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The approximation functions of the directivity of the light emitting diodes (LED) have been investigated.
LEDs used in large scale LED video displays have been studied. LED directional properties among the
other parameters define the video display image quality. The simplicity of an approximation function
and ease of analytical handling have been targeted. These functions suppose to be used in display direc-
tivity engineering. Four candidate approximation functions were identified and their approximation per-
formance analyzed. The evaluation is done on eight different type LEDs’ sample batches. These samples
have been chosen to represent the variety of the main colors and the range of the most popular viewing
angles used in large scale LED video displays design. The relative intensity approximation root mean
square (RMS) error and approximation errors’ cross correlation have been used as performance estima-
tion criteria. The radiometric intensity variation within a manufacturing lot was suggested as lower error
bound. Approximation error variance was analyzed for various approximation ranges. Results of four can-
didate approximation functions’ performance on eight different type LEDs’ are presented.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

The light emitting diode (LED) application in large scale video
displays has proven a perfect tool when a large area of a high
brightness imaging is required [1]. It is used to convey video infor-
mation in advertising, sports, leisure or even architecture applica-
tions. LED video display is based on the raster-scanning principle:
monochrome or multicolor LEDs form the image pixels. It should to
be viewed at large distance: only when the neighboring pixels are
observed at an angle less than 1 arc min they blend into a complete
image [2]. Large LED video displays typically use small louvers to
reduce the direct ambient light influence [3,4].

In order to predict the LED video display image optical perfor-
mance at various viewing angles the directivity function of individ-
ual pixels’ is needed. Since LEDs form the pixels then LED
directional properties among the other parameters define the im-
age quality [5,6]. The far-field pattern (FFP) [7] is used to character-
ize the LED spatial directivity. If the display geometry and audience
placement are known then image quality can be derived through
the LED directivity model. LED applications expand into complex
illumination and imaging systems. Illumination system design pro-
grams can be used to design such systems [8]. However, these pro-
grams require the light source directivity model. As Cassarly et al.
have indicated in [8] the model simplicity is desirable because it
could be complicated to trace large numbers of rays for the each
iteration of the system design. Of course, a simple model might
ll rights reserved.
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be sufficient for a feasibility study, while a more accurate approach
may be needed for the final design. Moreno et al. in [9] divide the
LED models currently employed into analytical approximations or
Monte Carlo ray tracing. Publication [10] proposed quite simple
analytic representation for the LED FFP. Authors suggest that the
final FFP is the result of the sum of three terms: the chip radiation
directly refracted by the encapsulating lens, internally reflected
lens walls and by the reflector cup. Mathematically, the pattern
is described as the sum of a maximum of two or three Gaussian
or cosine-power functions.

LEDs used in video displays have smooth directivity function
with clearly expressed peak (no ‘‘batwing” or peaking). This fact
led us to idea that simple approximation function might be suffi-
cient for LED directivity estimation. Therefore the goal of this paper
was to provide the comparison of simple approximation functions.

2. LED directivity

Generally FFP is obtained as the spatial intensity I distribution
over the observation angles H (polar/zenith) and / (azimuth),
e.g. I(H, /). Polar angle is the inclination angle measured from
the LED mechanical axis [11], according to [12] it is a line through
the tip in the direction of the axis of symmetry of the body.
Azimuth angle / is the angle measured in plane perpendicular to
mechanical axis with zero aligned with line along LED pins.

LED manufacturers specify the half power beam angle 2H0.5

which is the polar angle where the intensity is half of the peak
emission value. The LEDs used in video displays usually have
elliptical directivity diagram, i.e. one-dimensional intensity I
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Fig. 1. LED FFP in polar coordinates.
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distribution measured in vertical I(H, / = 0�) and horizontal I(H,
/ = 90�) plane differ (Fig. 1). The oval shape ensures wide horizon-
tal viewing angle of display and narrow the vertical angle.

Therefore manufacturers specify two 2H0.5 angles [13]: 2H0.5H

measured along major axis and 2H0.5V measured along minor axis.
In LED video display design it is more convenient to have a coordi-
nate system with angles in horizontal plane and vertical plane: this
will ease the audience geometry calculations. Therefore we will
use angles HH (H when / = 0�) and HV (H when / = 90�) both hav-
ing a range from�90� to 90�. Assuming the second order rotational
symmetry of two-dimensional LED FFP, we limit our investigation
to the one-dimensional FFPs IH(HH) and IV(HV) analysis. The two-
dimensional directivity function then can be obtained as the prod-
uct of last two:

I2DðHH;HV Þ ¼ IHðHHÞ � IV ðHV Þ: ð1Þ

The amount of possible horizontal and vertical directivity an-
gles combinations is large. The suggested split into IH(HH) and
IV(HV) allows for great simplification of analysis since only one-
dimensional approximation is investigated. Therefore the analysis
presented below was concentrated on the one-dimensional
approximation functions.

3. Candidate FFP approximation functions

The polynomial fit could be the first candidate for any approx-
imation. Second order symmetry of the FFP was assumed. There-
fore parabolic function was suggested for FFP approximation. The
LED intensity I at some angle H is a parabolic function of a form

IðHÞ ¼ Imax þ a2ðH�HpeakÞ2; ð2Þ

where Imax is the peak intensity at Hpeak angle and a2 is a coefficient
defining the FFP width. Obtaining the equation for I(Hpeak) and solv-
ing for a half of it, the half power beam angle 2H0.5 is

2H0:5 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffi
�2a2
p

a2
: ð3Þ

It was interesting to find out how higher order polynomial will
behave. It was suggested to use two terms: parabolic to be respon-
sible for peak approximation ant power of four for lower part of
FFP:

IðHÞ ¼ Imax þ a2ðH�HpeakÞ2 þ a4ðH�HpeakÞ4: ð4Þ

The publication [7] presents the cos in power (g � 1) function as
a candidate for LED FFP approximation:

IðHÞ ¼ Imax � cosðH�HpeakÞg ; ð5Þ

where g is a coefficient, proportional to viewing angle 2H0.5. Solving
(5) for 2H0.5:
2H0:5 ¼ 2 arccosð2 �1
gð ÞÞ: ð6Þ

Gaussian approximation is most often used in LED directivity
[9,10] and RF antenna pattern approximation [14] as an idealized
pattern of an antenna having a smooth mainlobe with no
sidelobes:

IðHÞ ¼ Imax � e
� lnð2Þ

ðH�Hpeak Þ
2

H2
0:5

� �
: ð7Þ

Ambient light during the measurement process under some cir-
cumstances cannot be completely removed and the DC offset oc-
curs. Then the Gaussian with DC offset IOff can be used for
approximation:

IðHÞ ¼ IOff þ Imax � e
� lnð2Þ

ðH�Hpeak Þ
2

H2
0:5R

� �
: ð8Þ

The half power beam angle in (7) is evaluated after removing
the DC component of the FFP: notation with the index R(2H0.5R)
to distinguish from the conventional result. This property is useful
if DC offset occurs due to the ambient light. But in case the offset is
a property of LED the half power angle will have a large systematic
error. Then the correct half power angle is:

2H0:5 ¼
2H0:5R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� ln Imax�Ioff

2Imax

� �r
ffiffiffiffiffiffiffiffiffiffiffi
lnð2Þ

p : ð9Þ

Above mentioned functions initial performance was presented
in [15]. Moreno et al. [9] suggested multiple Gaussian terms func-
tion for LED FFP approximation. In our investigation we have in-
cluded only function containing two terms:

IðHÞ ¼ I1 � e
�
ðH�Hpeak Þ

2

W1

� �
þ I2 � e

�
ðH�HpeakÞ

2

W2

� �
; ð10Þ

where W1 and W2 are defining the first and second term width
respectively; I1 and I2 are weights of the terms. Further analysis
was limited by aforementioned functions.

It should be noted that the selected functions are a significant
simplification. Other authors are suggesting much more compli-
cated functions: in [9] it is suggested to use:

IðH;/Þ ¼
X

i

Ii � e
�ðlnð2ÞÞðjHj�hiÞ2

cos2 /i
Vi
þsin2 /i

Hi

� �� �
; ð11Þ

where H range is 0� . . . 90� but / range is 0� . . . 360�, angle hi allows
for diagram offset in angular direction (useful for ‘‘batwing” pat-
terns), coefficients Vi and Hi define the different directionality in
vertical and horizontal direction and Ii is the weight assigned to
ith term (usually 2–3). In [9] it was proposed that the manufacturer
should include such formula with its coefficients in their technical
data sheets. We support this proposal, but so far manufacturers
only indicate the half power beam angle 2H0.5H measured along
major axis and 2H0.5V measured along minor axis. These parame-
ters are applicable only for simple functions like Eqs. (2), (5), and
(7). We want to analyze whether much simpler approximations
are powerful enough to satisfy the approximation in reduced range
(slightly beyond �H0.5 . . . +H0.5 range) and can be applied in engi-
neering applications like illumination rendering [16], display direc-
tivity [17] or louvers performance prediction [3,4].

4. Fitting procedure

The Matlab procedure fminsearch, employing the Nelder–Mead
simplex method [18] have been used for fitting. The intensity
approximation error root mean square (RMS) value has been used
for convergence.



Table 1
Candidate functions used in investigation.

Notation Function

Gaus

IðHÞ ¼ Imax � e
� lnð2Þ

ðH�Hpeak Þ
2

H2
0:5

� �

Gaus + offset

IðHÞ ¼ IOff þ Imax � e
� lnð2Þ

ðH�Hpeak Þ
2

H2
0:5R

� �

Gaus x2
IðHÞ ¼ I1 � e

�
ðH�Hpeak Þ

2

W1

� �
þ I2 � e

�
ðH�Hpeak Þ

2

W2

� �
cosg IðHÞ ¼ Imax � cosðH�HpeakÞg

x2
IðHÞ ¼ Imax þ a2ðH�HpeakÞ2

x2 + x4
IðHÞ ¼ Imax þ a2ðH�HpeakÞ2 þ a4ðH�HpeakÞ4

3.0
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eRMS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

i¼1
ðIorig i � IapprðHiÞÞ2

r
; ð12Þ

where Iorig i is the original FFP, Iappr(Hi) is the approximating func-
tion taken at the ith position of N total samples used. The best
approximation accuracy was desired in high intensity region (close
to peak value). Therefore Eq. (12) was additionally weighted by ori-
ginal FFP values

eRMSW ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

i¼1
ðIorig i � IapprðHiÞÞ2Iorig i

h ir
: ð13Þ

The termination tolerance of fminsearch for argument and func-
tion respectively were assigned the default values, 10�4, the max-
imum number of iteration steps was assigned four times the
default value, 2000.
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Fig. 2. Measured Z2BH FFPs before normalization.
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5. Investigation object

Variety of LED’s possessing different directivity, color, and
intensity exists. In this paper we analyze only LEDs dedicated for
large scale video displays. The LEDs chosen for investigation repre-
sent the main colors and the range of most popular half power
beam angles 2H0.5. Four LED types with oval directivity diagram
were chosen: Brilliance Technologies type BTL-55, Super Bright
Optoelectronics type SBD-GV, LBL Photoelectric Technology type
LBL-52 and Greenlight type GB70. Two one-dimensional FFPs have
been measured by goniometer [19] for each LED type: IH(HH) along
horizontal and IV(HV) along vertical axis. Eight resulting FFP groups
were collected for analysis. The analyzed batch was taken from the
same manufacturing lot. The notation used and the essential
parameters are listed in Table 2.

In order to present the parameters 2H0.5 and Hpeak scatter,
these parameters were obtained for each LED in a batch by using
measured FFP. The results are presented in Table 2 (column 3
and 4) indicating the mean value and standard deviation. For
majority of LEDs the angle 2H0.5 obtained from original (mea-
sured) FFP is close to the manufacturer specified value.
Table 2
LEDs used for the investigation.

Notation Specified
2H0.5, �

Measured
2H0.5, �

Measured
Hpeak, �

Color Batch
size, M

BrGH 110 106 ± 8.0 �0.7 ± 6.8 Green 20
SBORH 110 99.6 ± 3.8 1.8 ± 4.3 Red 20
Z2BH 70 70.3 ± 3.6 3.0 ± 1.7 Blue 37
GBGH 70 64.7 ± 2.1 2.4 ± 1.6 Green 20
BrGV 45 44.6 ± 1.9 2.3 ± 2.2 Green 20
Z2BV 40 43.9 ± 2.0 �0.2 ± 2.4 Blue 37
GBGV 40 35.2 ± 0.9 2.4 ± 2.0 Green 20
SBORV 45 31.3 ± 3.2 2.9 ± 1.6 Red 22
6. Performance evaluation criteria

As Cassarly has indicated in [8]: ‘‘if the scanned source is not a
‘‘typical” representative of that source type, then neither [approx-
imation] is the model”. In other words, we need some representa-
tion of ideal directivity function.
6.1. Ideal directivity approximation

For this purpose it was suggested to combine the individual LED
FFP and to use the mean of multiple FFP of same type LED for ‘‘rep-
resentative” FFP generation. The obtained raw data (see Fig. 2 for
Z2BH results) was normalized for peak value and peak angle posi-
tion moved to 0� (Fig. 3). This peak position normalization was
introduced to reduce the influence of LED encapsulation: the sta-
tistical directivity pattern must represent the LED optics. Normal-
ization can be done using optical axis, then the influence of the
artifacts distorting the peak directivity is reduced. Peak normaliza-
tion was chosen because of its simplicity.

Then all LEDs’ diagrams in a batch were averaged. The resulting
normalized mean FFP was used in further investigation as the ideal
approximation. Refer to Fig. 4 for ideal approximation graphs of all
analyzed LEDs.

Results of measured Z2BH FFPs fitting with candidate functions
is presented in Fig. 5. The mean FFP is labeled as ‘‘ideal” in Fig. 5.
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Fig. 3. Measured Z2BH FFPs after normalization.
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The peak, half power, low and high intensity areas of FFP can be
distinguished in Fig. 5.

The ‘‘ideal” approximation was used for fitting, but approxima-
tion errors analysis was done on every individual LED FFP.
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6.2. Error estimates

As an initial investigation, the absolute intensity approximation
error at every ith angle was normalized by intensity value has been
obtained for every jth LED in a batch and a resulting RMS value cal-
culated (Fig. 6):

dapprA i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM
j¼1

Iorig i;j�IapprðHi;jÞ
Iorig i;j

� �2

M

vuut
� 100%; ð14Þ

where index appr is used to denote the approximation type (‘‘ideal”,
‘‘Gaus”, ‘‘Gaus + offset”, etc.) and the orig index is for the original
(measured) data; letter ‘‘A” indicates that error variability is ana-
lyzed in angle domain.

It can be clearly seen in Fig. 6 that such approximation error in-
crease with angle even for ideal approximation (thick curve). We
assumed that best approximation accuracy was desired in high
intensity region, at low polar angles. Then the absolute intensity
approximation error RMS sum for the particular jth LED can be nor-
malized by sum of N intensity values in FFP:

dapprB j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1ðIorig i;j � IapprðHi;jÞÞ2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1ðIorig i;jÞ2
q � 100%; ð15Þ

where letter ‘‘B” indicates that analysis is along batch numbers. This
relative value of the intensity approximation error RMS was used as
the correspondence criterion. If error is normalized in such way
then errors at high intensities will have larger influence. The FFP
approximation relative errors (Eq. (15)) of individual LEDs were
combined by taking the RMS value of errors dapprB j of M LEDs in a
batch:

dappr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
M

XM

j¼1
ðdapprB jÞ2

r
: ð16Þ

The approximation errors for ideal and investigated function
can be used to obtain their cross correlation coefficient:

XcorrErr ¼
PM

j¼1ðdapprB j � didealB jÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM
j¼1ðdapprB jÞ2 �

PM
j¼1ðdidealB jÞ2

q ; ð17Þ

where dapprB j is the relative intensity approximation RMS error of
jth LED using one of the candidate function (‘‘appr” = ‘‘Gaus”, ‘‘Gaus +
offset”, etc.) and didealB j is the relative intensity approximation RMS
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error of jth LED in a batch for ‘‘ideal” (mean) approximation. The use
of cross correlation coefficient should allow tracing the covariance
of the candidate function and the ‘‘ideal” approximation errors:
values above 0.7 should indicate the similar errors and values below
would indicate that errors are significant and candidate function is
not following the ideal approximation.

6.3. Lower error bound

In case of ‘‘ideal” approximation the errors obtained can be con-
sidered as lower error bound. The range used for approximation
was varied from slightly below 2H0.5 to �180�. Range was placed
symmetrically around the peak. Results for ‘‘ideal” approximation
are presented in Fig. 7.

Relative intensity approximation error (Eq. (16)) was calculated
for every range. Then it was assumed that lower error bound
should be defined by variance within a batch: the obtained relative
intensity approximation error RMS values were treated as lower
error bound (dLB = dideal) in the following analysis.

6.4. Desired range estimation

The estimation of desired range was based on the target appli-
cation for LEDs used in analysis: large scale video displays. When
viewing a LED video display, the human eye is gathering light
not from a single LED, but from a given area of the display. Observ-
ing the display at sharper angle, this area actually increases. This
0

1

2

3

4

5

6

7

8

9

10
SBORV

2Θ0.5
2Θ0.5Disp

δ ap
pr
 (%

)

Θ range (deg)

δLB
 Gaus
 Gaus+offset
 Gaus x2
 cosg

 x2

 x2+x4

0

1

2

3

4

5

6

7

8

9

10

GrbGV

2Θ0.5Disp2Θ0.5

δ ap
pr
 (%

)

Θ range (deg)

δLB
 Gaus
 Gaus+offset
 Gaus x2
 cosg

 x2

 x2+x4

30 40 50 60

30 40 50 60 70

Fig. 9. Relative intensity approxim
effect will modify the display luminance by cosine law. Therefore
screen luminance YSC(H) spatial distribution along observation an-
gle H can be calculated as:
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The Eq. (15) was applied on measured average FFP and resulting
display luminance directivity function was used to obtain the dis-
play half power (viewing) angle 2H0.5Disp. If Eq. (5) can be used to
approximate the LED FFP, then display luminance directivity func-
tion can be easily obtained from (18) as:

YDispðHÞ ¼ Imax � cosðHÞg�1
; ð19Þ
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Display viewing angle is defined as angle at which luminance is
dropping to the half of its peak value at angle normal to the display
surface. Then display viewing angle 2H0.5Disp relation to LED half
power angle 2H0.5 can be established

2H0:5Disp ¼ 2 arccos cosðH0:5Þ
� lnð2Þ

lnð2Þþln cosðH0:5Þð Þ

� � !
: ð20Þ
rGV Z2BV GBGV SBORV

 batch

s Gaus+off Gaus x2 cosg x2 x2+x4

(%) RMS value versus LED batch.
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The result of display viewing angle calculation based on Eq. (20)
and the angles obtained from measurement results based estima-
tion are presented in Fig. 8.

If LED display is designed to assure certain viewing angle
2H0.5Disp, then display image quality beyond this range is less
important. Therefore we assume that accuracy of LED FFP approx-
imation beyond the display viewing angle 2H0.5Disp can be lower.
The approximation performance study has been carried out in
whole �90� . . . +90� range but later analysis range was reduced
range according to Fig. 8.
7. Approximation performance evaluation

Same representative batches (Table 2) have been approximated
by all the candidate functions (Table 1). The relative intensity
approximation RMS error has been obtained for every LED. The
RMS errors of within a batch were combined using two criteria:
RMS value (Eq. (16)) and cross correlation coefficient (Eq. (17)).
Table 3
LED FFP approximation error RMS value.

Notation Measured 2H0.5, � Relative approximation error @ 2H

Ideal Gaus G

SBORH 99.6 ± 3.8 4.14 7.1 5
Z2BH 70.3 ± 3.6 2.89 5.25 3
GBGH 64.7 ± 2.1 2.16 4.03 2
BrGV 44.6 ± 1.9 2.92 3 2
Z2BV 43.9 ± 2.0 2.74 3.38 2
GBGV 35.2 ± 0.9 1.6 1.9 1
SBORV 31.3 ± 3.2 4.6 5.3 4

Table 4
LED FFP approximation errors cross correlation.

Notation Measured 2H0.5, � Cross correlation coefficient @

Gaus Gaus + off

SBORH 99.6 ± 3.8 0.578 0.698
Z2BH 70.3 ± 3.6 0.375 0.837
GBGH 64.7 ± 2.1 0.666 0.869
BrGV 44.6 ± 1.9 0.985 0.995
Z2BV 43.9 ± 2.0 0.854 0.977
GBGV 35.2 ± 0.9 0.771 0.977
SBORV 31.3 ± 3.2 0.895 0.977
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Fig. 12. Relative approximation error RMS value as a fractio
Graphs representing the error variance are presented in Fig. 9.
The reference lines indicating the LED half power angle 2H0.5

(vertical solid line) and the display viewing angle 2H0.5Disp (vertical
dashed line) values are added. The most representative results
are presented in Fig. 9: from narrow (SBORV) to wide (BrGH) angle
FFP.

Analysis indicates that the intensity approximation error is
increasing when range is increased. As expected, dual term Gauss-
ian and Gaussian with offset functions have demonstrated the best
performance. But the rest of the candidates, except parabolic func-
tion, also have acceptable performance within display viewing an-
gle 2H0.5Disp range: single term Gaussian and cosg function errors
are just 20% larger than lower error bound dLB for the SBORV LED
(Fig. 9).

Analysis of relative approximation errors does not indicate di-
rect relation to ideal approximation. Therefore we have introduced
the approximation errors of ideal and candidate function correla-
tion (Eq. (17)). In such way we can analyze whether larger errors
for current LED in a batch are caused by deviation of individual
0.5Disp range, dGapr (%)

aus + off Gaus x2 cosg x2 x2 + x4

.57 7.08 4.95 9.95 7.56

.87 2.98 6.26 16.4 10.6

.8 2.26 4.67 11.5 6.8

.95 2.94 3.05 5.68 3.14

.87 2.87 3.5 7.03 2.8

.6 1.6 2 5 1.62

.7 4.7 5.3 8.6 4.9

2H0.5Disp range, XcorrErr

Gaus x2 cosg x2 x2 + x4

0.578 0.78 0.458 0.555
0.992 0.387 0.34 0.694
0.982 0.604 0.44 0.335
0.997 0.98 0.63 0.986
0.997 0.825 0.4 0.997
0.997 0.731 0.34 0.971
0.997 0.88 0.662 0.983

cosg x2 x2+x4
ation function

Z2BV GBGV SBORV

n of lower error bound versus approximation function.
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LED FFP from common batch behaviour (ideal approximation – in
such case correlation coefficient will be high) or by incapability
of approximating function to follow the ideal FFP curvature (in
such case correlation coefficient will be low).

Results obtained at display viewing angle 2H0.5Disp range are
presented in Fig. 11 and Tables 3 and 4. Grouping the results
according to LED type is not convenient for analysis. One conclu-
sion can be drawn from Fig. 11: fourth order polynomial approxi-
mation is producing large errors for GBGH and Z2BH LEDs (both
are 70�). Higher order polynomial was not included in graphs at
all: errors are large as it can be seen from Figs. 5, 6, 9 and 10. BrBH
data was not included because it is impossible to get reliable re-
sults at 180� angle.

Results in Fig. 12 are more convenient for analysis. It can be
seen that all Gaussian functions have best performance. Approxi-
mation results are worse for wide angled SBORH. This can be ex-
plained by more complicated directivity function of wide angle
LEDs (refer Fig. 4): aforementioned functions have complex curva-
ture. Modern, high quality LEDs dedicated for professional video
displays, like Cotco’s Screen Master [20], have much smoother
directivity. Refer to Fig. 13 for LO5SMQBL4-B0G (Cotco’s Screen
Master blue LED) [13] directivity comparison against BrHG and
SBORH LEDs.
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Fig. 14. Cotco’s Screen Master’s FFP approximation error versus range.
Same relative approximation errors (Fig. 14) and approximation
errors correlation of ideal to candidate functions analysis (Fig. 15)
was carried out.

Thanks to Cotco’s Screen Master FFP smoothness the approxi-
mation performs better even for such simple functions like single
term Gaussian and raised cosine: relative approximation error at
half power beam angle 2H0.5 is close to lower error bound and er-
rors correlation is above 0.7.

We conclude that application of suitable higher order/larger
terms number function for approximation can get close to lower
error bound. In our case it was dual term Gaussian function. But
for general engineering tasks it should be sufficient to have 5–8%
relative approximation error or close to twice the lower error
bound. In such case even simple, single term functions have satis-
factory performance. We name the Gaussian without DC offset as
best candidate. Then such simple function can be used to approx-
imate the directivity only having the vertical and horizontal half
power beam angle 2H0.5 available from manufacturer data sheet:
this angle is already included in Eq. (7).
8. Conclusions

Investigation indicates that approximation function such as
dual term Gaussian can produce the results that are close to ideal
approximation. However, even simple, single term functions have
5–8% relative approximation error and are below double lower er-
ror bound in reduced angular range, corresponding to display half
radiance angle. We consider such performance as satisfying for
general engineering tasks like illumination rendering or display
directivity performance prediction.
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