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Light Emitting Diodes
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History of LEDs
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Origins of GaAs and AlGaAs infrared and red LEDs
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Origins of GaP red and green LEDs
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Early history of GaN blue light emitters
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History of blue, green, and white LEDs based on GaInN
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History of AlGaInP visible LEDs
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2
Radiative and nonradiative recombination
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Radiative electron-hole recombination

R = −
dn
dt

= −
dp
dt

= B n p

n = n0 + ∆n p = p0 + ∆pand

n free electron concentration

n0 equilibrium free electron concentration

∆n excess electron concentration

R recombination rate per cm3 per s

B bimolecular recombination coefficient
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Carrier decay (low excitation)

∆n(t) = ∆n0 e− B(n0 + p0)t

( )[ ] 1
00

−+=τ pnB

τ carrier lifetime

B bimolecular recombination coefficient
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Radiative recombination for low-level excitation
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Recombination lifetime: Theory versus experiment 
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Nonradiative recombination in the bulk
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… dark spots are clusters of defects
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Shockley-Read recombination

RSR =
p0 ∆n + n0 ∆p + ∆n∆p
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Mid-gap levels are effective non-radiative recombination centers
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Nonradiative recombination at surfaces
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Surface recombination

n(x) = n0 + ∆n(x) = n0 + ∆n∞ 1 −
τnS exp (−x / Ln)

Ln + τnS
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

S surface recombination velocity 

x distance from semiconductor surface

Ln carrier diffusion length

GaAs S =  106 cm/s
GaP S =  106 cm/s
InP S =  103 cm/s
Si S =  101 cm/s

Surface recombination velocities of some 
semiconductors
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… making surface recombination “visible”
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Competition between radiative and nonradiative 
recombination

ηint =
τr

−1

τr
−1 + τnr

−1

τ−1 = τr
−1 + τnr

−1

τ carrier lifetime

τnr nonradiative carrier lifetime

τr radiative carrier lifetime

ηint internal quantum efficiency
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Shockley equation for p-n junction diodes

I = e A
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τp

ni
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4
LED basics: Electrical properties
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P-n junction band diagram
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Diode current-voltage characteristics
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Forward voltage
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Deviations from ideal I-V characteristic

I = Is eeV (nideal kT)

I −
(V − I Rs)

Rp
= Is ee (V − I Rs ) (nideal kT )

nideal ideality factor

Rs parasitic series resistance

Rp parasitic parallel resistance
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Non-ideal I-V characteristics
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Method to determine series resistance 
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Carrier distribution in pn homo- and heterojunctions
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Carrier overflow in double heterostructures
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Electron blocking layers
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Diode voltage

V =   h ν / e ≈ Eg / e

V =
Eg
e

+ I Rs +
∆EC − E0

e
+

∆EV − E0
e

I Rs resistive loss

∆EC – E0 electron energy loss upon injection into quantum well

∆EV – E0 hole energy loss upon injection into quantum well
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Temperature dependence of diode voltage
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Constant current and constant voltage DC drive 
circuits
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Internal, extraction, external, and power efficiency

ηint =
# of photons emitted from active region per second

# of electrons injected into LED per second
=

Pint / (h ν)
I / e

ηextraction =
# of photons emitted into free space per second

# of photons emitted from active region per second

ηext =
# of photons emitted into free space per sec.

# of electrons injected into LED per sec.
=

P / (hν)
I / e

= ηint ηextraction

VI
P

=ηpower

5
LED basics: Optical properties
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Emission spectrum
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I(E) ∝ E − Eg e−E / (k T)

Maximum emission intensity

E = Eg + 1
2 k T

∆E = 1.8 k T

I(E) emission spectrum
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The light escape cone
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Light escape in planar LEDs

Pescape
Psource

≈
1
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φc critical angle of total internal reflection

Problem: Only small fraction of light can escape from semiconductor
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The lambertian emission pattern

Iair =
Psource
4π r2

n air
2

n s
2 cos Φ

Iair emission intensity in air

Φ angle with respect to surface normal
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The effect of epoxy
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Double heterostructures

6
High internal efficiency LED designs
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Homostructures versus double heterostructures
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Efficiency versus active layer thickness
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Doping of active region
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Non-radiative recombination and lifetime
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Lattice matching
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Absorption of below-bandgap light in semiconductors

7
High extraction efficiency structures



© E. F. Schubert – all rights reserved 62

Double heterostructures are optically transparent



© E. F. Schubert – all rights reserved 63

Shaping of LED dies
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LED die structures with high extraction efficiency
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Rectangular parallelepiped versus cylinder 
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Truncated inverted pyramid (TIP) LED
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Effect of current spreading layer
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Current spreading layer
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Theory of current spreading
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Theory of current spreading

Current spreading length

Ls =
t nideal k T

ρ J0 e

t = ρ Ls
2 J0

e
nideal kT

t =  thickness of current spreading layer
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Current crowding in LEDs on insulating substrates 
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J(x) = J(0) exp − x / Ls( )
s

  
Ls = (ρc + ρptp) tn / ρn

Ls current spreading 
length

Theory of current crowding in LEDs on insulating 
substrates 
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Cross-shaped contacts and other contact geometries 
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Transparent substrate technology
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Small forward-voltage penalty for TS technology
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AS versus TS technology



© E. F. Schubert – all rights reserved 79

R =
(n s − n air )2

(n s + n air )2

Dielectric material Refractive 
index

Transparency 
range

SiO2 (Silica) 1.45 > 0.15 µm

Al2O3 (Alumina) 1.76 > 0.15 µm

TiO2 (Titania) 2.50 > 0.35 µm

Si3N4 (Silicon nitride) 2.00 > 0.25 µm

ZnS   (Zinc sulfide) 2.29 > 0.34 µm

CaF2
(Calcium fluoride)

1.43 > 0.12 µm

Table 7.1. Refractive index and transparency range of common dielectrics 
suitable as anti-reflection (AR) coatings (after Palik, 1998)
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Epoxy dome
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Distributed Bragg reflectors 

tl,h = λl,h / 4 = λ 0 / (4 n l,h )

… valid for normal incidence 

tl,h = λl,h / ( 4 cosΘl,h ) = λ0 / ( 4 n l,h cosΘ l,h )

… valid for oblique incidence 
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LED with DBR
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> 1106 nm 2.05 3.51 1.46 1300 nmSiO2 / Si

> 870 nm 0.57 3.54 2.97 900 nmAlAs / GaAs

> 560 nm 0.31 3.46 3.15 570 nmAl0.5In0.5P / (Al0.5Ga0.5)0.5In0.5P

> 576 nm 0.34 3.47 3.13 590 nmAl0.5In0.5P / (Al0.4Ga0.6)0.5In0.5P

> 592 nm 0.373.453.08 615 nmAl0.5In0.5P / (Al0.3Ga0.7)0.5In0.5P 

> 649 nm (lossy) 0.87 3.74 3.13 590 nmAl0.5In0.5P / Ga0.5In0.5P

> 870 nm (lossy) 0.87 3.90 3.13 590 nmAl0.5In0.5P / GaAs 

Transparency 
range

Bragg 
wavelength

Material system
ln hn n∆

Table 7.2. Properties of distributed Bragg reflector (DBR) materials used for 
visible and infrared LED applications. The DBRs marked as ‘lossy’ are 
absorbing at the Bragg wavelength (data after Adachi, 1990; Adachi et al., 
1994; Kish and Fletcher, 1997; Babic et al., 1999; Palik, 1998).



© E. F. Schubert – all rights reserved 85

The GaAsP, GaP, GaAsP:N and GaP:N  material system 

8
Visible-spectrum LEDs
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Summary: The GaAsP, GaP, GaAsP:N and GaP:N material 
system has the fundamental problem of lattice mismatch and is 
not suitable for high-power LEDs
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The AlGaAs / GaAs material system
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The AlGaInP / GaAs material system 



© E. F. Schubert – all rights reserved 90



© E. F. Schubert – all rights reserved 91

The GaInN material system a

Summary: The GaInN material system is suited for UV, violet, 
blue, cyan and green high-power LEDs. Efficiency decreases in 
the green spectral range.
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General characteristics of high-brightness LEDs
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Note: The lack of high-power LEDs at 550 nm is sometimes 
referred to as the “green gap”.
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Comparison: Light bulb versus LED

… 10 to 20 more years are needed to compete with light bulbs
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Optical characteristics of high-brightness LEDs 
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… AlGaInP is more mature than GaInN

Light output power (LOP) versus current 
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Electrical characteristics of high-brightness 
LEDs 

… AlGaInP is more mature than GaInN
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Resonant-cavity light-emitting diodes
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21 RR <<

RCLED design rules

First design rule

Second design rule

Use shortest possible cavity length Lcav. Typically Lcav = λ / 2

Third design rule

( )1active 12 RL −<αξ

(Light-exit mirror should have lower reflectivity than back mirror)

(Absorption loss in active region should be smaller than the 
mirror loss of the light-exit mirror)
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Cavity modes
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VCSEL versus RCLED
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Cavity mode and RCLED emission
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RCLED spectrum
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RCLED performance 
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Reduced material dispersion with RCLEDs
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650 nm RCLED for plastic optical fiber communications
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Commercial RCLEDs
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RCLEDs for plastic optical fiber (POF) communication
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11
Human vision

Cones: Color sensitive
Rods:   Color-insensitive
Color perception depends on light level:
• Scotopic vision regime: Low-light-level-vision regime
• Photopic vision regime: High-light-level-vision regime
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Sensitivity of cones and rods
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Eye sensitivity function and luminous efficacy

Visible range:
390 – 720 nm

Among LEDs with 
same power output, 
green LEDs are the 
brightest.
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Photopic and scotopic vision regime

There are several 
standards:

Photopic:
CIE 1931
CIE 1978

Scotopic:
CIE 1951



© E. F. Schubert – all rights reserved 114

Luminous flux (Unit: lm)

∫λ λλλ=Φ d)()(
W
lm683lum PV

Luminous efficacy (Unit: lm / W)

( )∫∫ λλ
λλ⎟

⎠
⎞

⎜
⎝
⎛ λλλ=Φ= d)(d)()(

W
lm683/efficacy Luminous lum PPVP

Luminous efficiency (Unit: lm / W)

)(/efficiencyLuminous lum IVΦ=

Caution:
Some call the “luminous efficacy” the “luminous efficacy of radiation”

Caution:
Some call the “luminous efficiency” the “luminous efficacy of the source”
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Color matching functions

The color matching functions are approximately equal to the spectral 
sensitivity of the cones

Caution:
There are different standards for the color matching functions
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Color matching functions and chromaticity diagram 

λλλ= ∫λ d)()( PxX

λλλ= ∫λ d)()( PyY

λλλ= ∫λ d)()( PzZ

X, Y, and Z are tristimulus values

x =
X

X + Y + Z
y =

Y
X + Y + Z

Chromaticity coordinates 

z chromaticity coordinate not needed, since  x + y + z = 1
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Chromaticity diagram

Strictly monochromatic 
sources are on perimeter

White light is in center
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MacAdam ellipses
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Uniform u’ v’ chromaticity diagram

Color difference is 
proportional to 
geometric distance 
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Color purity and dominant wavelength

Caution:
Peak wavelength and dominant wavelength can be different. 
Peak wavelength is a quantity used in physics and optics
Dominant wavelength is used by in human vision
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LEDs in the chromaticity diagram

Note:
Red and blue LEDs are near perimeter
Green LEDs are not at perimeter but are shifted towards center 
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White illuminants 

Caution: 
There are many ways to create white light
Sunlight is not a good way to create white light. Why?
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Color temperature 

Planckian spectrum or black-body radiation spectrum.
Objects of “low” temperature glow in the red
Objects of “higher” temperature glow yellow or white
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Color mixing

• Color gamut
• Gamut of Red-Green-Blue light source has triangular shape 
• Area of gamut matters for displays, color printers, etc.
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Example of color mixing

• Color gamut
• Gamut size increases with the number of light sources
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Color rendering index (CRI)
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Color rendering index (CRI) 

The reference objects are illuminated with reference light source.
As a result, object will have a certain color.

The reference objects are then illuminated with test light source
As a result, object will have a certain, but different, color.

The CRI is a measure of the sum of the differences in color.

If color difference is zero, then CRI = 100

If color difference is > zero, then CRI < 100

Some applications require high and very high CRI. Examples ?

Some applications require low CRI. Examples ?

For some applications, CRI is irrelevant. Examples ?

Caution:
CRI depends on the selection of the reference light source.
Recommended for reference light source: Planckian radiator.
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Table 11.1. Color rendering indices (CRI) of different light sources.

− 50 Green monochromatic light 

10 – 40  Dichromatic white light LEDs 

20 Hg vapor light 

40 Na vapor light 

50 Hg vapor light coated with phosphor 

60 – 85  Trichromatic white light LEDs 

60 – 85  Phosphor-based white LEDs

60 – 85  Fluorescent light 

100 W filament incandescent light

100 Quartz halogen W filament light

100 Sunlight 

Color rendering index Light source 
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Generation of white light 

12

White-light LEDs
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Dichromatic white light sources

The most efficient way to create white light is be a dichromatic white light 
source.

Luminous efficacy > 400 lm / W. 

CRI is low.

Suitable for low-CRI sources.

Increasing the CRI is possible, however the luminous efficacy will decrease.

There is a fundamental trade-off between CRI and luminous efficacy.
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Creation of white light

• Dichromatic.
• Trichromatic
• Blue source + converter
• UV source + converter

• What about luminous efficacy ?

• What about CRI ?

Converters

• There are different types of converters: Dyes, polymers, phosphors, and 
semiconductors.
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Wavelength converter materials – phosphors
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Wavelength converter materials – dyes
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Wavelength converter materials – semiconductors
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White LEDs based on phosphor converters 
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White LEDs based on semiconductor converters

(PRS-LED)
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Calculation of power ratio of PRS-LED



© E. F. Schubert – all rights reserved 141

Calculation of luminous performance of PRS-LED
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Spectrum of PRS-LED


