
Architectural Styles and
Patterns

Wednesday 13 February 13

Architectural Patterns &
Styles

• Established
Solutions

• Common
vocabulary

• Document

• Reason over quality

• Philosophy (context-
problem-solution vs
components-
connections)

• Granularity (vs
Design patterns)

• Categorization

Consensus Controversy

Wednesday 13 February 13

Architectural Patterns
(Wikipedia)

• Presentation-
abstraction-
control

• Three-tier

• Pipeline

• Implicit Invocation

• Blackboard

• Peer-to-peer

• Service-oriented
architecture

• Naked Objects

• Model-View
Controller

Wednesday 13 February 13

Architectural Patterns
(Shaw & Garland)

• Dataflow Systems -- Batch, Pipes and Filters

• Call-and-return systems -- Main program and
subroutines, OO systems, Hierarchical Layers

• Independent components -- Communicating
processes, Event systems

• Virtual Machines -- Interpreters, Rule-based systems

• Data-Centered Systems -- Databases, Hypertext
systems Blackboards

Wednesday 13 February 13

Elements of Architecture
(Shaw & Garland)

Components Connectors

• Clients
• Servers
• Filters
• Layers
• Databases

• Procedure calls
• Events broadcast
• Database protocols
• Pipes

- What are the structural patterns permitted?
- What is the underlying computational model?
- What are the invariants of the style?
- What are examples of its use?
- What are the tradeoffs?
- ...

BUT ...

Wednesday 13 February 13

Architectural Patterns
(Baas, Clements & Kazman)

• Dataflow Systems -- Batch, Pipes and Filters

• Data-Centered -- Repository, Blackboard

• Virtual machine -- Interpreter, Rule-based
System

• Independent Components

• Call/Return.

Wednesday 13 February 13

Element
Types

Elements of Architecture
(Baas, Clements & Kazman)

Topological
Layout

Semantic
Constraints

Interaction
Mechanisms

Wednesday 13 February 13

Architectural views

Wednesday 13 February 13

Architectural Patterns
(Avgeriou & Zdun)

• Layered

• Data-flow

• Data-centered

• Adaptation

• Language extension

• User Interaction

• Component
interaction

• Distribution

Structured around the concept of views

Wednesday 13 February 13

Viewpoint, views and
patterns

Feb-2-12 Jonckers Viviane 12

Viewpoint, views and patterns
(Avgeriou & Zdun)

Wednesday 13 February 13

Patterns and views
 Architectural viewpoint: types of elements and
relationships and other meta-information
 Architectural view: an instance of a viewpoint for a
particular system
 Architectural pattern: defines how types of elements and
relationships work together to solve a problem

 A particular system implements one or more architectural
patterns
 An architectural pattern is classified in a particular view when
the pattern implementation shows up in that view
 Patterns have one primary view, the most suitable -
sometimes patterns show up in more that one view

Wednesday 13 February 13

Layered, data flow and
data centered

Wednesday 13 February 13

Feb-2-12 Jonckers Viviane 14

Overview 1: layered, data flow, data-centered

Layered view

Data-centered view

Data flow view

Wednesday 13 February 13

Layers

Feb-2-12 Jonckers Viviane 15

Layers

Wednesday 13 February 13

Layers
What and Why

 High-level components depend on low-level components to do their job
 Decoupling the components is crucial to support modifiability,
portability and reusability
 Components also require horizontal structuring but that is orthogonal to
the vertical layering
 Layer n provides a set of services to layer n+1 and uses the services of
layer n-1
 Between adjacent layers a clearly defined interface is provided that
remains stable, implementation details can change
 Within one layer components work on the same level of abstraction
and interact

Wednesday 13 February 13

Layers
variations and relations

 In the pure form of the pattern, layers should not be by-passed
 Two adjacent layers can be considered as a client-server pair
 A common use is the three tier architecture with a back-end server
(often a data base), a business logic layer, and a presentation layer
 Microkernel has also 3 layers: external servers, the microkernel, and
internal servers
 Presentation-abstraction-control also enforces layers: a top layer
with one agent, several intermediate layers with numerous agents and
one bottom layer with the "leaf" agents
 In indirection layer a special layer hides the details of a subsystem
and
provides acces to its services

Wednesday 13 February 13

Layers
uses and examples

• Layered communication (OSI, TCP/IP)

• Hardware interface libraries

• Information systems (three-tiers)

• In combination with Client-Server
(Distribute layers)

Wednesday 13 February 13

Indirection Layer

Feb-2-12 Jonckers Viviane 19

Indirection Layer

Wednesday 13 February 13

Indirection layer
what and why

 A sub-system should be accessed by one or more components but
direct access to the sub-system is problematic
 Appears at different levels of scale: between 2 components in one
environment (for example to avoid hard wiring), between components
in different languages, between components in different systems (e.g.
when a legacy system is accessed)
 The indirection layer wraps all accesses to the sub-system and
should not be by-passed
 The indirection layer can perform additional tasks while deviating
invocations such as converting or tracing the invocations

Wednesday 13 February 13

Indirection Layer
variations and relations

 Indirection layer can be integrated in the subsystem (as in virtual
machine) or be an independent entity (as in the adapter of facade design
patterns). The pattern can therefore be through of as either a 2- layer or a
3-layer pattern.
 Indirection layer is a foundation for the architectures of virtual
machine, interpreter, and rule-based system. These patterns provide an
execution engine for a language defined on some platform. They
introduce an indirection layer between the instructions of that language
and the instructions of the platform.
 Reflection can also be implemented with indirection layer. Indirection
layer can capture all invocations of the components in the system and
record the current structure and behaviour of the system for later use in
the reflection API

Wednesday 13 February 13

Pipes and Filters

Feb-2-12 Jonckers Viviane 22

Pipes and filters

Wednesday 13 February 13

Pipes and Filters
what and why

 Consider a task that can be sub-divided into a number of smaller tasks
which can be defined as a series of independent computations
 With the pipes and filter pattern each sub-task is realized as an
independent component, named filter
 Filters are connected flexibly using pipes, they may specify the type of
input they expect and the type of output they produce but they are never
aware of the identity of the adjacent filters
 Each pipe realizes a stream of data between two adjacent components
 Filters consume and produce data incrementally, pipes act as buffers
between adjacent filters
 Forks, joins and feedback loops are allowed, the filters can potentially
work in parallel

Wednesday 13 February 13

Pipes and Filters
variations and relations

 Pipelines restrict topology to a linear sequence of filters
 Bounded pipes restrict the amount of data in a pipe
 Batch-sequential is a degenerated case where each filter processes
all of its input as a single entity, during each step a batch of data is
processed and sent as a whole to the next step
 The pure form of pipes and filters entails that only adjacent filters can
share data through their pipe. More relaxed forms of pipes and filters can
be combined with data-centered architectures like repository and
blackboard to allow data sharing between non-adjacent filters
 Pipes and filters can also be used for communication between layers
if data flows through layers are needed

Wednesday 13 February 13

Pipes and Filters
examples and uses

• THE UNIX WAY

• Stream programming

• Compilers

• Signal and image processors

• Document management systems

Wednesday 13 February 13

Shared Repository

Feb-2-12 Jonckers Viviane 26

Shared Repository

Wednesday 13 February 13

Shared Repositories
what and why

 When data needs to be shared between components, passing the
data along with the invocation might be inefficient for large data sets
 Long term persistency of data requires a centralized data
management
 In the shared repository pattern one component is used as a central
data store and accesses by other independent components
 This shared repository offers suitable means for accessing the data,
I.e. a query language or a query API
 The shared repository must be scalable and must ensure data
consistency. It must handle problems of resource contention for example
by locking data.
 The shared repository might also offer additional services such as
security and transaction management

Wednesday 13 February 13

Shared Repository
variations and relations

 Shared repository can be used in pipes and filter to
allow for data sharing between non-adjacent filters
 A shared repository where all the components are
independent can be considered as client-server with the
data storage playing the server part.
 Similarly it can be considered a system of 2 layers
where higher level clients access the lower level services of
the shared repository
 Active repository and blackboard are common variants

Wednesday 13 February 13

Active Repository
what and why

 A system needs a shared repository where clients need to be
informed of specific events in the shared repository such as changes
of data or access of data
 Polling the shared repository does not work because it does not
deliver information timely or inflicts too much overhead on system
performance
 Active repository maintains a registry of clients and informs
subscribers of specific events that happen in the shared repository
through a notification mechanism
 The notification can be realised using ordinary explicit invocations
but in most cases implicit invocations such as publish-subscribe are
used

Wednesday 13 February 13

Blackboard

Feb-2-12 Jonckers Viviane 30

Blackboard

Wednesday 13 February 13

Blackboard
what and why

 When a shared repository is used in an immature domain in which no
deterministic approach to a solution is known or feasible (image
recognition, speech recognition)
 In a blackboard architecture the complex task is divided in smaller
sub- tasks for which a solution is known and the blackboard is a shared
repository that uses results of its clients for heuristic computation
 Each client can access the blackboard to see if new inputs are
presented for further processing and to deliver new partial results after
processing
 A control component monitors the blackboard and coordinates the
clients according to the state of the blackboard (opportunistic reasoning

Wednesday 13 February 13

Adaptation and language
extension

Wednesday 13 February 13

Feb-2-12 Jonckers Viviane 32

Overview 2: adaptation and language extension view

Wednesday 13 February 13

Microkernel

Feb-2-12 Jonckers Viviane 33

Microkernel

Wednesday 13 February 13

Microkernel
what and why

 Consider a system family where different versions of a system must
be supported but the whole family should be realized with a common
architecture to ease maintenance and foster reuse
 A microkernel realizes services that all systems needs AND provides
a plug-and-play infrastructure for the system specific services
 Internal servers are used to realize version specific services and they
are accessed through the microkernel
 External servers offer API's and other user interfaces to clients and
they are used by clients to access the functionality of the system
 The microkernel pattern promotes flexible architectures which allow
systems to adapt successfully

Wednesday 13 February 13

Microkernel
variations and relations

 Microkernels are often structured in layers: the bottom layer
implements an abstraction of the system platform and is in fact an
indirection layer
 A microkernel introduces an indirection that can be used in client-
server configurations for reasons of security or modifiability because all
communication between clients and servers is mediated through the
microkernel
 To develop distributed microkernel architectures a combination with
the broker pattern can help to hide communication details between
clients that request services and servers that implement them
 Reflection can be useful to support the plug-and-play of
components, i.e. find out which components are currently composed in
which way

Wednesday 13 February 13

Microkernels
uses and examples

• Operating systems (*)

• Distributed operating systems

• IDEs

• Server architectures

• Software product lines

• Games

Wednesday 13 February 13

Reflection

Feb-2-12 Jonckers Viviane 37

Reflection

Wednesday 13 February 13

Reflection
why and what

 Software systems constantly evolve over time and coping
with unanticipated change is also required
 In a reflection architecture all structural and behavioral
aspects of a system are stored in meta- objects and separated
from the application objects
 Application objects can query the meta-objects to
execute their functionality and the meta-objects can
change at any point in time

Wednesday 13 February 13

Reflection
variants and relations

 A reflection pattern is typically organized in 2 layers: a
meta level and a base level
 Reflection is used in the context of aspect-oriented
composition frameworks, i.e. the introspection option
 Indirection layer is a more general pattern than reflection.
It can be used to build a reflection infrastructure
 In cases where an adaptable framework is needed to
accommodate future services, the interceptor pattern is
appropriate

Wednesday 13 February 13

Reflection
uses and examples

 JAVA reflection API
 CLOS meta-object protocol
 Smalltalk meta-objects
 Integrated Development Environments
 Adaptive Object-Model architectures
 Self-healing systems

Wednesday 13 February 13

Interceptor

Feb-2-12 Jonckers Viviane 41

Interceptor

Wednesday 13 February 13

Interceptor
why and what

 A framework offers reusable services to applications that extend it.
These services need to be updated as the application domain matures.
The framework developer cannot anticipate all future updates. The
application developer can not make changes to the framework
 An interceptor is a mechanism for transparently updating the
services offered by a framework
 Application developers can register with the framework any number
of interceptors that implement new services
 The framework provides the application with a means to introspect
on the frameworks behavior

Wednesday 13 February 13

Interceptor
variants and relations

 The interceptor pattern can be realized with an indirection
layer or one of its variants. Incoming events are then re-routed
through the indirection layers that consists of several interceptors
before they are dispatched to the intended receiver
 Interceptor can use reflection to query the framework and
provide the necessary information to the interceptors
 A variant in the context of aspect-oriented composition is a
message interceptor
 A variant in the context of middleware architectures is a
invocation interceptor

Wednesday 13 February 13

Interpreter
why and what

 Interpret at run-time a program or script offered in some
language syntax and grammar
 An interpreter provides both parsing facilities and a run-
time environment
 The programs or scripts are portable to different
realizations of the interpreter
 Some interpreters use optimizations such as on-the-fly
byte- code compilers thus realizing elements of a virtual
machine

Wednesday 13 February 13

Virtual Machine
why and what

 An efficient execution environment for some programming language is
needed
 Virtual machine defines a simple machine architecture on which not
machine code but an intermediate form called byte-code can be executed
 A program is compiled into that byte-code and the executed on the
virtual machine
 The virtual machine can be realized on different platforms so that the
byte-code becomes portable between such platforms
 The virtual machine redirects invocations from a byte-code layer into
an implementation layer for the commands of the byte-code

Wednesday 13 February 13

Intermezzo

Wednesday 13 February 13

The architecture of
Quake 3

• Source code released under GPL2 in 2005 (Git https://github.com/

id-Software/Quake-III-Arena.git)

• Circa 350KLoCs

• 70%-30% split of code between Engine (quake3.exe) and
associated tooling (Editor, Preprocessors, LCC)

http://fabiensanglard.net/
Wednesday 13 February 13

https://github.com/id-Software/Quake-III-Arena.git
https://github.com/id-Software/Quake-III-Arena.git
https://github.com/id-Software/Quake-III-Arena.git
https://github.com/id-Software/Quake-III-Arena.git
http://fabiensanglard.net
http://fabiensanglard.net

The architecture of
Quake 3

Wednesday 13 February 13

The architecture of
Quake 3

Wednesday 13 February 13

Rule-based System
why and what

 Solve problems that are better formulated as a set of declarative if-
then rules or constraints than in an imperative programming style
 A rule-based systems consists of 3 things: a rule-base (a set of
condition-action pairs for a generic problem in a given application
domain), a working memory (a set of data about the problem at hand),
and an engine that acts on them
 The engine matches facts to rules, does conflict resolution when
more than one rule has its conditions fulfilled, executes the selected rule
and by doing so asserts new facts or changes existing facts in the
working memory which in turn will trigger other rules

Wednesday 13 February 13

User interaction

Wednesday 13 February 13

Model View Control

Feb-2-12 Jonckers Viviane 49

Model-view-control

Wednesday 13 February 13

Model View Control
why and what

 A system may offer multiple user-interfaces, each user-interface
depicts all or part of some application data, changes to the data should
be automatically reflected to all the user-interfaces and the user-
interfaces must be easily modified without affection the application
logic
 The system is divide in three different parts: the model
encapsulates application data and the logic that manipulates the data,
one or multiple views that display a specific portion of the data to the
user, a controller associated with each view that receives user input
and translates it to a request for the model
 Views and controllers constitute the user interface, users interact
strictly through the views and their controllers

Wednesday 13 February 13

Presentation
Abstraction Control

Feb-2-12 Jonckers Viviane 51

Presentation-Abstraction-Control

Wednesday 13 February 13

Presentation Abstraction Control
why and what

 An interactive system may offer diverse functionalities that need to be
presented to the user through a coherent and consistent user interface. The
various functionalities require a custom user-interface and also need to interact
with other functionalities to achieve a greater goal
 The system is divided into a tree-like hierarchy of agents. The leave agents
are responsible for specific functionalities and offer a specific user-interface,
middle-layer agents combine the functionalities of lower-level agents and at
the top of the tree there is one agent that orchestrates the middle-layer agents
to offer the collective functionality.
 Each agent is comprised of three parts: a Presentation takes care of the
user- interface, an Abstraction maintains the application data and the logic that
modifies it, a Control mediates between Presentation and Abstraction and
handles all communication with the Controls of other agents

Wednesday 13 February 13

Basic component
Interaction

Wednesday 13 February 13

Feb-2-12 Jonckers Viviane 53

Patterns for basic component interaction

Wednesday 13 February 13

Explicit Invocation

Feb-2-12 Jonckers Viviane 56

Explicit Invocation

Wednesday 13 February 13

Explicit Invocation
why and what

 Client needs to invoke a service defined in another component or
supplier
 An explicit invocation allows the client to invoke services on a
supplier when the client knows the exact location, name and
parameters of the service when initiating the invocation
 The explicit invocation mechanism performs the invocation and
delivers the result to the client
 Two main variant are synchronous explicit invocation (the client
blocks and waits for the result) and asynchronous explicit invocation
(the client continues with its work and the result is delivered when it
is computed

Wednesday 13 February 13

Explicit Invocation
variants and relation

 Four patterns describe different variants for asynchronous
invocation in distributed systems :
– Fire and Forget: best effort semantics, does not convey results or
acknowledgements
– Syn with Server: server sends an acknowledgement back to the client as
soon as the operation invocation arrives on the server side, does not convey
results
– Poll Object: clients poll or query for the results
– Result Callback: server notifies the client that the result is ready
 These patterns can be hard-coded (optimization) or a broker
that provides a reusable implementation of one such pattern can
be used

Wednesday 13 February 13

Implicit Invocation
why and what

 A client needs to invoke a service defined in another component and
the client must be decoupled from the supplier (client does not know the supplier
that will serve the invocation, client does not need the result right away, client does not
initiate the invocation, supplier is not ready to reply until some condition is met, clients
may be added and removed dynamically, client does not know whether supplier is up
and running or down, client and supplier are part of dissimilar systems and thus the
invocation must be transformed, queued, or otherwise manipulated during delivery)

 In the implicit invocation pattern the invocation is indirect through a
special mechanism such as Publish-Subscribe, Broadcast or Message
Queueing that decouples clients from suppliers

Wednesday 13 February 13

Implicit Invocation
variants and relation

 The synchronization between Model, View and Control in the MVC pattern is an example of
implicit invocation
 Implicit invocation can be synchronous or asynchronous but are most often asynchronous -
the patterns for result handling apply as well
 In explicit invocation the invocation is deterministic from client to supplier, in implicit
invocation the trigger may happens randomly (e.g. through an event)
 Same as in explicit invocation as broker can be introduced to hide the network details and
allow the components to contain application logic only
 A broadcast mechanism broadcasts an invocation (over a network or a software bus)
because the location of the invocation receiver is not known. Used for example in peer-to-peer
systems for looking up initial references.
 The Message Queuing pattern queues invocations and results to increase delivery reliability
and to handle temporal outages of the supplier

Wednesday 13 February 13

Component Interaction
and Distribution

Wednesday 13 February 13

Feb-2-12 Jonckers Viviane 59

Patterns for component interaction and
distribution

Wednesday 13 February 13

Client-Server
why and what

 Two components need to communicate, they are independent,
running in different process spaces or distributed in different
machines
 The two components are not equal peers, one is initiating the
communication asking for a service that the other provides
 Multiple components may ask the same service from the second
component; this component must be able to cope with numerous
request
 The Client-Server pattern distinguishes two types of components:
 – The client request information or services from a server; the client needs to
know how to access the server and the server';s interface
 – The server responds to the requests of the clients, it does not know the client
before the interaction takes place

Wednesday 13 February 13

Client-Server
variants and relations

 Both client and server must implement tasks such as security and
transaction management adding complexity to simple explicit invocation
 Sophisticated, distributed Client-Server architectures use the Broker
pattern to make the complexity of distributed communication manageable
 Arbitrary complex architectures can be built by introducing multiple client-
server relationships: n-tier architectures
 3-tier architecture has a
– Client tier, responsible for presenting data, receiving user input, and controlling the
user interface
– Application logic tier responsible for implementing the application logic
– Back-end tier responsible for back-end services such as data-storage or access to a
legacy system
 Client-Server and Layer combine well: the tiers in an n-tier system
can be perceived as layers but also both the client and the server can
be individually layered (OSI)
 Shared Repository and Blackboard can be perceived as Client-
Server

Wednesday 13 February 13

3-tier Client-Server

Feb-2-12 Jonckers Viviane 62

3-tier client-server

Wednesday 13 February 13

Peer-to-Peer
why and what

 Two components need to communicate, they are
independent, running in different process spaces or distributed
in different machines
 The two components are equal peers, they both can
provide and consume services from each other
 In the Peer-to-Peer pattern each component has equal
responsibilities, it may act both as a client and as a server
 Peer-to-Peer networks consist of a dynamic number of
components, components know how to access the network
and in order to join they must get an initial reference to this
network (through a bootstrapping mechanism such a providing
public lists of dedicated peers or broadcast messages in the
network announcing peers

Wednesday 13 February 13

Publish-Subscribe

Feb-2-12 Jonckers Viviane 66

Publish-Subscribe

Wednesday 13 February 13

Publish-Subscribe
why and what

 A component should be informed of a specific run-time event;
sometimes a number of components should be actively informed
(announcement or broadcast), in other cases only a specific
component is interested in the event
 Publish-Subscribe allows event-consumers (subscribers) to
register to specific events and event-producers to publish or raise
specific events
 The Publish-Subscribe mechanism is triggered by the event-
producers an automatically executes a callback operation to the
event-consumers
 Publish-Subscribe can be implemented as an independent
subscription manager

Wednesday 13 February 13

Publish-Subscribe
variations and relations

 In a local context the Observer pattern implements Publish-
Subscribe as part of the 'subject'; in a remote context it is a
patterns on its own or it is used in Message Queuing
 Most GUI frameworks are based on Publish-Subscribe
 Publish-Subscribe can be used in the context of an Active
Repository
 Publish-Subscribe can be used to realize distributed Client-
Server and Peer-to-Peer architectures because it allows to
bridge the asynchronous network events and the synchronous
processing model of the server

Wednesday 13 February 13

Broker

Feb-2-12 Jonckers Viviane 67

Broker

Wednesday 13 February 13

Broker
why and what

 Distributes software systems face challenges: communication across
unreliable networks, integration of heterogeneous components, efficient use of
network resources, etc.
 A Broker separates the communication facilities in a distributed system
from the application functionality, it hides and mediates all communication
between the components of a system
 A Broker consist of: a client-side Requestor to construct and forward
invocation, a server-side Invoker that invokes the operations of the
target remote object, and a Marshaller on each side to handle the
transformation of the request and replies form programming language
native data-types into a byte array that can be transported over the

Wednesday 13 February 13

