TP 1 : statistique descriptive à une dimension

0.1 Rappel théorique

0.1.1 Définitions

Tout le long du rappel théorique, nous illustrerons les définitions grâce à un exemple.

n données issues d'une variable X sont observées.

exemple : nous observons la taille de 5 personnes, n vaut donc 5, et les tailles respectives observées sont 182 cm, 175 cm, 182 cm, 185 cm et 190 cm.

 \boldsymbol{p} données différentes (!) sont observées, qui, classées dans l'ordre croissant, sont x_1, x_2, \ldots, x_p .

exemple :
$$x_1 = 175$$
 cm, $x_2 = 182$ cm, $x_3 = 185$ cm, $x_4 = 190$ cm.

Si le nombre total d'observations, n, est très grand, nous regrouperons nos observations en classes.

exemple:
$$C_1 = [175 \text{ cm}, 180 \text{ cm}], C_2 =]180 \text{ cm}, 185 \text{ cm}], C_3 =]185 \text{ cm}, 190 \text{ cm}].$$

 n_i = fréquence absolue associée à x_i (respectivement C_i)

= nombre d'observations égales à x_i (respectivement, appartenant à C_i).

exemple:

- pour les observations $x_i: n_1=$ fréquence absolue de $x_1=1\,;\, n_2=2\,;$
- pour les classes C_i : n_1 = fréquence absolue de C_1 = 1; n_2 = 3.

 $N_i = \sum_{i=1}^i n_i$ = fréquence absolue cumulée associée à x_i (respectivement C_i).

= nombre d'observations plus petites ou égales à x_i (respectivement appartenant à C_i et aux classes précédentes).

exemple:

- pour les observations $x_i: N_1 =$ fréquence absolue cumulée de $x_1 = 1$; $N_2 = 3$;
- pour les classes $C_i: N_1 =$ fréquence absolue cumulée de $C_1 = 1$; $n_2 = 4$.

 $f_i = \frac{n_i}{n} =$ fréquence relative associée à x_i (respectivement à C_i).

exemple:

- pour les observations x_i : f_1 = fréquence relative de $x_1 = 1/5$; $f_2 = 2/5$;
- pour les classes $C_i: N_1 =$ fréquence relative de $C_1 = 1/5$; $f_2 = 3/5$.

$$F_i = \sum_{j=1}^i f_j = \frac{N_i}{n}$$
 = fréquence relative cumulée associée à x_i (respectivement à C_i).

exemple:

- pour les observations $x_i: F_1 =$ fréquence relative cumulée de $x_1 = 1/5$; $F_2 = 3/5$;
- pour les classes C_i : F_1 = fréquence relative de $C_1 = 1/5$; $F_2 = 4/5$.

Continuons à illustrer les différents paramètres uniquement grâce aux données x_i (pas les classes).

0.1.2 Paramètres de position

1. \overline{x} = moyenne arithmétique = $\frac{1}{n} \sum_{i=1}^{p} n_i x_i$

exemple:
$$\overline{x} = \frac{1}{5}(175 + 2 \cdot 182 + 1 \cdot 185 + 1 \cdot 190)$$

2. $\tilde{x} = \text{médiane} = \text{nombre qui laisse la moitié des observations à sa gauche ainsi qu'à sa droite (aussi appelé deuxième quartile).}$

exemple:
$$\tilde{x} = x_3 = 182$$

0.2 Paramètres de dispersion

- 1. $s^2 = \text{variance} = \frac{1}{n} \sum_{i=1}^{p} n_i (x_i \overline{x})^2$.
- 2. écart-type = $s = \sqrt{s^2}$.
- 3. premier quartile = nombre qui laisse 1/4 des observations à sa gauche.

exemple : premier quartile = $x_2 = 182$ cm

4. troisième quartile = nombre qui laisse 3/4 des observations à sa gauche.

exemple : troisième quartile = $x_3 = 185$ cm

5. intervalle interquartile = [premier quartile, troisième quartile].

exemple : [182 cm , 185 cm]

0.2.1 Paramètres de dissymétrie

le paramètre de dissymétrie est $m_3 = \frac{1}{n} \sum_{i=1}^p n_i (x_i - \overline{x})^3$. Grâce à cela, nous construisons le paramètre de Fisher, noté g_1 et défini par $g_1 = m_3/s^3$.

0.2.2 Paramètres d'aplatissement

Le paramètre d'aplatissement est $m_4 = \frac{1}{n} \sum_{i=1}^p n_i (x_i - \overline{x})^4$. Grâce à cela, nous construisons le paramètre de ..., noté g_2 et défini par $g_2 = (m_4/s^4) - 3$.