
Software Architecture
Carlos Noguera,

Kennedy Kambona, Janwillem Swalens
2013-2014

Wednesday 12 February 14

This course
• Material on-line in pointcarré (Software Architecture

Course)

• Slides

• Planning

• Assignments

• Additional material

• Articles in Pointcarré

• Book: L. Baas, P. Clements, R. Kazman. Software
Architecture in Practice. Addison-Wesley

Wednesday 12 February 14

This course

• Theory and Practice sessions

• Five exercises

• Final (written) exam

Wednesday 12 February 14

Towards Software
Architecture

Wednesday 12 February 14

Programming

• Single developer

• Understanding of
all aspects

• Effort is in solving
the problem

• Large team

• No single person
knows all

• Effort is in
communication of
information about
the project

In the Small In the Large

Wednesday 12 February 14

Programming vs
Software Engineering

• Simple applications

• Short life span

• Few (one)
stakeholders

• One-off
development

• Build from scratch

• Minimal
maintenance

• Complex systems

• Long life span

• Multiple
stakeholders

• System families

• Reuse

• 60% of cost is
maintenance

Wednesday 12 February 14

Programming vs
Software Engineering

• Simple applications

• Short life span

• Few (one)
stakeholders

• One-off
development

• Build from scratch

• Minimal
maintenance

• Complex systems

• Long life span

• Multiple
stakeholders

• System families

• Reuse

• 60% of cost is
maintenanceComplexity and Cost

Wednesday 12 February 14

Coping with Complexity
Abstraction

• Languages
• Middleware
• Models

Tools

• IDEs
• SCM
• Bug trackers

Process

• Life Cycle Models
• Software Project

Management

Wednesday 12 February 14

Coping with cost
(Reuse)

• Less development
time

• Less cost

• Improve reliability

Requirements

Design fragments

Code fragments /
modules

Wednesday 12 February 14

Beyond artifact reuse

• Program idioms

• Design Patterns

• Architectural Patterns

Capture a general solution to a re-occurring problem

Iterate a collection

Model-View Controller

Client/server

Wednesday 12 February 14

Why Architecture
✔ Consider the wishes of the landlord
✔ Make buildings solid so that the last long, survive rain, earthquakes, etc.
✔ Modify buildings while keeping stability and other properties
✔ Plan buildings in a way that they are extendable in the future
✔ Keep infrastructure in mind: streets, power lines, ...
✔ Make buildings easy to operate: make repairs easy by making parts accessible and interchangeable
✔ Make building comfortable, cool in summer, easy to heat in winter
✔ Make building with as little cost as possible (to build and to maintain)
✔ Guide workers who will actually build it
Ø Architecture: collect knowledge on best practices, materials,
architectural styles, patterns, idioms, ...

Wednesday 12 February 14

Why Software
Architecture?

✔ Consider the wishes of customer
✔ Make software stable so that it can cope with errors and failures
✔ Modify software while keeping stability and other properties
✔ Design software in a way that it can evolve in the future
✔ Keep infrastructure in mind: network, storage, cooperating systems, ...
✔ Make software easy to operate: make repairs easy by making components exchangeable without
affecting other components
✔ Make software easy to install, administer and use
✔ Make software with as little cost as possible (to build and to maintain)
✔ Guide programmers who will implement it
Ø Software Architecture: collect knowledge on best practices, technology,
architectural styles, patterns, idioms, ...

Wednesday 12 February 14

Is it engineering yet?
In the beginning: Implicit, anonymous,

accidental software architectures

Goal

• Communication
• Productivity
• Quality

Obstacles

• Legacy systems, people
• Changes in technology
• Organization

Now: Software architecture as an emerging
dicipline

Wednesday 12 February 14

Software Architecture
where does it come from?

Wednesday 12 February 14

Requirements and
influences in SA

Stakeholders

• End Users
• Costumer

Organization

Technical
Environment

Architect's
knowledge

Wednesday 12 February 14

Feb-2-12 Jonckers Viviane 12

The Architecture Business Cycle
Source:
http://www.sei.cmu.edu/news-at-sei/columns/the_architect/2005/2/architect-2005-2.htm

http://www.sei.cmu.edu/news-at-sei/columns/the_architect/2005/2/architect-2005-2.htm

Wednesday 12 February 14

Software Architecture
what is it, actually?

Wednesday 12 February 14

What does this mean?

Feb-2-12 Jonckers Viviane 20

What does this diagram mean?

  The systems consists of 4 elements
  All of the elements have some sort of

relationship with each other as the diagram
is fully connected

  3 of the elements have more in common
that the 4th because they are positioned
together

  3 of the elements have more in common
that the 4th because they carry the word
"model" in their label

Control

Noice
model

Reverb
model

Prop loss
model

Wednesday 12 February 14

What does this mean?

• 4 elements

Feb-2-12 Jonckers Viviane 20

What does this diagram mean?

  The systems consists of 4 elements
  All of the elements have some sort of

relationship with each other as the diagram
is fully connected

  3 of the elements have more in common
that the 4th because they are positioned
together

  3 of the elements have more in common
that the 4th because they carry the word
"model" in their label

Control

Noice
model

Reverb
model

Prop loss
model

Wednesday 12 February 14

What does this mean?

• 4 elements

• All related

Feb-2-12 Jonckers Viviane 20

What does this diagram mean?

  The systems consists of 4 elements
  All of the elements have some sort of

relationship with each other as the diagram
is fully connected

  3 of the elements have more in common
that the 4th because they are positioned
together

  3 of the elements have more in common
that the 4th because they carry the word
"model" in their label

Control

Noice
model

Reverb
model

Prop loss
model

Wednesday 12 February 14

What does this mean?

• 4 elements

• All related

• 3 elements
have more in
common

Feb-2-12 Jonckers Viviane 20

What does this diagram mean?

  The systems consists of 4 elements
  All of the elements have some sort of

relationship with each other as the diagram
is fully connected

  3 of the elements have more in common
that the 4th because they are positioned
together

  3 of the elements have more in common
that the 4th because they carry the word
"model" in their label

Control

Noice
model

Reverb
model

Prop loss
model

Wednesday 12 February 14

What does this mean?

• 4 elements

• All related

• 3 elements
have more in
common

• Place

Feb-2-12 Jonckers Viviane 20

What does this diagram mean?

  The systems consists of 4 elements
  All of the elements have some sort of

relationship with each other as the diagram
is fully connected

  3 of the elements have more in common
that the 4th because they are positioned
together

  3 of the elements have more in common
that the 4th because they carry the word
"model" in their label

Control

Noice
model

Reverb
model

Prop loss
model

Wednesday 12 February 14

What does this mean?

• 4 elements

• All related

• 3 elements
have more in
common

• Place

• Name

Feb-2-12 Jonckers Viviane 20

What does this diagram mean?

  The systems consists of 4 elements
  All of the elements have some sort of

relationship with each other as the diagram
is fully connected

  3 of the elements have more in common
that the 4th because they are positioned
together

  3 of the elements have more in common
that the 4th because they carry the word
"model" in their label

Control

Noice
model

Reverb
model

Prop loss
model

Wednesday 12 February 14

Drawings everywhere

Feb-2-12 Jonckers Viviane 15

Architectural drawings appear everywhere

Source: Booch, G. Visual
Modeling of Software Architecture
for the Enterprise, MSDN Home,
1998.

From Booch, G. Visual modeling of Software
Architecture for the enterprise. MSDN

Home, 1998

Wednesday 12 February 14

Drawings everywhere

Feb-2-12 Jonckers Viviane 16

Architectural drawings appear everywhere

Source: Booch, G. Visual
Modeling of Software Architecture
for the Enterprise, MSDN Home,
1998.

From Booch, G. Visual modeling of Software
Aechitecture for the enterpise. MSDN Home,

1998

Wednesday 12 February 14

Drawings everywhere

Feb-2-12 Jonckers Viviane 17

Architectural drawings appear everywhere

Syukur and Loke, Policy Based Control of
Context-Aware Pervasive Services, To appear in
the Journal of Ubiquitous computing and Intelligence.

From Syukur and Loke, Policy Based Control
of Context-Aware Pervasive Services. Journal

of Ubiquitous computing and intelligence
Wednesday 12 February 14

Drawings everywhere

From Syukur and Loke, Policy Based Control
of Context-Aware Pervasive Services. Journal

of Ubiquitous computing and intelligence

Feb-2-12 Jonckers Viviane 19

Architectural drawings appear everywhere

Syukur and Loke, Policy Based Control of
Context-Aware Pervasive Services, To appear in
the Journal of Ubiquitous computing and Intelligence.

Wednesday 12 February 14

from drawing to
architecture

Nature of elements

• Separation
• Semantics
• Representation

Responsibilities of
elements

• What do they
do?

Nature of
Connections

• Communication
• Mechanisms
• Information flow

Nature of Layout

• Levels
• Containment
• Esthetic

Wednesday 12 February 14

Definitions
Software architecture is a level of design that involves:

 - The description of elements from which the system is
build
 - Interactions amongst these elements
 - Patterns that guide their compositions
 - And constraints on these patterns

Software architecture involves:
- The structure and organization by which modern
system components and subsystems interact to form
systems, and
- the properties of systems that can best be designed and
analyzed at the system level

Wednesday 12 February 14

Definitions

"fundamental concepts or properties of a system in its
environment embodied in its elements, relationships, and
in the principles of its design and evolution"

“The software architecture of a program or computing
system is the structure or structures of the system,
which comprise software elements, the externally visible
properties of those elements, and the relationships
among them.”

Wednesday 12 February 14

What does this mean?

✔ Architecture defines software elements and embodies information on how they
relate. So architecture is an abstraction, details that are not relevant for element
interaction are omitted.
✔ Systems can comprise more than one structure and non of these can claim to
be "the" architecture. E.g. one structure can focus on how functionality is divided
up and eventually assigned to an implementation team while another structure
can focus on the way elements interact with each other at run time. In a
distributed or parallel setting a third structure can specify order of execution and
synchronization.
✔ Every computing system has an architecture although that architecture may
remain unknown or undocumented
✔ The behavior of each element is part of the architecture in so far that it can be
observed or discerned from the point of view of another element

Wednesday 12 February 14

Minority report

✔ Architecture is high level design. But they are not interchangeable. For example
deciding on important data structures that will be encapsulated is not an architectural
concern
✔ Architecture is the overall structure of the system. Ignores the fact that multiple
structures co-exist
✔ Architecture is the structure of the components, their interrelationships and the
principles and guidelines governing their design and evolution. Although it may be
good professional practice to document the rationale for architectural decisions, they are
not part of the architecture.
✔ Architecture is components and connectors. Connectors imply a run time
mechanism for transferring control and data around in the system. Relationships are more
general and can capture run-time but also non run-time relationships

Wednesday 12 February 14

Importance of an
architecture

✔ Serves as a common abstraction in the communication amongst
stakeholders: understanding, negotiation, consensus, ...
✔ Manifests the earliest set of design decision:
– Constrains the implementation
– Dictates organizational structure (of the development project)
– Inhibits or enables System Quality Attributes
– Allows predicting system qualities
– Helps to manage change
– Enables more accurate cost and schedule estimates
✔ Is a transferable re-usable model
– Software product lines share an architecture
– Systems can be built using large, externally developed components
– An architecture can be the basis for training

Wednesday 12 February 14

Components of an
architecture

Structures and Views
✔ Complex systems are difficult to grasp at once. At any one moment in time attention
should go to a limited number of the system's structures
✔ To communicate meaningfully it is necessary to make explicit which structures are
being discussed - i.e. which view is taken
✔ In Bass, Clements and Kazman 3 groups of architectural structures are
distinguished: Module structures - Component and connector structures - Allocation
structures
✔ The ontology established in ANSI/IEEE 1471-2000 mentions 7 viewpoints:
Functional/logic view - Code/module view - Development/structural view - Concurrency/
process/thread view - Physical/deployment view - User action/feedback view - Data
view"
✔ Kruchten from Rational advocates the 4+1 view: Logical view - Process view -
Development view - Physical view + Scenarios

Wednesday 12 February 14

Architectural Structures
and views (bass et al.)

✔ Module structures
– Elements are units of implementation: a code based way of considering a system
– Modules have functionality assigned to them and are often hierarchically decomposed in module/
submodules relations
– Modules are further related by uses and used-by relations or by generalisation and specialisation
relations
✔ Component and connector structures
– Elements are run-time components (units of computation): a computation based way of considering a
system
– Connectors are communication vehicles between the elements
– Shows shared data stores, replicated parts, data flow, parallelism
✔ Allocation structures
– Shows relationships between software elements and the external environment in which the software is
created and executed, i.e. on what processor does each component execute, in what file is each module
stored during development, the assignment of modules to development teams, etc.

Wednesday 12 February 14

4+1 Views

Feb-2-12 Jonckers Viviane 29

The 4+1 View Model of Software Architecture
Kruchten (Rational)

Logical View
Class/association,

Containment,inheritance

Development View
Module, Subsystem/

compilation dependency

Physical View
Node/LAN,WAN,bus

Process View
Process/message,
Broadcast,RPC

Scenarios

Functionality - End User Software Management - Programmers
 Managers

Performance - Integrator
Scalability System Designer

Topology - System Engineer
Communications

Wednesday 12 February 14

Software Architecture
OO Design Principles

Wednesday 12 February 14

Revisiting...
OO Programming

• Encapsulation
• Message passing

• Polymorphism
• Inheritance

Inheritance Composition

Feb-2-12 Jonckers Viviane 31

Revisiting Object-oriented Analysis and
Design
 OO programming =

–  Encapsulation and Information hiding
–  Message Passing and Method Binding
–  Polymorfism
–  Class Hierarchies and Inheritance

 OO reuse =
–  Class Inheritance
–  Object Composition

List

Stack

List Stack

Feb-2-12 Jonckers Viviane 31

Revisiting Object-oriented Analysis and
Design
 OO programming =

–  Encapsulation and Information hiding
–  Message Passing and Method Binding
–  Polymorfism
–  Class Hierarchies and Inheritance

 OO reuse =
–  Class Inheritance
–  Object Composition

List

Stack

List Stack vs

Wednesday 12 February 14

• White box

• Compile-time
• Black-box

• Runtime

Object
Composition

Class
Inheritance

Feb-2-12 Jonckers Viviane 31

Revisiting Object-oriented Analysis and
Design
 OO programming =

–  Encapsulation and Information hiding
–  Message Passing and Method Binding
–  Polymorfism
–  Class Hierarchies and Inheritance

 OO reuse =
–  Class Inheritance
–  Object Composition

List

Stack

List Stack

Feb-2-12 Jonckers Viviane 31

Revisiting Object-oriented Analysis and
Design
 OO programming =

–  Encapsulation and Information hiding
–  Message Passing and Method Binding
–  Polymorfism
–  Class Hierarchies and Inheritance

 OO reuse =
–  Class Inheritance
–  Object Composition

List

Stack

List Stack

Wednesday 12 February 14

Quality of a Design

✔ A good design strives for low coupling and high cohesion
– Coupling an cohesion were introduced in the context of modular
programming

and revised later on in the context of object oriented programming.
– Coupling describes the relationships between modules or classes; cohesion
describes the relationships within them.
– High coupling is bad because:

• A change in one module will force a ripple effect of changes in other modules
• Assembly of modules might require more effort and/or time due to the increased inter-
module dependencies
• A particular module may be harder to reuse and/or test because the dependent modules
must be included

– High cohesion is good because:
• A particular module has a clear purpose and can be understood in isolation

Wednesday 12 February 14

CouplingCoupling

2/2/12 Jonckers Viviane 35

High Low

Coupling

2/2/12 Jonckers Viviane 35

High Low

Wednesday 12 February 14

Cohesion
Cohesion

2/2/12 Jonckers Viviane 36

High

Refactor to 2 classes?

class

attribute

method

has

uses

Wednesday 12 February 14

Coupling
(from bad to good)

• Content

• Common

• External

• Control

• Stamp

• Data

• Message

• No coupling

One module modifies or relies on
the internal workings of another
module (e.g. accessing local data
of another module).Therefore
changing the way the second
module produces data (location,
type, timing) will lead to changing
the dependent module.

Wednesday 12 February 14

Coupling
(from bad to good)

• Content

• Common

• External

• Control

• Stamp

• Data

• Message

• No coupling

Two modules share the same
global data (e.g. a global
variable).Changing the shared
resource implies changing all
the modules using it.

Wednesday 12 February 14

Coupling
(from bad to good)

• Content

• Common

• External

• Control

• Stamp

• Data

• Message

• No coupling

Occurs when two modules
share an externally imposed
data format, communication
protocol, or device interface.

Wednesday 12 February 14

Coupling
(from bad to good)

• Content

• Common

• External

• Control

• Stamp

• Data

• Message

• No coupling

One module controlling the
flow of another, by passing it
information on what to do
(e.g. passing a what-to-do
flag).

Wednesday 12 February 14

Coupling
(from bad to good)

• Content

• Common

• External

• Control

• Stamp

• Data

• Message

• No coupling

When modules share a composite
data structure and use only a part of it,
possibly a different part (e.g. passing a
whole record to a function which only
needs one field of it).This may lead to
changing the way a module reads a
record because a field, which the
module doesn't need, has been
modified.

Wednesday 12 February 14

Coupling
(from bad to good)

• Content

• Common

• External

• Control

• Stamp

• Data

• Message

• No coupling

When modules share data
through, for example,
parameters. Each datum is an
elementary piece, and these
are the only data which are
shared (e.g. passing an
integer to a function which

Wednesday 12 February 14

Coupling
(from bad to good)

• Content

• Common

• External

• Control

• Stamp

• Data

• Message

• No coupling

This is the loosest type of
coupling. Modules are not
dependent on each other,
instead they use a public
interface to exchange
parameter- less messages or
events.

Wednesday 12 February 14

Coupling
(from bad to good)

• Content

• Common

• External

• Control

• Stamp

• Data

• Message

• No coupling

Modules do not communicate
at all with one another.

Wednesday 12 February 14

Cohesion
(from worst to best)

• Coincidental

• Logical

• Temporal

• Procedural

• Communicational

• Sequential

• Functional

• ADT

Parts of a module are
grouped arbitrarily (at
random); the parts have no
significant relationship .

Wednesday 12 February 14

Cohesion
(from worst to best)

• Coincidental

• Logical

• Temporal

• Procedural

• Communicational

• Sequential

• Functional

• ADT

Parts of a module are grouped
because they logically are
categorized to do the same
thing, even if they are different
by nature (e.g. grouping all I/O
handling routines, grouping all
mathematical functions).

Wednesday 12 February 14

Cohesion
(from worst to best)

• Coincidental

• Logical

• Temporal

• Procedural

• Communicational

• Sequential

• Functional

• ADT

Parts of a module are grouped by
when they are processed - the
parts are processed at a particular
time in program execution (e.g. a
function which is called after
catching an exception which closes
open files, creates an error log, and
notifies the user).

Wednesday 12 February 14

Cohesion
(from worst to best)

• Coincidental

• Logical

• Temporal

• Procedural

• Communicational

• Sequential

• Functional

• ADT

Parts of a module are grouped
because they always follow a
certain sequence of execution
(e.g. a function which checks
file permissions and then
opens the file).

Wednesday 12 February 14

Cohesion
(from worst to best)

• Coincidental

• Logical

• Temporal

• Procedural

• Communicational

• Sequential

• Functional

• ADT

Parts of a module are grouped
because they operate on the
same data (e.g. a module
which operates on the same
record of information).

Wednesday 12 February 14

Cohesion
(from worst to best)

• Coincidental

• Logical

• Temporal

• Procedural

• Communicational

• Sequential

• Functional

• ADT

Parts of a module are grouped
because the output from one
part is the input to another
part (e.g. a function which
reads data from a file and
processes the data).

Wednesday 12 February 14

Cohesion
(from worst to best)

• Coincidental

• Logical

• Temporal

• Procedural

• Communicational

• Sequential

• Functional

Parts of a module are grouped
because they all contribute to
a single well-defined task of
the module (e.g. parsing
XML).

Wednesday 12 February 14

OO Design Patterns
refresher

Wednesday 12 February 14

Design Patterns

• Collect and Characterize recurring
architectures
– Provide solution to a problem
– Common language
– Tend to be small (large ones exist)

• No immediate implementation
– Partial implementation
– Smaller than a Framework

A Pattern Language: Towns, Buildings, Construction (1977) Christopher Alexander
Design Patterns: Elements of Reusable Object-Oriented Software (Gamma, Helm, Johnson, Vlissides)

Wednesday 12 February 14

http://en.wikipedia.org/wiki/A_Pattern_Language
http://en.wikipedia.org/wiki/A_Pattern_Language
http://en.wikipedia.org/wiki/Design_Patterns_%28book%29
http://en.wikipedia.org/wiki/Design_Patterns_%28book%29

Elements of a Pattern
• Name
• Problem

– Conditions of applicability
• Solution

– Elements (classes, objects), Roles,
Responsibilities

– No concrete design, implementation
• Consequences

– Tradeoffs
– Implementation issues

Wednesday 12 February 14

Kinds of Patterns

Wednesday 12 February 14

Overview

Wednesday 12 February 14

Observer
problem

Wednesday 12 February 14

 p. 9

Wednesday 12 February 14

Observer
participants

Wednesday 12 February 14

Observer

Wednesday 12 February 14

Software Quality
and Architecture

Wednesday 12 February 14

Functional
Requirements

✔ Functional requirements specify what functions a system must
provide to meet stated and implied stakeholder needs when the
software is used under specific conditions.
✔ Examples:
– The system shall allow users to buy and sell securities.
– The system shall allow users to review account activity.
– The system shall monitor and record inputs from meteorological sensors.
– The system shall notify operators of reactor core temperature changes.
– The system shall compute and display the orbit and trajectory for all
satellites.

Wednesday 12 February 14

Design Constraints

✔ Design constraints are decisions about a system’s design that must
be incorporated into any final design of the system. They represent a
design decision with a predetermined outcome.
✔ Examples:

– Oracle 8.0 shall be used for persistent storage.
– System services must be accessible through the World Wide Web.
– The system shall be implemented using Visual Basic.
– The system shall only interact with other systems via Publish/Subscribe.
– The system shall run on both Windows and Unix platforms.
– The system shall integrate with legacy applications.

Wednesday 12 February 14

Quality Attributes

✔ Quality attribute requirements are requirements that indicate the
degrees to which a system must exhibit various properties.
✔ Examples:

– buildability: The system shall be buildable within six months.
– availability: The system shall recover from a processor crash within one second.
– portability: The system shall allow the user interface (UI) to be ported to a new platform
within six months.
– performance: The system shall process sensor input within one second.
– security: The system shall deny access to unauthorized users 100% of the time.
– testability: The system shall allow unit tests to be performed within three hours with 85%
path coverage.
– usability: The system shall allow users to cancel an operation within one second.
– capacity: The system shall have a maximum of 50% CPU utilization.

Wednesday 12 February 14

Quality properties

Wednesday 12 February 14

System Quality
Attributes

System Quality Attributes

  Performance
  Availability
  Usability
  Security

End User’s
view

Developer’s
view

Business
Community
view   Maintainability

  Portability
  Reusability
  Testability

  Time to market
  Cost and Benefits
  Targeted Market
  Integration with Legacy

System

Wednesday 12 February 14

ISO 9126 Software
Quality ModelISO 9126 Software Quality Model

2/2/12 Jonckers Viviane 43 Wednesday 12 February 14

Ambiguous and Conflicting
Quality Attributes

• Ambiguous categorization

• User authentication is a functional or a quality
requirement?

• Interoperation with legacy system: design
constraint or functional requirement?

• Conflicting

• E.g., Portability->overhead->bad performance

Wednesday 12 February 14

Achieving Quality

• Development process (quality process ->
quality product)

• Tactics

• Design decisions that influence/control a
quality attribute

• Tactics are reflected in architecture

Wednesday 12 February 14

Feb-2-12 Jonckers Viviane 50

Availability Tactics
Fault >> Fault Masked or Repair Made
  Fault detection

–  Ping/Echo
–  Heartbeat
–  Exception

  Recovery preparation and Repair
–  Voting
–  Active/Passive Redundancy
–  Spare

  Recovery and Reintroduction
–  Shadow
–  State Resyncronisation
–  Checkpoint/Rollback

  Prevention
–  Removal from Service
–  Transactions
–  Process monitor

Availability Tactics
Fault

detection

•  Ping/Echo
•  Heartbeat
•  Exception

Recovery
preparation and

Repair
•  Voting
•  Active Redundancy
•  Passive

Redundancy
•  Spare

Recovery and
Reintroduction

•  Shadow
•  State

Resyncronisation
•  Checkpoint/

Rollback

Prevention

•  Removal from
Service

•  Transactions
•  Process monitor

Fault Tactics to control
availability

Fault masked or
repair made

Wednesday 12 February 14

Feb-2-12 Jonckers Viviane 51

Availability Tactics
Fault >> Fault Masked or Repair Made
  Fault detection

–  Ping/Echo
–  Heartbeat
–  Exception

  Recovery preparation and Repair
–  Voting
–  Active/Passive Redundancy
–  Spare

  Recovery and Reintroduction
–  Shadow
–  State Resyncronisation
–  Checkpoint/Rollback

  Prevention
–  Removal from Service
–  Transactions
–  Process monitor

Modifiability Tactics
Localise Changes

•  Semantic Coherence
•  Anticipate Changes
•  Generalise Modules
•  Limit Possible Options
•  Abstract Common Services

Prevention of Ripple
Effect
•  Hide Information
•  Maintain Existing Interface
•  Restrict communication Paths
•  Use an Intermediary - façade,

proxy, broker, location
manager, factory, …

Defer Binding Time
•  Runtime registration
•  Configuration Files
•  Polymorphism
•  Component Replacement
•  Adherence to Defined

Protocols

Change Request Tactics to control
modifiability

Change implemented,
tested and deployed

within time and budget

Wednesday 12 February 14

Feb-2-12 Jonckers Viviane 52

Availability Tactics
Fault >> Fault Masked or Repair Made
  Fault detection

–  Ping/Echo
–  Heartbeat
–  Exception

  Recovery preparation and Repair
–  Voting
–  Active/Passive Redundancy
–  Spare

  Recovery and Reintroduction
–  Shadow
–  State Resyncronisation
–  Checkpoint/Rollback

  Prevention
–  Removal from Service
–  Transactions
–  Process monitor

Performance Tactics
Resource Demands

•  Increase Computational
Efficiency

•  Reduce Computational
Overhead

•  Manage Event Rate
•  Control Frequency of

Sampling

Resource
Management
•  Introduce Concurrency
•  Maintain Multiple Copies -

caching, replication
•  Increase Available Resources

Resource
Arbitration
•  Scheduling Policy

Events arrive Tactics to control
performance

Response generated
within time
constraints

Wednesday 12 February 14

