Software Architecture

Carlos Noguera,

Kennedy Kambona, Janwillem Swalens
2013-2014

¥

Wednesday 12 February 14

This course

® Material on-line in pointcarré (Software Architecture
Course)

® Slides
® Planning
® Assignments
® Additional material
® Articles in Pointcarre

® Book:L.Baas, P Clements, R. Kazman. Software
Architecture in Practice. Addison-Wesley

Wednesday 12 February 14

This course

® Theory and Practice sessions
® Five exercises

® Final (written) exam

Wednesday 12 February 14

Towards Software
Architecture

Programming

In the Small In the Large
® Single developer ® lLarge team
e Understanding of ® No single person
all aspects knows all
e Effort is in solving ® Effortis in
the problem communication of

information about
the project

Wednesday 12 February 14

Programming vs
Software Engineering

® Simple applications
® Short life span

® Few (one)
stakeholders

® One-off
development

® Build from scratch

® Minimal
maintenance

Complex systems
Long life span

Multiple
stakeholders

System families

Reuse

60% of cost is
maintenance

Wednesday 12 February 14

Programming vs
Software Engineering

® Simple applications ® Complex systems

® Short life span ® |ong life span

® Few (one)
stakeholders

® One-off
development ® System families

e Multiple
stakeholders

® Build from scratch

® Minimal

_—=60% of cost is
maintenance?*\\

maintenance

d Cost

Wednesday 12 February 14

Coping with Complexity

Abstraction Tools

* | anguages * |IDEs

e Middleware o SCM

* Models e Bug trackers
Process

e Life Cycle Models
 Software Project
Management

Wednesday 12 February 14

Coping with cost
(Reuse)

Requirements
® | ess development

time

o Less cost Design fragments

® |mprove reliability Code /
ode fragments

modules

Wednesday 12 February 14

Beyond artifact reuse

Capture a general solution to a re-occurring problem

® Program idioms Iterate a collection
® Design Patterns Model-View Controller

® Architectural Patterns Client/server

Wednesday 12 February 14

Why Architecture

Consider the wishes of the landlord

Make buildings solid so that the last long, survive rain, earthquakes, etc.

Modify buildings while keeping stability and other properties

Plan buildings in a way that they are extendable in the future

Keep infrastructure in mind: streets, power lines, ...

Make buildings easy to operate: make repairs easy by making parts accessible and interchangeable
Make building comfortable, cool in summer, easy to heat in winter

Make building with as little cost as possible (to build and to maintain)

Guide workers who will actually build it

Architecture: collect knowledge on best practices, materials,
architectural styles, patterns, idioms, ...

Wednesday 12 February 14

Why Software
Architecture!

Consider the wishes of customer

Make software stable so that it can cope with errors and failures
Modify software while keeping stability and other properties

Design software in a way that it can evolve in the future

Keep infrastructure in mind: network, storage, cooperating systems, ...

Make software easy to operate: make repairs easy by making components exchangeable without
affecting other components

Make software easy to install, administer and use

Make software with as little cost as possible (to build and to maintain)
Guide programmers who will implement it

Wednesday 12 February 14

s it engineering yet!

In the beginning: Implicit,anonymous,
accidental software architectures

Goal Obstacles
e Communication * Legacy systems, people
* Productivity e Changes in technology
e Quality * Organization

Now: Software architecture as an emerging
dicipline

Wednesday 12 February 14

Software Architecture
where does it come from!?

Requirements and
influences in SA

Stakeholders Organization

e End Users
e Costumer

Technical
Environment

Architect's
knowledge

Wednesday 12 February 14

_

Stakeholder Needs)

Business Management
Issues

Legal/Contractural
Issues

Commercial/Competitive
Pressures

Technical Environment

Political Issues

Life Cycle Issues

S

‘\

Architect’'s
Experience

N

— = (Architecture
S)LSItEm

Svystem

Quality
Attribute
Requirements

Business
Requirements

Functional
Requirements

System

-

http://www.sei.cmu.edu/news-at-sei/columns/the_architect/2005/2/architect-2005-2.htm

Wednesday 12 February 14

Software Architecture
what is it, actually?

What does this mean?

@
Prop loss\ [Reverb Noice
model model model

What does this mean?

® 4 elements
Control

Prop loss Reverb Noice
model model model

Wednesday 12 February 14

What does this mean?

® 4 elements
Control

Reverb Noice
model model

® All related

Prop loss
model

Wednesday 12 February 14

What does this mean?

® 4 elements

Control
® All related

® 3 elements
have more in

Reverb Noice common
model model

Prop loss
model

Wednesday 12 February 14

What does this mean?

® 4 elements

Control
® All related
® 3 elements
have more in
Prop loss\ [Reverb Noice common
model model model

® Place

Wednesday 12 February 14

What does this mean?

® 4 elements

Control
® All related
® 3 elements
have more in
Prop loss\ [Reverb Noice common
model model model

® Place

® Name

Wednesday 12 February 14

Drawings everywhere

¢<Class Modue>> <<Module>
Oder Db I
Active_Ordgy__—
/ PRurchaser \
W
<<Form>> -Active_Custdmer <<Class Modue>> -pStorage <<{Class Modue>>

dlg_Onder = Customer Persistence

\ -pStorage 7
My Customec\ A
<<Class Modue>> -pStorage
Customers -pOydermows
-pStarage
<<Formp> My_fihcles / <<Class Modue>>
dlg_OrderRow / = Aticles
My_Orderiof = Moduers -pésticle <<Class Modue>>
OrderRow Aticle

From Booch, G.Visual modeling of Software
Architecture for the enterprise. MSDN
Home, 1998

Wednesday 12 February 14

Drawings everywhere

Order System Components

Tlfpm odg'?dasgrfwm m‘ds o a0
an o con
ROERSYS VBP pqgect.

Two DULLs, DAD andVB. has besnirenva se eragresredinto
the moda . becauss ey aeussd by mary of thedassesin . |

the Order System <BiveD>>
/
/
ﬂ_/
/‘P
— | — — | |
%8 em [OO O O OO
LrcErSystem
'M
T e Kntefaces> drtedface > <rnberfaces> <<Irtecfaoe>> Krtaface>> | rtedaces>
t:ernactm aebase Lorrecthiorns Documerts Fecodsst UuenUet

H
E <<¢\d|ve'>0>

O6b S DO
<<Inted 50e>> Inbed ace>> <<Interface><<Intedace>> drntedace><<Irteface>
. . o Label ComboBox LisBox HcohseBoxw TesdBowo
From Booch, G.Visual modeling of Software
Aechitecture for the enterpise. MSDN Home,
1998

Wednesday 12 February 14

Drawmgs everywhere

Policy Manager

Policy Interpreter

Policy Conflict Detection

Policy Conflict Resolution

Mobile Client Query Manager

ervice Discover

Policy Element

Policy Objects Roles

Contexts Actions

Target Services || Target Entities

skl = Context awareness software components

= Policy software components

From Syukur and Loke, Policy Based Control
of Context-Aware Pervasive Services. Journal
of Ubiquitous computing and intelligence

Wednesday 12 February 14

Drawings everywhere

11. Retum mobile
code

N—

la. Send Ac Poi Ek Server 2b.Call the Ekaham
a. e cess ud . . .
Infommiation Location Trackmg System Servor
2a. Get auser’s
) lozical Area ¥
Mobile Cliert 1h: Stat Tracang Context C/L_.:mcm Web
Soﬁwa.re Information Service
— Web Service Kx}
: 3. Retum the bgical area”
Code cache 5. Fmd the arailable
services acoordmg tothe
currerd user’s -:ordexts’

Interpreter
(\- Web Servie

R

8. Request mobile code

Q. Get mobile code
TS
=

Code S

Mobile Code
Repository

0. Send nobile code

From Syukur and Loke, Policy Based Control
of Context-Aware Pervasive Services. Journal
of Ubiquitous computing and intelligence

Wednesday 12 February 14

from drawing to
architecture

Nature of elements

* Separation
* Semantics
e Representation

Nature of
Connections

e Communication
e Mechanisms
¢ Information flow

Responsibilities of
elements

* What do they
do!

Nature of Layout

e Levels
e Containment
e Esthetic

Wednesday 12 February 14

Definitions

FTWARE Software architecture is a level of design that involves:
o st - The description of elements from which the system is
o build

- Interactions amongst these elements
- Patterns that guide their compositions
- And constraints on these patterns

Grady Booch’s New Architecture Column

Software architecture involves: sonwal‘e

- The structure and organization by which modern
system components and subsystems interact to form
systems, and

- the properties of systems that can best be designed and
analyzed at the system level

cccccccc

Wednesday 12 February 14

Definitions

"fundamental concepts or properties of a system in its
environment embodied in its elements, relationships, and

in the principles of its design and evolution”

/ZTIRN
ISO
NS4/

~

“The software architecture of a program or computing i‘.).fﬂ;;ﬁm
2
system is the structure or structures of the system, in Practice
Second Edison

which comprise software elements, the externally visible
properties of those elements, and the relationships

among them.” -

Paul Clements

Rick Kazman

Wednesday 12 February 14

What does this mean?

Architecture defines software elements and embodies information on how they
relate. So architecture is an abstraction, details that are not relevant for element
Interaction are omitted.

Systems can comprise more than one structure and non of these can claim to
be "the" architecture. E.g. one structure can focus on how functionality is divided
up and eventually assigned to an implementation team while another structure
can focus on the way elements interact with each other at run time. In a
distributed or parallel setting a third structure can specify order of execution and
synchronization.

Every computing system has an architecture although that architecture may
remain unknown or undocumented

The behavior of each element is part of the architecture in so far that it can be
observed or discerned from the point of view of another element

Wednesday 12 February 14

Minority report =

u'.

Architecture is high level design. But they are not interchangeable. For example
deciding on important data structures that will be encapsulated is not an architectural
concern

Architecture is the overall structure of the system. Ignores the fact that multiple
structures co-exist

Architecture is the structure of the components, their interrelationships and the
principles and guidelines governing their design and evolution. Although it may be
good professional practice to document the rationale for architectural decisions, they are
not part of the architecture.

Architecture is components and connectors. Connectors imply a run time
mechanism for transferring control and data around in the system. Relationships are more
general and can capture run-time but also non run-time relationships

Wednesday 12 February 14

Importance of an
architecture

Serves as a common abstraction in the communication amongst
stakeholders: understanding, negotiation, consensus, ...
Manifests the earliest set of design decision:
Constrains the implementation
Dictates organizational structure (of the development project)
Inhibits or enables System Quality Attributes
Allows predicting system qualities
Helps to manage change
Enables more accurate cost and schedule estimates
s a transferable re-usable model
Software product lines share an architecture
Systems can be built using large, externally developed components
An architecture can be the basis for training

Wednesday 12 February 14

Components of an
architecture

Structures and Views

Complex systems are difficult to grasp at once. At any one moment in time attention
should go to a limited number of the system's structures

To communicate meaningfully it is necessary to make explicit which structures are
being discussed - i.e. which view is taken

In Bass, Clements and Kazman 3 groups of architectural structures are
distinguished: Module structures - Component and connector structures - Allocation
structures

The ontology established in ANSI/IEEE 1471-2000 mentions 7 viewpoints:
Functional/logic view - Code/module view - Development/structural view - Concurrency/
process/thread view - Physical/deployment view - User action/feedback view - Data

.]
view
Kruchten from Rational advocates the 4+1 view: Logical view - Process view -
Development view - Physical view + Scenarios

Wednesday 12 February 14

Architectural Structures
and VieWS (bass et al.)

Module structures
Elements are units of implementation: a code based way of considering a system
Modules have functionality assigned to them and are often hierarchically decomposed in module/
submodules relations
Modules are further related by uses and used-by relations or by generalisation and specialisation
relations
Component and connector structures
Elements are run-time components (units of computation): a computation based way of considering a
system
Connectors are communication vehicles between the elements
Shows shared data stores, replicated parts, data flow, parallelism
Allocation structures
Shows relationships between software elements and the external environment in which the software is
created and executed, i.e. on what processor does each component execute, in what file is each module
stored during development, the assignment of modules to development teams, efc.

Wednesday 12 February 14

4+ | Views

Functionality - End User Software Management - Programmers

Managers
Logical View | Development View
Class/association, Module, Subsystem/
Containment, mherltance — — compllatlon dependency
'l' (Scenarios \ 'l'
Process Vl%\ —— 1 Physical View
Process/message, me=) | Node/LAN,WAN,bus
Broadcast, RPC
Performance - Integrator Topology - System Engineer
Scalability System Designer Communications

Wednesday 12 February 14

Software Architecture
OO Design Principles

* Encapsulation
* Message passing

Inheritance

List

N\

Stack

VS

Revisiting...

OO Programming

* Polymorphism
e |nheritance

Composition

Stack

List

Wednesday 12 February 14

Class Object

Inheritance Composition
List
A Stack —>{ List
Stack

® VWhite box ® Black-box

® Compile-time ® Runtime

Wednesday 12 February 14

Quality of a Design

A good design strives for low coupling and high cohesion
Coupling an cohesion were introduced in the context of modular
programming
and revised later on in the context of object oriented programming.
Coupling describes the relationships between modules or classes; cohesion
describes the relationships within them.

High coupling is bad because:
A change in one module will force a ripple effect of changes in other modules
Assembly of modules might require more effort and/or time due to the increased inter-
module dependencies
A particular module may be harder to reuse and/or test because the dependent modules
must be included

High cohesion is good because:
A particular module has a clear purpose and can be understood in isolation

Wednesday 12 February 14

Coupling

e
-~ .

—p—

A:,“ =
i

Wednesday 12 February 14

Cohesion

Refactor to 2 classes?

class

attribute

method
has

uses

Wednesday 12 February 14

Coupling
(from bad to good)

® Content

One module modifies or relies on
the internal workings of another
module (e.g. accessing local data
of another module). Therefore
changing the way the second
module produces data (location,
type, timing) will lead to changing
the dependent module.

Wednesday 12 February 14

Coupling
(from bad to good)

® Content

® Common

Two modules share the same
global data (e.g. a global
variable).Changing the shared
resource implies changing all
the modules using it.

Wednesday 12 February 14

Coupling
(from bad to good)

® Content

® Common

® External Occurs when two modules
share an externally imposed
data format, communication
protocol, or device interface.

Wednesday 12 February 14

Coupling
(from bad to good)

® Content

® Common

One module controlling the
flow of another, by passing it
* Control information on what to do
(e.g. passing a what-to-do
flag).

® [External

Wednesday 12 February 14

Coupling
(from bad to good)

® Content

e Common .
When modules share a composite

® External data structure and use only a part of it
possibly a different part (e.g. passing a
® Control whole record to a function which only
needs one field of it). This may lead to
® Stamp changing the way a module reads a

record because a field, which the
module doesn't need, has been
modified.

Wednesday 12 February 14

Coupling
(from bad to good)

® Content

¢ Common
When modules share data

® External through, for example,

e Control parameters. Each datum is an
elementary piece, and these

® Stamp are the only data which are

e Data shared (e.g. passing an

integer to a function which

Wednesday 12 February 14

Coupling
(from bad to good)

® Content

o C
ommen This is the loosest type of

® External coupling. Modules are not

e Control fjependent on each othgr,
instead they use a public

® Stamp interface to exchange

e Data parameter- less messages or
events.

® Message

Wednesday 12 February 14

Coupling
(from bad to good)

® Content

® Common

® External

* Control Modules do not communicate
® Stamp at all with one another.

e Data

® Message

® No coupling

Wednesday 12 February 14

Cohesion
(from worst to best)

® Coincidental

Parts of a module are
grouped arbitrarily (at
random); the parts have no
significant relationship .

Wednesday 12 February 14

Cohesion
(from worst to best)

® Coincidental

® Logical Parts of a module are grouped
because they logically are
categorized to do the same
thing, even if they are different
by nature (e.g. grouping all I/0
handling routines, grouping all
mathematical functions).

Wednesday 12 February 14

Cohesion
(from worst to best)

® Coincidental

® Logical Parts of a module are grouped by
when they are processed - the
parts are processed at a particular
time in program execution (e.g. a
function which is called after
catching an exception which closes
open files, creates an error log, and
notifies the user).

® TJemporal

Wednesday 12 February 14

Cohesion
(from worst to best)

® Coincidental

® |ogical

Parts of a module are grouped
® Temporal because they always follow a
® Procedural certain sequence of execution

(e.g. a function which checks
file permissions and then
opens the file).

Wednesday 12 February 14

Cohesion
(from worst to best)

® Coincidental

® |ogical

Parts of a module are grouped
® Temporal because they operate on the
® Procedural same data (e.g. a module

which operates on the same

. L , .
Communicational record of information).

Wednesday 12 February 14

Cohesion
(from worst to best)

® Coincidental

® |ogical
Parts of a module are grouped
® Temporal because the output from one
® Procedural part is the input to another
o part (e.g. a function which
® Communicational reads data from a file and

e Sequential processes the data).

Wednesday 12 February 14

Cohesion
(from worst to best)

® Coincidental

* Logical Parts of a module are grouped

e Temporal because they all contribute to
a single well-defined task of

® Procedural the module (e.g. parsing
XML).

® Communicational
® Sequential

® Functional

Wednesday 12 February 14

OQO Design Patterns
refresher

A Pattern Language
Yed trets) <) . P Y | -~
Sl ijtl::[‘ EAUCETS

ALy .
" Design Patterns

» Collect and Characterize recurring
architectures

— Provide solution to a problem
— Common language
— Tend to be small (large ones exist)

* No immediate implementation
— Partial implementation
— Smaller than a Framework

A Pattern Language: Towns, Buildings, Construction (1977) Christopher Alexander
Design Patterns: Elements of Reusable Object-Oriented Software (Gamma, Helm, Johnson, Vlissides)

Wednesday 12 February 14

http://en.wikipedia.org/wiki/A_Pattern_Language
http://en.wikipedia.org/wiki/A_Pattern_Language
http://en.wikipedia.org/wiki/Design_Patterns_%28book%29
http://en.wikipedia.org/wiki/Design_Patterns_%28book%29

Elements of a Pattern

 Name
* Problem
— Conditions of applicability

e Solution

— Elements (classes, objects), Roles,
Responsibilities
— No concrete design, implementation
« Consequences
— Tradeoffs
— Implementation issues

Wednesday 12 February 14

Kinds of Patterns

Creational Patterns:
are concerned with the process of object creation

Structural Patterns: Behavioural Patterns:
are concerned with how puUrpose are concerned with
algorithms and the

classes and objects are

composed to form larger assignment of responsi-
structures bilities between objects
Class Patterns deal with Object Patterns deal with
static relationships between P€) object relationships which can
classes and subclasses be changed at run time

Wednesday 12 February 14

Overview

Creational Patterns Structural Patterns Behavioral Patterns
* Singleton « Composite « Chain of
« Abstract factory . Facade Respons.
« Factory Method . Proxy « Command
« Prototype . Flyweight * |Interpreter
« Builder e |terator
’ Ad.apter * Mediator
* Bridge « Memento
 Decorator « Observer
 State
o Strategy
« Template
Method
e Visitor

Wednesday 12 February 14

Observer
problem

Assume a one to many relationship between
objects, when one changes the dependents must

be updated > 5 - different types of

GUI elements
depicting the same

|J application data
— - different windows
showing different
views on the same
Subject Observers application model

Also known as : Dependants, Publish-Subscribe

Wednesday 12 February 14

I vincon m— 5]

alb

C

x| 60 | 30

10

v 501 30

20

2180 10

10

ohservers

I vindon mm— 5]

—change notification
———= requests, modification

Wednesday 12 February 14

Observer
participants

« Subject: knows its observers, provides an interface for attaching
(subscribe) and detaching (unsubscribe) observers and provides a
notify method that calls update on all its observers

* (Observer: provides an update interface

« ConcreteSubject: maintains a state relevant for the application
at hand, provides methods for getting and setting that state, calls
notify when its state is changed

* ConcreteObserver: maintains a reference to a concrete subject,

stores a state that is kept consistent with the subject's state and
implements the observer's update interface

Wednesday 12 February 14

Observer

Subject observers wa Observer
Attach(Observer) Update()
Detach(Observer) . ™
for all 0 in observers |
Notify() o-----1 - o->Update(
A]
ConcreteObserver
Subject

ConcreteSubject g

SetState()

GetState() O---F-1

subjectState

relum subjectStale

Update() =k

ohserverState

1 observerState =

subject-»GetState()

Wednesday 12 February 14

Software Quality
and Architecture

Functional
Requirements

Functional requirements specify what functions a system must
provide to meet stated and implied stakeholder needs when the
software is used under specific conditions.

Examples:
The system shall allow users to buy and sell securities.
The system shall allow users to review account activity.
The system shall monitor and record inputs from meteorological sensors.
The system shall notify operators of reactor core temperature changes.

The system shall compute and display the orbit and trajectory for all
satellites.

Wednesday 12 February 14

Design Constraints

Design constraints are decisions about a system'’s design that must
be incorporated into any final design of the system. They represent a
design decision with a predetermined outcome.

Examples:
Oracle 8.0 shall be used for persistent storage.
System services must be accessible through the World Wide Web.
The system shall be implemented using Visual Basic.
The system shall only interact with other systems via Publish/Subscribe.
The system shall run on both Windows and Unix platforms.
The system shall integrate with legacy applications.

Wednesday 12 February 14

Quality Attributes

Quality attribute requirements are requirements that indicate the
degrees to which a system must exhibit various properties.

Examples:
buildability: The system shall be buildable within six months.
availability: The system shall recover from a processor crash within one second.
portability: The system shall allow the user interface (Ul) to be ported to a new platform
within six months.
performance: The system shall process sensor input within one second.
security: The system shall deny access to unauthorized users 100% of the time.
testability: The system shall allow unit tests to be performed within three hours with 85%
path coverage.
usability: The system shall allow users to cancel an operation within one second.
capacity: The system shall have a maximum of 50% CPU utilization.

Wednesday 12 February 14

Quality properties

Usabiliby ScalabiliGy

Security bness &V Olvability
Performancg(a_: \?gﬁf(i:alra‘ilibg wockflabwy
Understandability Ava“abi“bgﬂeluablhbg

Heberogeneity Robusbtness
Tesbabiliby » InGeroperability

Reusabilityportability

System Quality
Attributes

Performance)
Availability ,
Usability » End User's
Security view Time to market \
g Cost and Benefits Business
Targeted Market » Community
Maintainability) Integration with Legacy | view
Portability Developer’s System j
Reusabilty [View
Testability

Wednesday 12 February 14

ISO 9126 Software
Quality Model

Functionality
Portability Reliability
ISO/IEC
9126
Maintainability Usability
Efficiency

Wednesday 12 February 14

Ambiguous and Conflicting
Quality Attributes

® Ambiguous categorization

® User authentication is a functional or a quality
requirement!

® Interoperation with legacy system: design
constraint or functional requirement?

® Conflicting

® E. g, Portability->overhead->bad performance

Wednesday 12 February 14

Achieving Quality

® Development process (quality process ->
quality product)

® Tactics

® Design decisions that influence/control a
quality attribute

® Tactics are reflected in architecture

Wednesday 12 February 14

Avallabllity Tactics

Fault Recovery Recovery and Prevention
: reparation an Reintroduction
detection Preparation and
Repair
+ Voting Shadow . Rempval from
* Ping/Echo + Active Redundancy * State Service
* Heartbeat C Secafne Resyncronisation ¢ Transactions
» Exception Redundancy « Checkpoint/ * Process monitor
o Spare RO”baCk
Fault Tactics to control Fault masked or
availability repair made

Wednesday 12 February 14

Modifiability Tactics

Localise Changes

« Semantic Coherence
Anticipate Changes
Generalise Modules

Limit Possible Options
Abstract Common Services

Change Request

Prevention of Ripple
Effect

 Hide Information
* Maintain Existing Interface
 Restrict communication Paths

* Use an Intermediary - facade,
proxy, broker, location
manager, factory, ...

Tactics to control
modifiability

Defer Binding Time

* Runtime registration
Configuration Files
Polymorphism
Component Replacement

Adherence to Defined
Protocols

Change implemented,
tested and deployed
within time and budget

Wednesday 12 February 14

Performance Tactics

Resource Demands Resource Resource
* Increase Computational Management Arbltratlon
Efficiency | + Introduce Concurrency + Scheduling Policy
* Reduce Computational + Maintain Multiple Copies -
Overhead caching, replication
* Manage Event Rate + Increase Available Resources
* Control Frequency of
Sampling

Response generated
within time
constraints

Tactics to control

Events arrive
performance

Wednesday 12 February 14

