
Andy Kellens

Source-code quality
Part 1. Software Metrics

Monday 22 April 13

Source-code quality: Part 1. Software Metrics 2

“Not everything that can be counted counts,
and not everything that counts can be counted.”

-- Albert Einstein

Monday 22 April 13

Source-code quality: Part 1. Software Metrics 3

Source-code quality

Monday 22 April 13

Source-code quality: Part 1. Software Metrics 4

Do you want to write high-
quality software?

Monday 22 April 13

Source-code quality: Part 1. Software Metrics 5

What is high-quality software?

Monday 22 April 13

Source-code quality: Part 1. Software Metrics

What is Software Quality ?

6

Conformance to user requirements
[Cro79]

Achieving excellent levels of fitness for use
[Hum89]

Total customer satisfaction
[IBM]

Degree to which a set of inherent characteristics fulfills requirements
[ISO9001-00]

Monday 22 April 13

Source-code quality: Part 1. Software Metrics 7

What is Software Quality ?

‣ External Quality
- Conformance to specification

 Does it do what it is supposed to do?
- Correctness & Stability

 Are there many bugs?

‣ Internal Quality
- Quality characteristics of the source code

 Is the software sustainable?
- Documentation

 Is the code adequately documented?

Monday 22 April 13

Source-code quality: Part 1. Software Metrics 7

What is Software Quality ?

‣ External Quality
- Conformance to specification

 Does it do what it is supposed to do?
- Correctness & Stability

 Are there many bugs?

‣ Internal Quality
- Quality characteristics of the source code

 Is the software sustainable?
- Documentation

 Is the code adequately documented?
}

Internal quality
impacts
external quality

+ cost

Monday 22 April 13

Source-code quality: Part 1. Software Metrics 8

Time

Software erosion

“Over time, the perceived quality of the system will decline”

Time pressure Lack of knowledge/documentation

Poor original design Lack of tool support

Limitations of technology

Monday 22 April 13

Source-code quality: Part 1. Software Metrics 9

Cost of Software Evolution

Proportion of software
maintenance costs

Reference & Year

> 90% [Erlikh] (2000)

75% [Eastwood] (1993)

> 90% [Moad] (1990)

60-70% [Huff] (1990)

60-70% [Port] (1988)

65-75% [McKee] (1984)

> 50% [Lientz & Swanson] ((1981)

67% [Zelkowitz et al.] (1979)

The legacy crisis [Seacord et al.] (2003)

On average, an evolving
s o f t w a r e p r o d u c t i s
rewritten from scratch every
6.8 years [Tamai et al.] (1992)

Monday 22 April 13

Source-code quality: Part 1. Software Metrics 9

Cost of Software Evolution

Proportion of software
maintenance costs

Reference & Year

> 90% [Erlikh] (2000)

75% [Eastwood] (1993)

> 90% [Moad] (1990)

60-70% [Huff] (1990)

60-70% [Port] (1988)

65-75% [McKee] (1984)

> 50% [Lientz & Swanson] ((1981)

67% [Zelkowitz et al.] (1979)

The legacy crisis [Seacord et al.] (2003)

On average, an evolving
s o f t w a r e p r o d u c t i s
rewritten from scratch every
6.8 years [Tamai et al.] (1992)

Monday 22 April 13

Source-code quality: Part 1. Software Metrics 10

How do we know if our software
is sustainable?

How do we keep it sustainable?

Protect quality attributes

Monday 22 April 13

Source-code quality: Part 1. Software Metrics

Need for tools

11

‣ Manual effort
- Review meetings
- Find quality issues
- 2 seconds per line of code

250 KLOC * 2
500 000 seconds
140 hours
18 days

Need for tools that help in
assessing quality attributes

Monday 22 April 13

Source-code quality: Part 1. Software Metrics

Need for tools

11

‣ Manual effort
- Review meetings
- Find quality issues
- 2 seconds per line of code

250 KLOC * 2
500 000 seconds
140 hours
18 days

Need for tools that help in
assessing quality attributes

+

+

Monday 22 April 13

Source-code quality: Part 1. Software Metrics

Tools for finding quality issues

12

‣ Metrics
- Measure various properties of the source code
- Characterize modularity, complexity, cohesion, coupling, ...

‣ Visualizations
- Visual representation of the software system
- Comprehensive view to identify issues
- Next lecture

Monday 22 April 13

Source-code quality: Part 1. Software Metrics 13

Software metrics

Monday 22 April 13

Source-code quality: Part 1. Software Metrics 14

Software metrics
‣ Measure characteristics of software
‣ Not restricted to source code:

- Process metrics
- Requirements metrics
- Design metrics
- ...

‣ Our focus: source-code quality metrics

Monday 22 April 13

Source-code quality: Part 1. Software Metrics

Know what you measure
‣ Precise knowledge of the metrics
‣ Measuring abstract concepts
‣ What does it mean to measure:

- Coupling
- Complexity
- Size

‣ Human interpretation necessary
‣ E.g., when are two classes coupled too tightly?
‣ E.g., is a system with a million lines of code big?

15

Monday 22 April 13

Source-code quality: Part 1. Software Metrics 16

Measuring code

Monday 22 April 13

Source-code quality: Part 1. Software Metrics 17

Source-code metrics
‣ Only measure source-code artefacts
‣ Relation with source-code quality
‣ Simple example: SLOC

- Source lines of code
- Simply count each line of code
- Related with complexity, maintainability, ...

Source: Wikipedia

Monday 22 April 13

Source-code quality: Part 1. Software Metrics

Object-oriented code metrics
‣ Measure properties of OO systems
‣ Seminal paper: Chidamber and Kemerer (1994)
‣ Known as CK metrics

18

Monday 22 April 13

Source-code quality: Part 1. Software Metrics

WMC: Weighted methods per class
‣ Sum of complexity of all methods in a class
‣ How measure complexity:

- Use McCabe (see later)
- Assign value of 1 per method

‣ Low WMC might indicate data classes
‣ High WMC might indicate god classes

19

Monday 22 April 13

Source-code quality: Part 1. Software Metrics

DIT: Depth of Inheritance Tree
‣ Inheritance levels from the object hierarchy top
‣ In Java, Smalltalk at least 1
‣ Low value: poor OO?
‣ High value: overly complex hierarchy?

20

A

B C D

Object

E

DIT = 1

DIT = 0

DIT = 2

DIT = 3

Monday 22 April 13

Source-code quality: Part 1. Software Metrics

NOC: Number of Children
‣ Count the direct subclasses of a class
‣ High NOC:

- Lots of reuse
- Improper use of subclassing
- Improper abstraction

21

A

B C D

Object

E

NOC(A) = 3

NOC(B) = 1

NOC(E) = 0

Monday 22 April 13

Source-code quality: Part 1. Software Metrics

RFC: Reponse for a Class
‣ Number of different methods that can be invoked when

an instance of a class receives a message
‣ In other words, sum of the number of methods in the

class and the number of distinct, remote methods
called from within those methods

‣ RFC is not transitive (RFC’ is transitive variant)
‣ Measures potential communication between classes
‣ High RFC might indicate higher chance of faults

22

Monday 22 April 13

Source-code quality: Part 1. Software Metrics 23

Measuring coupling and
cohesion

Monday 22 April 13

Source-code quality: Part 1. Software Metrics

Coupling

24

‣ Dependency between entities (classes, modules, ...)
‣ Strive for loosely coupled entities
‣ Example metric: CBO (CK metric)

- Coupling between Object Classes
- # of unique classes to which a class is coupled
- Use of fields and methods of other classes
- In the case of a polymorphic call: count all candidates
- Two-directional?
- Inheritance?

Monday 22 April 13

Source-code quality: Part 1. Software Metrics

Example

25

CBO(Address) = 0

CBO(Person) = 1

CBO(ClientCode) = 2

Monday 22 April 13

Source-code quality: Part 1. Software Metrics

Cohesion
‣ Within one module (class, package, ...) have high

cohesion
‣ Example metric: LCOM4 (Hitz & Montazeri)

- Lack of Cohesion of Methods
- Two methods of the same class are related if:

They call each other
They access the same field

- For all methods in a class, create a graph showing the connections
between methods

- LCOM = number of connected sub-graphs
- Ideal case: LCOM = 1

26

Monday 22 April 13

Source-code quality: Part 1. Software Metrics

Example

27

name age

setName

address

getName setAge getAge setAddress getAddress

LCOM4(Person) = 3

Monday 22 April 13

Source-code quality: Part 1. Software Metrics

Example 2

28

LCOM4(Person) = 1

name age

setName

address

getName setAge getAge setAddress getAddress

printMe

Monday 22 April 13

Source-code quality: Part 1. Software Metrics 29

Measuring complexity

Monday 22 April 13

Source-code quality: Part 1. Software Metrics

Complexity

‣ Incidental vs. Inherent (Accidental vs. Essential)
- Software that deals with a complex domain is inherently complex
- Incidental complexity is due to the design and implementation

30

Degree of incidental complexity of a program, by
construction.

Incidental complexity is to
be avoided.
Complexity measures often
show contrasts in the code:
i.e. problem areas.

“No Silver Bullet -- Fred Brooks” (1987)

Monday 22 April 13

Source-code quality: Part 1. Software Metrics

Problem
‣ Which design is best?

31

prettyPrint
ProgramNode

prettyPrint
Function

prettyPrint
Operator

prettyPrint
+

prettyPrint
-

prettyPrint
FunctionCall

prettyPrint
Definition

prettyPrint
Variable

prettyPrint
Statement

ProgramNode
accept(...)

accept(...)
Function

accept(...)
Operator

accept(...)
+

accept(...)
-

accept(...)
FunctionCall

accept(...)
Definition

accept(...)
Variable

accept(...)
Statement

Operation
doVariable
doFunction
do+
do-
doFunctionCall

PrettyPrint
doVariable
doFunction
do+
do-
doFunctionCall

1

2

Monday 22 April 13

Source-code quality: Part 1. Software Metrics

Over-design

‣ Introduction of accidental complexity in the design
‣ KISS principle

- Keep It Simple Stupid
- Choose a simple solution that suffices
- Refactoring into something more complex when necessary

‣ More accidental complexity
- more difficult to reuse, extend, maintain, ...

32

Monday 22 April 13

Source-code quality: Part 1. Software Metrics

Measuring complexity (at a low level)
‣ Measure:

- complexity of individual entities
- aggregation of the complexity of modules/files/classes/...

‣ High complexity not necessary a problem
‣ However, is the complexity where you expect it to be?

33

Monday 22 April 13

Source-code quality: Part 1. Software Metrics

McCabe cyclomatic complexity
‣ Thomas McCabe (in 1976)
‣ Idea: count the number of linearly independent path’s

through a piece of source code
‣ How to compute: based on a control flow graph

34

Complexity M = E - N + 2P
with:
 E = number of edges
 N = number of nodes
 P = number of connected components

Monday 22 April 13

Source-code quality: Part 1. Software Metrics

Example

35

Entry

Exit

if (a < 5)

then

else

if (a < 0)

then

else

method1

Entry

Exit

if (a < 5)

then
else

method2

Monday 22 April 13

Source-code quality: Part 1. Software Metrics

Example

36

Entry

Exit

if (a < 5)

then

else

if (a < 0)

then

else

method1

Entry

Exit

if (a < 5)

then
else

method2

M = E - N + 2P

M(method1) = 9 - 6 + 2 * 1
 = 5 M(method2) = 5 - 3 + 2 * 1

 = 4

Monday 22 April 13

Source-code quality: Part 1. Software Metrics 37

Interpreting metrics

Monday 22 April 13

Source-code quality: Part 1. Software Metrics 38

Interpreting metrics
‣ Metrics can be useful:

- Assessing quality
- Finding places to improve

‣ However:
- How well do they reflect reality?
- Operations on metrics
- Knowledge needed about the system

Monday 22 April 13

Source-code quality: Part 1. Software Metrics

How well do metrics reflect reality?
‣ Quality attributes are rather abstract concepts
‣ E.g., complexity of a method

- McCabe cyclomatic complexity
- Only one aspect of complexity
- Are methods with a high cyclomatic complexity really complex to

understand/maintain?

‣ When using metrics
- Important to know exactly what the metric computes
- Human interpretation is needed

39

Monday 22 April 13

Source-code quality: Part 1. Software Metrics

Operations on metrics
‣ Depending on scope not all kinds of calculations are

allowed
‣ However, even when allowed be careful!
‣ For example:

- “The average McCabe complexity of methods in my system is 4”

40

Monday 22 April 13

Source-code quality: Part 1. Software Metrics

Knowledge needed about the system
‣ “Poor” metrics do not necessary indicate problems
‣ Depending on the system
‣ E.g., is the coupling where you expect it? Is the

complexity of the system located where you expect it?

41

Monday 22 April 13

Source-code quality: Part 1. Software Metrics

Conclusions
‣ Metrics to measure attributes of software
‣ Assess quality
‣ However:

- Know what is measured
- Know how to interpret
- Expert knowledge about the system is needed

42

Monday 22 April 13

Source-code quality: Part 1. Software Metrics 43

Monday 22 April 13

