius masses

$$\varphi(A) = \sum_{B \subseteq A} -1^{|A \setminus B|} C(B)$$

### Ellsberg

|           | Ø | R   | B | Y | $R\cup B$ | $R\cup Y$ | $B\cup Y$ | S |
|-----------|---|-----|---|---|-----------|-----------|-----------|---|
| C         | 0 | 1/3 | 0 | 0 | 1/3       | 1/3       | 2/3       | 1 |
| $\varphi$ | 0 | 1/3 | 0 | 0 | 0         | 0         | 2/3       | 0 |

### Extensions

### Cumulative prospect theory

- rank dependence
- sign dependence: reference effects

Bruno de Finetti



### Leonard J. Savage



### Howard Raiffa



### Daniel Kahneman





Gilboa, I. (2009) Theory of Decision under Uncertainty Cambridge University Press.

Kahneman, D. & Tversy, A. (Eds) (2000) Choices, Values and Frames Cambridge University Press.



Raiffa, H. (1968) Decision analysis: Introductory lectures on choices under uncertainty Addison-Wesley.



Wakker, P. P. (1989) Additive representations of preferences Kluwer, Dordrecht.

Wakker, P. P. (2010) Prospect Theory for risk and ambiguity Cambridge University Press.

