Séries complexes et séries entières réelles et complexes

I.a)
$$w_n = u_n + iv_n$$
, $u_n = \frac{1}{2^{n-1}}$, $v_n = \frac{1}{3^{n-1}}$, $\sum_{n=1}^{\infty} u_n$ converge (et est égale à2), $\sum_{n=1}^{\infty} v_n$ converge (et est égale à $\frac{3}{2}$) $\Rightarrow \sum_{n=1}^{\infty} w_n$ converge (et est égale à $2 + \frac{3}{2}i$).

1.b)
$$w_n = u_n + iv_n$$
, $u_n = \frac{1}{n}$, $v_n = \frac{1}{10^n}$, $\sum_{n=1}^{\infty} u_n$ diverge $\Rightarrow \sum_{n=1}^{\infty} w_n$ diverge.

I.c)
$$w_n = u_n + iv_n$$
, $u_n = \frac{n}{n+1}$, $v_n = \frac{n+1}{n+2}$, $\sum_{n=1}^{\infty} u_n$ diverge $\Rightarrow \sum_{n=1}^{\infty} w_n$ diverge.

I.d)
$$w_n = (\frac{1+i}{2})^n \Rightarrow |w_n| = |\frac{\sqrt{1+1}}{2}|^n = \frac{1}{(\sqrt{2})^n} \Rightarrow \sum_{n=1}^{\infty} |w_n|$$
 converge, et est égale à $\frac{1}{\sqrt{2}-1}$ car

$$\sum_{n=0}^{\infty}\alpha^n=\frac{1}{1-\alpha} \text{ pour } |\alpha|<1 \text{, donc } \sum_{n=1}^{\infty}\alpha^n=\frac{1}{1-\alpha}-1.$$

Comme $\sum_{n=1}^{\infty} |w_n|$ converge, $\sum_{n=1}^{\infty} w_n$ converge absolument.

I.e)
$$w_n = (\frac{\sqrt{3}+i}{2})^n = (\cos\frac{\pi}{6} + i\sin\frac{\pi}{6})^n = \cos\frac{n\pi}{6} + i\sin\frac{n\pi}{6} = u_n + iv_n \text{ avec } u_n = \cos\frac{n\pi}{6},$$
 $v_n = \sin\frac{n\pi}{6}.\sum_{n=1}^{\infty}u_n \text{ diverge, donc } \sum_{n=1}^{\infty}w_n \text{ diverge.}$ On peut arriver àla même conclusion en utilisant le fait que $|w_n| = 1 \Rightarrow \lim_{n \to \infty}w_n \neq 0$ (la

On peut arriver àla même conclusion en utilisant le fait que $|w_n|=1\Rightarrow \lim_{n\to\infty}w_n\neq 0$ (la condition nécessaire de convergence n'est pas satisfaite) \Rightarrow la série $\sum_{n=1}^{\infty}w_n$ diverge.

II. Remarque : Pour la série entière réelle $\sum_{n=1}^{\infty} a_n x^n$, le rayon de convergence R s'obtient souvent (mais pas toujours!) par l'une des deux formules : $R = \lim_{n \to \infty} |\frac{a_n}{a_{n+1}}|$, $R = \frac{1}{\lim_{n \to \infty} \sqrt[n]{|a_n|}}$, àcondition que la limite existe!

II.a)
$$a_n = \frac{1}{n} \Rightarrow R = \lim_{n \to \infty} \frac{n+1}{n} = 1$$
, pour $x = 1$ on a la série $\sum_{n=1}^{\infty} \frac{1}{n}$ qui diverge et pour $\frac{\infty}{n}$ $(-1)^n$

$$x=-1$$
 on a la série $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ qui converge. L'intervalle de convergence est donc $[-1,1[$

II.b) Posons
$$t=x-2\Rightarrow$$
la série entière $\sum_{n=1}^{\infty}\alpha_nt^n$ avec $\alpha_n=\frac{1}{n^2}\Rightarrow R=\lim_{n\to\infty}(\frac{n+1}{n})^2=1.$

Pour t=1 (x=3) on a la série $\sum_{n=1}^{\infty}\frac{1}{n^2}$ qui converge et pour t=-1 (x=1) on a la série

 $\sum_{n=0}^{\infty} \frac{(-1)^n}{n^2}$ qui converge absolument \Rightarrow l'intervalle de convergence est [1,3].

II.c) Posons $t=x-5\Rightarrow$ la série entière est $\sum_{n=0}^{\infty}a_nt^n$ avec $a_n=n!\Rightarrow R=\lim_{n\to\infty}\frac{1}{n+1}=0.$

La série ne converge que pour t = 0 càd x = 5.

II.d) $a_n = \frac{1}{n!} \Rightarrow R = \lim_{n \to \infty} |\frac{a_n}{a_{n+1}}| = \lim_{n \to \infty} (n+1) = \infty \Rightarrow \text{la série converge } \forall x \in \mathbb{R}$ II.e) Série de termes en progression géométrique de raison $\frac{x^3}{10} \Rightarrow \text{elle converge pour } |\frac{x^3}{10}| < 1$ et diverge pour $|\frac{x^3}{10}| \geq 1 \Rightarrow \text{intervalle de convergence } :] - \sqrt[3]{10}, \sqrt[3]{10}[$.

II.f) Posons $t=x^5$ \Rightarrow série entière $\sum_{n=1}^{\infty}a_nt^n$ avec $a_n=\frac{2^n}{2n-1}$ \Rightarrow $R=\lim_{n\to\infty}(\frac{2n+1}{2(2n-1)})=\frac{1}{2}$.

Pour $t=\frac{1}{2}$ $(x=\frac{1}{\sqrt[5]{2}})$ on a la série $\sum_{n=1}^{\infty}\frac{1}{2n-1}$ qui diverge et pour $t=-\frac{1}{2}$ $(x=-\frac{1}{\sqrt[5]{2}})$, on

a la série $\sum_{n=1}^{\infty} \frac{(-1)^n}{2n-1}$ qui converge \Rightarrow l'intervalle de convergence est $[-\frac{1}{\sqrt[5]{2}},\frac{1}{\sqrt[5]{2}}]$

II.g)Posons $t = (x-2)^2 \Rightarrow$ série entière $\sum_{n=1}^{\infty} a_n t^n$ avec $a_n = (\frac{n+1}{2n+1})^n \Rightarrow R = \frac{1}{\lim_{n \to \infty} \sqrt[n]{|a_n|}} =$

 $\lim_{n\to\infty}\frac{2n+1}{n+1}=2. \text{ Pour } t=2 \ (x=2\pm\sqrt{2}) \text{ on a la série } \sum_{n=0}^{\infty}(1+\frac{1}{2n+1})^n \text{ qui diverge}$

 $\operatorname{car} \lim_{n \to \infty} (1 + \frac{1}{2n+1})^n = \sqrt{e} \neq 0 \text{ (à comparer avec } \lim_{n \to \infty} (1 + \frac{a}{n})^n = e^a \text{)} \Rightarrow \text{l'intervalle de}$

convergence est $]2 - \sqrt{2}, 2 + \sqrt{2}[$.

II.h) $\sqrt[n]{|u_n|} = \frac{|x-1|^{n+1}}{n} \Rightarrow \lim_{n \to \infty} \sqrt[n]{|u_n|} = \begin{cases} 0 & \text{pour } |x-1| \le 1 \\ \infty & \text{pour } |x-1| > 1 \end{cases}$ \Rightarrow la série converge (absolument) pour $|x-1| \le 1$ et diverge pour |x-1|[0, 2]

II.i) La série converge pour x=0 et pour $x\neq 0$ on a $|\frac{u_{n+1}(x)}{u_n(x)}|=\frac{|x|^{n+1}}{n+1}\Rightarrow$ $\lim_{n\to\infty}|\frac{u_{n+1}(x)}{u_n(x)}|=\begin{cases} 0 & \text{pour }|x|\leq 1 \text{ (bornée par la suite }\frac{1}{n+1}\text{ qui converge.)}\\ \infty & \text{pour }|x|>1 \text{ (suite monotone croissante dès que }n>\frac{2-x}{x-1} \end{cases}$ La série converge (absolument) pour $|x|\leq 1$ et diverge pour $|x|>1\Rightarrow$ l'intervalle de

convergence est [-1, 1]

III) Pour la série entière **complexe** $\sum_{n=1}^{\infty} a_n z^n$, le rayon de convergence s'obtient souvent par les formules données au 2) où |c| désigne le module du complexe c.

III.a) $a_n = (\frac{\sqrt{3}+i}{3})^n \Rightarrow R = \frac{3}{2}$. Pour $|z| = \frac{3}{2}$ on a la série $\sum_{i=1}^{\infty} (\frac{\sqrt{3}+i}{3}z)^n$ qui diverge car le module du terme général vaut $|\frac{\sqrt{3}+\mathrm{i}}{3}z|=|\frac{\sqrt{3}+\mathrm{i}}{3}|\frac{3}{2}|=1$ (la suite ne tend pas vers 0).

 \Rightarrow le domaine de convergence (absolue) est le disque **ouvert** $|z| < \frac{3}{2}$.

III.b) Comme vu au 3.a), le domaine de convergence (absolue) est le disque **ouvert** $|z-\mathfrak{i}|<\frac{3}{2}$

III.c) Posons
$$Z=z+2\Rightarrow$$
la série $\sum_{n=1}^{\infty}\alpha_nZ^{n-1}$ avec $\alpha_n=\frac{1}{(n+1)^34^n}\Rightarrow$ $R=\lim_{n\to\infty}4(\frac{n+2}{n+1})^3=4.$

Pour |Z|=4 (|z+2|=4) on obtient la série $\sum_{n=1}^{\infty}c_n$ avec $|c_n|=\frac{1}{4(n+1)^3}\Rightarrow$ elle converge

absolument \Rightarrow le domaine de convergence (absolue) est le disque **fermé** $|z+2| \leq 4$.

III.d) Pour z=0 la série converge et pour $z\neq 0$ on a : $|\frac{u_{n+1}(z)}{u_n(z)}|=\frac{|z|^2}{(2n+1)(2n)}\Rightarrow \lim_{n\to\infty}|\frac{u_{n+1}(z)}{u_n(z)}|=0$ < $1\Rightarrow$ la série converge absolument $\forall z\in\mathbb{C}$

III.e) $a_n = n! \Rightarrow R = \lim_{n \to \infty} |\frac{1}{n+1}| = 0 \Rightarrow la$ série converge seulement pour $z = 0 \Rightarrow le$ domaine de convergence est $\{0\}$.

III.f) Posons $Z = z^4 \Rightarrow \sum_{n=1}^{\infty} \alpha_n Z^n$ avec $\alpha_n = \frac{1}{n} \Rightarrow R = 1$. On aura convergence pour |Z| < 1, divergence si |Z| > 1.

On va donc étudier la série $\sum_{n=1}^{\infty} \frac{Z^n}{n}$ pour |Z| = 1:

Pour |Z|=1 et $Z\neq 1$, nous utiliserons le critère d'Abel (cf cours 11.4.6) la série s'écrit $\sum_{n=1}^{\infty} \varepsilon_n b_n \text{ avec } b_n = \frac{1}{n} \text{ et } \varepsilon_n = Z^n \text{, on a :}$

1. la suite $b_n = \frac{1}{n}$ tend vers 0 en décroissant

Pour Z = 1 la série $\sum_{n=1}^{\infty} \frac{1}{n}$ diverge.

Conclusion la série $\sum_{n=1}^{\infty} \frac{Z^n}{n}$: converge absolument pour |Z| < 1, diverge pour |Z| > 1, pour Z = 1 elle diverge et pour |Z| = 1 avec $Z \neq 1$ elle converge (mais pas absolument).

Retour àla série
$$\sum_{n=1}^{\infty} \frac{z^{4n}}{n}$$

Rappel : $\{z \in \mathbb{C}; z^4 = 1\} = \{-1, 1, i, -i\}$

La série converge absolument pour |z|<1, elle diverge pour |z|>1, pour $z\in\{-1,1,i,-i\}$ elle diverge et pour |z|=1 et $z\notin\{-1,1,i,-i\}$ elle converge (mais pas absolument).