Software Product Lines

Dennis Wagelaar N4 Vrije Universiteit Brussel
Viviane Jonckers

Software Languages Lab




Software Product Lines (SPL)

> SPL origins, goals
> SPL concepts

Software Asset Inputs

Product Decisions
— Core assets, features & OB s

— Product decisions, output II__r ._’0
Production

> SPL process |
- SCV analysis, feature modelling

— Configuration, product derivation
> MDA & SPL integration

> Further reading From
Software Product Lines
3/21/12 Slide: 2



SPL origins:

Mass customisation & commonality

> Software Product Lines (SPLs) follow the idea of
regular product lines, such as:

— Ford automobile product line
— Kodak camera product line

— HP printer product line

> Product lines aim to combine two principles:

— Mass customisation: realise many versions of one car
model (configured and assembled in one factory)

— Mass production: from a pool of carefully architected car
parts (produced in dedicated factories)

Software Product Lines

3/21/12 Slide: 3




SPL origins:

Definition

> A software product line is a set of software-intensive
systems sharing a common, managed set of features that
satisfy the specific needs of a particular market segment or
mission and that are developed from a common set of core
assets in a prescribed way.” [Clements & Northrop 2001]

> Also known as Software Families or Family-Oriented Software
Development

> Classic reuse is opportunistic: a general software component is put in
a library in hope that opportunities for reuse will arise

> In SPL reuse is predictive: software artefacts are created because
reuse is predicted in one or more products in a well defined product
line

Software Product Lines

3/21/12 Slide: 4



SPL goals:

Envisioned benefits (1/2)

> Reduction of
development costs

AN

Accumulated .
Costs Single Systems

- Fixed up-front investment - - - - System Family
in product line
infrastructure pays back
as system family grows

Break-Even ~ ~  _ _-~-"7
Point --—"
NS =T \
- Lower Costs
Up-Front | _—=7 per System
Investment
approx. 3 Systems Number of
(Software Engineering) Different Systems

Software Product Lines

3/21/12 Slide: 5




SPL goals:

Envisioned benefits (2/2)

> Reduction of time to

market
. Timeto | ingle Systems
— Fixed up-front investment Mk T _ Systom Family
In prOdUCt Ilne \ - Time for Building
infrastructure pays back v Common Attefacts
once it is in place N,
\\ Shorter Development
S Cycles due to Reuse
\"~_____________\___
Numberof'

Different Systems

Software Product Lines

3/21/12 Slide: 6




SPL goals:

Commonality and variability

> Capitalise on commonality within a set of

software products, thereby avoiding duplication and
divergence.

> Manage variation by clearly defining the variation
points for a given set of software products.

Product Decisions
‘ Software Product Outputs

>

Software Asset Inputs
a
' Production

Source: http://www.softwareproductlines.com/introduction/concepts.html

Software Product Lines

3/21/12 Slide: 7



SPL concepts (1)

> Software Asset Inputs (core assets)

— a collection of software artefacts — such as requirements,
architecture, source code, components, test cases, domain
models, documentation, ... — that can composed in different
ways to create all products in a product line

— each asset has a well defined role within a common
architecture for the product line, i.e. it contributes to realise
a feature of a product

— some assets are fixed, they occur in every product (e.g. a
platform artefact, a core architecture), some assets are
configurable, they occur in some products (e.g. a plug-in, a
component)

— assets may have internal variation points

Software Product Lines

3/21/12 Slide: 8




SPL concepts (2)

> A feature is a system property that is relevant
to some stakeholder and is used to capture

commonalities or discriminate between
systems.” [Czarnecki, Helsen & Eisenecker 2004]

> Feature model (decision model)

— A description of optional and variable features for the
products in the product line

> Product decisions (configuration)

— Choices that are made for each of the optional and variable
features in the decision model

Software Product Lines

3/21/12 Slide: 9




SPL concepts (3)

> Production mechanism

— A (technological) means for composing and configuring
products from the software asset inputs (e.g. a plugin
architecture, a middleware platform in which components
are deployed, MDA style code generation, ...)

> Software product outputs

— Deployable software systems (products) that can be
generated from the core assets (e.g. integrated source code
of a product, a make-file with deployment descriptors, a
packaged product or product installer, ...)

Software Product Lines

3/21/12 Slide: 10




SPL process: Overview

1)Scope, commonality & variability (SCV) analysis
- Determine scope of software product outputs

- Determine common & variable features for that scope

2)Feature modelling

— Model feature relationships/dependencies

3)Configuration

— Select features for a specific software product

4)Derive software products

— Implement the configurations

Software Product Lines

3/21/12 Slide: 11




SPL process: ScV analysis

> Scope

— Range of software products that we want to derive
from the software asset inputs

> Scope management ranges between:

- Proactive: anticipate all products needed on the
foreseeable horizon

- Reactive: support only products needed in the
immediate term and add new products as the need
arises

Software Product Lines

3/21/12 Pag. 12




SPL process: scV analysis (2)

> Commonalities
— Core assets are built for each commonality

— A typical core asset is a common architecture for the
entire SPL

> Variabilities
— Are bounded by placing specific limits
— Are often organised as a hierarchy of sub-variabilities

— Example: an instant messaging client can support
multiple communication protocols (ICQ, MSN, Jabber).

— A Jabber sub-variability is encryption/no encryption

Software Product Lines

3/21/12 Pag. 13




SPL process:

Feature modelling: example

InstantMessenger
Network Userinterface Packaging
/\ <1-*> %
LocalNetwork JabberNetwork AWTUserlInterface SwingUserlInterface || WebAppletPackaging IpkgAppletPackaging
J LCDUIUserlInterface MIDletPackaging
JabberTransport /k
/Q\ extra constraints may apply
e.g. MIDletPackaging is not

DefaultJabberTransport || MEJabberTransport Compatible with

g SwingUserinterface )

Software Product Lines

3/21/12 Pag. 14




SPL process: Feature modelling

FODA notation Extended notation Cardinality-based
(Kang et al., 1990) (Czarnecki, 1998; Czarnecki and Eisenecker, 2000) notation

mandatory and optional mandatory and optional mandatory and optional

subfeatures

subfeatures

subfeatures

f

/ N\

J s \/o..u
]

group with

£, 5

alternative subfeatures

cardinality {1-1)

group with
cardinality {(1-k}

n/a exclusive-or group with group with

optional subfeatures cardinality {0—1)




SPL process:

Configuration

> Decision model can be in the form of:
- Feature model
— Domain-specific language (DSL) definition
— Logic rules

> Product decisions conform to the decision model:
— Constrained feature model (staged configuration)
— Expression in DSL
— Logic assumptions

Software Product Lines

3/21/12 Pag. 16




SPL process:

Configuration: Staged configuration

Refine feature

Assign attribute

[1.3] - [2.4]
cardinality
f1 I
f f
<2.3> <2.2>
Remove grouped [0.0]
feature ]
fr || f2 || /3 f3 fo L2 ) 1S
; f

<2 3> <2.2>
Refine group
cardinality
fi /> f3 [ f f3
‘ f f
<2 3> <].2>
Select grouped
feature
e, fr |2 || 12
f f
11.51 Cl(,ne Sulilaty {0..41

_ value feature
f(Integer) Sl : Integer) | f1 fi f1
3/21/12 Pag. 17




SPL process:

Configuration: DSML

Domain-specific modelling languages define
their abstract syntax in a meta-model

instantmessenger —|
1 1..%
) P Userlnterface
+deploymentTarget : EString
+config +userlnterface

+config

+C°”M 1 T+ config 1

AWTUserlInterface _SwingUserInterface ||_LCDUIUserInterface
1 | +jabberNetwork
1 +jabberTransport
JabberNetwork JabberTransport
+jabberNetwork 1 +packaging | 1
, Packaging
DefaultJabberTransport MEJabberTransport
1 | +localNetwork I I
LocalNetwork WebAppletPackaging IpkgAppletPackaging MIDletPackaging

Software Product Lines

3/21/12 Pag. 18




SPL process:

Configuration: DSML

instantmessengern
_InstantMessengerConfiguration | 1 L.*
) P Userlnterface

+deploymentTarget : EString

’ +config +userlnterface

+confi
+config”y 1 14 config 1 d | | A\
AWTUserInterface _&AL'Ln.gUserID/ LCDUIUserInterface
1 | +jabberNetwork \ |

Additional constraints can be expressed in OCL:
context InstantMessengerConfiguration
inv self.userInterface->select (u| ]
u.oclIsKindOf (AWTUserInterface))->size() <= 1 and
self.userInterface->select (ul
Locall 11.0c1IsKindOf (SwingUserInterface))->size() <= 1 and g—
self.userInterface->select (u|
u.o0clIsKindOf (LCDUIUserInterface))->size ()

1

Software Product Lines
3/21/12 Pag. 19




[instantme [[i‘] Resource Set

instand| ¥ @ platform:/resource/uml2cs-instantmessenger-default/default.instantmessenger
+deploy v @ Instant Messenger Configuration
Q Local Network
+conff
) v ,_:3 Jabber Network

@ Default Jabber Transport
& AWT User Interface
?ﬁ Web Applet Packaging

Packaging

DefaultJabberTransport MEJabberTransport

1 | +localNetwork

[ [
LocalNetwork WebAppletPackaging IpkgAppletPackaging MIDletPackaging

Software Product Lines

3/21/12 Pag. 20




SPL process:

Derive software product

> Manual:
- When new configurations are rarely made
- When only few configurations exist

— Consistency with configuration must be checked by
h a n d . Product Decisions

> Automatic: ||_—r
- When configuring often ~
— When configuring many products
— Enforces consistent implementation of configurations

Software Product Outputs

Software Product Lines

3/21/12 Pag. 21




SPL process:

Binding times

> SPL core assets can be “"bound” to (partial) software
products at various times

Cram-Crmm)

Partially In
Assets

First Binding Time Second Binding Time

Software Product Lines

3/21/12 Pag. 22




SPL process:

Binding times (2)

> Possible binding times:
— Source reuse time: reuse configurable source artefact
- Development time: architecture, design, coding
— Static code instantiation time: code assembly
- Build time: during compilation
- Package time: deployable packages
- Customer customisation: on-site adaptations
— Install time: during software installation
- Startup time: during software startup
— Run-time: during software execution

Software Product Lines

3/21/12 Pag. 23




SPL process:

Evolution

> Update paths

— Changes in core assets must
be reflected in products

— Introduction of new or
changed assets gives
opportunity to evolve all
products

> Feedback paths

— Changes in a product must
be generalised in core assets

— Fixes to core assets can be
propagated to all products

&= Evolution Over TiMme @

Software Product Lines

3/21/12 Pag. 24




Software Product Lines:

Summary

> SPLs leverage commonalities between related
software products while facilitating variabilities

- Increased (and enforced) software reuse
— Controlled variation

> SPLs have a specific development process in addition
to a traditional software engineering process

— Introduces (shared) overhead in development effort
— Difficult to apply on smaller scale

Software Product Lines

3/21/12 Pag. 25




MDA & SPL integration:

Overview

> SPLs use models for configuration

— Model transformation can be used to automatically
generate products

> The MDA targets multiple PSMs
- PSMs can be considered as products in a SPL

> The MDA has no configuration approach for multiple
model transformations

— SPL configuration is applicable to the MDA

Software Product Lines

3/21/12 Pag. 26




MDA & SPL integration:

Example: MD-SPL configuration

transformationg
TransformationConfig <<enumeration>>
+buildPath : EString ‘1 1 Mappina SaveModelType
+targetPath : EString ] . none
+saveModels : SaveModelType | tconfig +mapping last
£ 1 Q4config Ttconfig all
1 \ +applet 1 +observer
UML2Applet UML20bserver JavaMapping | *+dataTypes| javapataTypes
T T +mapping 1 JAN
UMLZMIDIet UML2Javabbserver JavalDataTypes Java2DataTypes
instantmessenger
InstantMessengerConfiguration |ntegrat|0n of SPL featyres " Userlnterface
+deploymentTarget : EString and model transformations
Interface
-Lrnnﬁn/ 1 ’ ) r\ +co lﬁ

Software Product Lines

3/21/12 Pag. 27




MDA & SPL integration:

Example: MD-SPL configuration
% defaultinstantmessenger 53

./ Resource Set

transforma

T p
+build] ¥ ‘a platform:/resource/uml2cs-instantmessenger-default/default.instantmessenger
+targ v @ Instant Messenger Configuration uml2cs-instantmessenger-default/build
+Save
v |J) Java Mapping <—

J, Javal Data Types <{mmmmm
U7 UML2 Java Observer <G
UML2 Applet <(u
&) Local Network <

¥ 2’ Jabber Network < _
©} Default Jabber Transport <¢ammmm INtegration of SPL features

S| AWT User Interface <«ummm and model transformations
instantme T Web Applet Packaging <«

1 i)l
+deploymentTarget : EString

-Lrnnﬁn/ 1 ’ ) r\ +c0nﬁg

Software Product Lines

+config +userlnterface ! lﬁ

3/21/12 Pag. 28




MDA & SPL integration:

Example: MD-SPL configuration

> Integrated configuration DSL

— Combines model transformation configuration rules
with feature configuration rules

> Integrated product generation

— Generator applies model transformations to all
selected features

Software Product Lines

3/21/12 Pag. 29




Further reading:

Books

> K. Pohl, G. Bockle, F. van der Linden, Software Product Line
Engineering: Foundations, Principles, and Techniques (2005)

> P. Clements, L. Northrop, Software Product Lines: Practices and
Patterns (2001)

> D. M. Weiss, C. T. R. Lai, Software Product-Line Engineering: A
Family-Based Software Development Process (1999)

> K. Czarnecki, U. W. Eisenecker, Generative Programming - Methods,
Tools, and Applications (2000)

Software Product Lines

3/21/12 Slide: 30



Further reading:

Papers

> K. Czarnecki, S. Helsen, U. W. Eisenecker, Staged configuration
through specialization and multilevel configuration of feature models,
Software Process: Improvement and Practice 10(2)

> J. Coplien, D. Hoffman, D. Weiss, Commonality and variability in
software engineering, IEEE Software 15(6)

> D. Benavides, A. Ruiz-Cortéz, P. Trinidad, S. Segura, A Survey on the
Automated Analyses of Feature Models, Proceedings of JISBD'06

Software Product Lines

3/21/12 Slide: 31




Further reading:

Websites

> Software Product Lines website at CMU:

> Software Product Lines website by BiglLever:

> Software Product Lines Conferences:

> Generative Programming and Component Engineering Conferences:

> VariBru - Variability in Software-Intensive Product Development:

Software Product Lines

3/21/12 Slide: 32




