Device Architecture and Materials for Organic Light-Emitting Devices Sarah Schols

Device Architecture and Materials for Organic Light-Emitting Devices

Targeting High Current Densities and Control of the Triplet Concentration

Sarah Schols Large Area Electronics (LAE) Imec Kapeldreef 75 3000 Leuven, Vlaams Brabant Belgium sarah.schols@imec.be

ISBN 978-94-007-1607-0 DOI 10.1007/978-94-007-1608-7 Springer Dordrecht Heidelberg London New York

e-ISBN 978-94-007-1608-7

Library of Congress Control Number: 2011928673

© Springer Science+Business Media B.V. 2011

No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work.

Cover design: VTeX UAB, Lithuania

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This book is a reprint of the manuscript entitled "Device architecture and materials for organic light-emitting devices", that was submitted to the jury deciding on the achievement of my PhD at the Katholieke Universiteit Leuven in Belgium. It is the result of five years fascinating research at imec in Leuven, Belgium, between 2004 and 2009. Different people contributed to my work and I want to show gratitude to all of them. First, I would like to thank my two promoters, Prof. Paul Heremans (KUL/imec) and Prof. Robert Mertens (KUL/imec) who gave me the opportunity to start a PhD in an inspiring environment as imec. I am also very grateful to the other PhD jury members who took the time to carefully read my manuscript: Prof. Mark van der Auweraer (KUL), Prof. Jan Engelen (KUL), Prof. Henning Sirringhaus (University of Cambridge), Prof. Uli Lemmer (Universität Karlsruhe) and Prof. Adhemar Bultheel (KUL). My special thanks go to Andrey Kadashchuk for introducing me into the exciting world of spectroscopy and for the many scientific discussions, but of course also all other colleagues of the Polymer and Molecular Electronics group at imec with whom I worked together during my PhD are gratefully acknowledged. Besides, I would like to thank Thilo Stöferle (IBM Research Zurich), Tobias Plötzing (RWTH Aachen) and Thorsten Wahlbrink (AMO GmbH) for the nice collaboration. The FWO is acknowledged for the financial support. Finally, I warmly thank my family for their continuous support and interest in my work.

Sarah Schols

Contents

1	Intr	oduction	1
	1.1	Organic Semiconductors	1
		1.1.1 Semiconducting Properties of Organic Materials	2
		1.1.2 Charge Transport in Organic Materials	4
		1.1.3 Optical Transitions in Organic Materials	6
	1.2	State of the Art Organic Light-Emitting Devices	9
		1.2.1 Organic Light-Emitting Diodes	9
		1.2.2 Organic Light-Emitting Transistors	11
	1.3	Organic Semiconductor Lasers	13
		1.3.1 General Aspects of Laser Action	13
		1.3.2 Motivation for Plastic Lasers	15
		1.3.3 Lasing in Organic Semiconductors	17
		1.3.4 Prospects for Electrically Pumped Organic Lasers 2	27
	1.4	Outline	31
2	Mat	erials and Experimental Techniques	33
	2.1	Sample Fabrication	33
		2.1.1 Materials Used in this Work	33
		2.1.2 Deposition Techniques	34
		2.1.3 Fabrication of Photonic Feedback Structures	37
	2.2	Device Characterization	41
		2.2.1 Transistor Measurement and Parameter Extraction 4	41
		2.2.2 Characterization of OLEDs	42
		2.2.3 Time-Resolved Photoluminescence Measurements 4	43
		2.2.4 Time-Resolved Pump-Probe Experiments	45
		2.2.5 Amplified Spontaneous Emission and Loss Measurements . 4	46
		2.2.6 Determination of Thermally Stimulated Luminescence 4	47
3	Org	anic Light-Emitting Diodes with Field-Effect Electron Transport 4	49
	3.1	Device Fabrication	50
	3.2	Device Operation	53
	3.3	Device Performance	56

		3.3.1	Optical and Electrical Characterization	56
	2 /	J.J.Z	Allalysis	57
	5.4 3.5	Summ	ary and Conclusions	62
	5.5	Summ		02
4	Devi 4 1	ices Bas	ed on Diperfluorohexyl-quaterthiophene Derivatives	65
	7.1	and DI	FHCO_4T	66
	42	Device	Presed on DFH-4T	69
	1.2	4 2 1	Transistors Based on DFH-4T	69
		422	DFH-4T in OLEDs with Field-Effect Electron Transport	70
	4.3	Device	es Based on DFHCO-4T.	72
		4.3.1	High Performance DFHCO-4T Transistors	72
		4.3.2	DFHCO-4T in OLEDs with Field-Effect Electron Transport	76
	4.4	Compa	arison	77
	4.5	Summ	ary and Conclusions	78
5	Con	trol of t	the Triplet Concentration in Organic Light-Emitting	
	Devi	ices		81
	5.1	Pulsed 5.1.1	Excitation of OLEDs with Field-Effect Electron Transport . Pulse-Width Dependence of Organic Light-Emitting	82
		510	Devices	82
		5.1.2	OLEDs	83
	5.2	Triplet	Excitation Scavenging in Films of Conjugated Polymers .	86
		5.2.1	Triplet Scavenging in Liquid-State Organic Dye Lasers	86
		5.2.2	Triplet Scavenging in Solid-State Organic Thin Films	88
	5.3	Summ	ary and Conclusions	94
6	Trip	let-Emi	itter Doped Organic Materials	97
	6.1	Triplet	Dynamics and Charge Carrier Trapping in Triplet-Emitter	
		Doped	Conjugated Polymers	97
		6.1.1	Spectroscopic Characterization	99
		6.1.2	Thermally Stimulated Luminescence in CNPPP Doped	
			with $Btp_2Ir(acac)$	110
	6.2	Optica	Pumping of Triplet-Emitters	111
		6.2.1	Attempts to Observe ASE Using $Btp_2Ir(acac)$	112
		6.2.2	Attempts to Observe ASE Using F5Ph and GDP16b	113
	6.3	Summ	ary and Conclusions	114
7	Valu	ie of OI	LEDs with Field-Effect Electron Transport for Lasing	117
	арр 7 1	Dotort	al of OI EDs with Field Effort Electron Transport of Lagar	11/
	/.1	Device	an of OLED's with Field-Effect Electron Transport as Laser	117
		7 1 1	Gonnguiduon	11/ 110
		7.1.1	Paduced Absorption Losses	110
		1.1.2		119

	7.2 Optically Pumped Lasing Experiments	
		7.2.1 Stimulated Emission in Alq_3 :DCM ₂
		7.2.2 Stimulated Emission in Stacks Comprising Alq ₃ :DCM ₂ 126
		7.2.3 Discussion
	7.3	Device with Integrated Field-Effect and Photonic Features 131
	7.4	Summary and Conclusions
8	Gene	eral Conclusions and Future Outlook
	8.1	Overview of the Main Results
	8.2	Suggestions for Further Research
Ref	erenc	es

List of Symbols and Abbreviations

α	(Depending on context) 1. Loss coefficient (cm^{-1})
	2. Absorption coefficient (cm^{-1})
α_{photon}	Photon loss (cm^{-1})
$A(\lambda)$	Constant related to the cross-section for spontaneous
	emission
с	(Depending on context) 1. Concentration (wt%)
	2. Speed of light in free space (299.79×10^6) (m/s)
C_{ox}	Gate dielectric capacitance per unit area (F/m ²)
δ	Density (g/cm^3)
ΔE_T	Difference in triplet energy (eV)
ΔG°	Gibbs free energy (kJ/mol)
Δr	Nuclear displacement (Å)
ΔE_{ST}	Singlet-triplet splitting (eV)
$\varepsilon(\lambda)$	Absorption spectrum
<i>E</i> _r	Relative dielectric constant
η_{ext}	External quantum efficiency (%)
η_{int}	Internal quantum efficiency (%)
$\eta_{coupling}$	Out-coupling efficiency (%)
E°	Standard cell potential (V)
Ephot	Average photon energy (eV)
<i>F</i>	Faraday constant (≈96485) (J/(V mol))
$f(\lambda)$	Photoluminescence spectrum
g	Gain coefficient (cm^{-1})
γ	Charge balance
Γ	Optical confinement factor (%)
h	Planck's constant ($\approx 6.626 \times 10^{-34}$) (Js)
Ι	(Depending on context) 1. Light intensity (W/cm ²)
	2. Current (A)
Ids	Drain to source current (A)
I_p	Pumping intensity (J/cm ²)
\dot{J}	Current density (A/cm ²)

••	
X11	
AII	

k_{ET}^F	Förster energy transfer rate (s^{-1})
$k_{FT}^{\tilde{D}}$	Dexter energy transfer rate (s^{-1})
K	Constant proportional to the orbital overlap between host and
	guest
κ	Polarization factor
l	Distance traveled in the gain medium (cm)
L	(Depending on context) 1. Sum of the van der Waals radii of
	host and guest (nm)
	2. Transistor channel length (µm)
Ldiff	Exciton diffusion length (nm)
λ	Wavelength (nm)
λ_{Bragg}	Bragg wavelength (nm)
λ_{exc}	Excitation wavelength (nm)
Λ	Modulation periodicity of a DFB resonator (nm)
т	DFB order number
М	Molecular weight (g/mol)
μ	Mobility (cm^2/Vs)
n	(Depending on context) 1. Index of refraction
	2. Overall number of electrons exchanged between an
	oxidizing and reducing agent
Noff	Effective refractive index
Nexc	Density of excited states (cm^{-3})
Nth	Exciton density at the laser threshold (cm^{-3})
NA	Avogadro's constant ($\approx 6.022 \times 10^{23}$) (mol ⁻¹)
Vi	Vibrational energy level (eV)
p	Pressure (torr)
ϕ_{PL}	Absolute photoluminescence efficiency (%)
Pmeas	Measured light power (W)
P_{tot}	Total optical power (W)
$\Psi_{molecule}$	Wavefunction of a molecule
$\Psi_{electronic}$	Electronic component of the molecular wavefunction
$\Psi_{nuclear}$	Nuclear component of the molecular wavefunction
<i>q</i>	Elementary charge ($\approx 1.602 \times 10^{-19}$) (C)
\hat{Q}	Resonator quality factor
R	Mean distance between host and guest (nm)
R_0	Effective Förster radius (nm)
r _{st}	Singlet/triplet ratio of excitons
ρ	Average distance between dopant molecules (nm)
S _i	Singlet exciton energy level (eV)
S	Subthreshold slope (V/dec)
σ_{RZ}	Exciton density per unit area in the recombination zone
	(cm^{-2})
$\sigma_{SE}(\lambda)$	Cross-section for stimulated emission (cm ²)
σ_{TT}	Cross-section for triplet-triplet absorption (cm^2)
T_i	Triplet exciton energy level (eV)

List of Symbols and Abbreviations

T _{bake}	Baking temperature (°C)
t	Thickness of the dielectric layer (nm)
t _{del}	Time delay (s)
τ	Lifetime (s)
τ_r	Radiative lifetime (s)
V_{ds}	Drain to source voltage (V)
V_{gs}	Gate to source voltage (V)
Von	Onset voltage (V)
V_{th}	Threshold voltage (V)
W	Transistor channel width (µm)
AFM	Atomic force microscopy
Ag	Silver
Al	Aluminum
Alg ₃	Tris-(8-hydroxyquinoline) aluminum
ASE	Amplified spontaneous emission
AZO	Aluminum doped zinc oxide
BARC	Bottom anti reflection coating
BCl ₃	Boron trichloride
BSP-Me	1,4-Bis(4-methylstyryl)benzene
Btp ₂ Ir(acac)	Bis $(2-(2')$ benzothienvl)pyridinato-N.C ^{3'})(acetylacetonate)-
12 ()	iridium(III)
CAMFR	Cavity modelling framework
CCD	Charge coupled device
CH ₂	Methylene
CNPPP	2-[(6-cyano-6-methylheptyloxy)-1,4-phenylene] copolymer
COT	1.3.5.7-cyclooctatetraene
Cr	Chromium
CW	Continuous-wave
C_4F_8	Octafluorocyclobutane
DBR	distributed Bragg reflector
DCM	4-(dicvanomethylene)-2-methyl-6-[(4-dimethylaninostyryl)-
	4H-pyran
DCM ₂	4-(dicyanomethylene)-2-methyl-6-(julolindin-4-yl-vinyl)-
-	4H-pyran
DF	Delayed fluorescence
DFB	Distributed feedback
DFH-4T	α, ω -diperfluorohexyl-quaterthiophene
DFHCO-4T	5,5"'-diperfluorohexylcarbonyl-2,2':5',2":5",2"'-quaterthi-
	ophene
2D	Two-dimensional
DOS	Density of states
EBL	Electron beam lithography
EL	Electroluminescence
ETL	Electron-transporting layer
Fe	Iron

FWHM	Full-width-half-maximum
F ₁₆ CuPc	Copper hexadecafluorophthalocyanine
He	Helium
НОМО	Highest occupied molecular orbital
HSQ	Hydrogen silsesquioxane
HTL	Hole-transporting layer
H ₂ O	Water
IC	Internal conversion
ICP-RIE	Inductively coupled plasma reactive ion etching
IL	Interference lithography
ISC	Intersystem crossing
ITO	Indium tin oxide
LEOFET	Light-emitting organic field-effect transistor
LiF	Lithium fluoride
LPPP	Ladder-type poly(para-phenylene)
LUMO	Lowest unoccupied molecular orbital
MEH-PPV	Poly(2-methoxy-5-(2'-ethyl-hexyloxy)-1.4-phenylene-
	vinvlene)
MeLPPP	Methyl-substituted ladder-type poly(para-phenylene)
Mg	Magnesium
MTR	Multiple trapping and release model
N ₂	Nitrogen
OLED	Organic light-emitting diode
OMA	Optical multichannel analyzer
OMBD	Organic molecular beam deposition
OTFT	Organic thin film transistor
02	Oxygen
ΡαΜS	Poly- <i>a</i> -methylstyrene
PF	Prompt fluorescence
PF2/6	Poly(9.9-di(ethylhexyl)fluorene)
Ph	Phosphorescence
PL	Photoluminescence
PMMA	Poly(methyl metacrylate)
PmPV-co-DOctOPV	Poly(<i>m</i> -phenylenevinylene- <i>co</i> -2,5-dioctoxy-p-
	phenylenevinylene)
PPV	Poly(phenylene vinylene)
PS	Polystyrene
PTAA	Poly(triarylamine)
PTCDA	3 4 9 10 pervlenetetracarboxylic dianhydride
PTCDI-C13H27	N.N'-ditridecylpervlene-3.4.9.10-tetracarboxylic diimide
SEM	Scanning electron microscopy
SEP	Standard electrode potential
SF	Superfluorescence
SHG	Second harmonic generation
SiO2	Silicon dioxide

List of Symbols and Abbreviations

SMU	Source-measure unit
spiro-SBCz	2,7-bis[4-(N-carbazole)phenylvinyl]-9,9'-spirobifluorene
Ta_2O_5	Tantalum pentoxide
TCO	Transparent conductive oxides
TE	Transverse electric
THF	Tetrahydrofuran
Ti	Titanium
TiO ₂	Titanium dioxide
TMAH	Tetramethylammonium hydroxide
TSL	Thermally stimulated luminescence
UV	Ultra violet
VR	Vibronic relaxation
Yb	Ytterbium
Zn	Zinc