
Software Product Lines

Dennis Wagelaar
Viviane Jonckers

Software Languages Lab

3/21/12
Software Product Lines

Slide: 2

Software Product Lines (SPL)

  SPL origins, goals

  SPL concepts

–  Core assets, features

–  Product decisions, output

  SPL process
–  SCV analysis, feature modelling

–  Configuration, product derivation

  MDA & SPL integration

  Further reading From http://www.softwareproductlines.com

3/21/12
Software Product Lines

Slide: 3

SPL origins:
Mass customisation & commonality

  Software Product Lines (SPLs) follow the idea of
regular product lines, such as:

–  Ford automobile product line

–  Kodak camera product line

–  HP printer product line

  Product lines aim to combine two principles:

–  Mass customisation: realise many versions of one car
model (configured and assembled in one factory)

–  Mass production: from a pool of carefully architected car
parts (produced in dedicated factories)

3/21/12
Software Product Lines

Slide: 4

SPL origins:
Definition

  “A software product line is a set of software-intensive
systems sharing a common, managed set of features that
satisfy the specific needs of a particular market segment or
mission and that are developed from a common set of core
assets in a prescribed way.” [Clements & Northrop 2001]

  Also known as Software Families or Family-Oriented Software
Development

  Classic reuse is opportunistic: a general software component is put in
a library in hope that opportunities for reuse will arise

  In SPL reuse is predictive: software artefacts are created because
reuse is predicted in one or more products in a well defined product
line

3/21/12
Software Product Lines

Slide: 5

SPL goals:
Envisioned benefits (1/2)

  Reduction of
development costs

–  Fixed up-front investment
in product line
infrastructure pays back
as system family grows

3/21/12
Software Product Lines

Slide: 6

SPL goals:
Envisioned benefits (2/2)

  Reduction of time to
market

–  Fixed up-front investment
in product line
infrastructure pays back
once it is in place

3/21/12
Software Product Lines

Slide: 7

SPL goals:
Commonality and variability

  Capitalise on commonality within a set of
software products, thereby avoiding duplication and
divergence.

  Manage variation by clearly defining the variation
points for a given set of software products.

Source: http://www.softwareproductlines.com/introduction/concepts.html

3/21/12
Software Product Lines

Slide: 8

SPL concepts (1)

  Software Asset Inputs (core assets)
–  a collection of software artefacts – such as requirements,

architecture, source code, components, test cases, domain
models, documentation, ... – that can composed in different
ways to create all products in a product line

–  each asset has a well defined role within a common
architecture for the product line, i.e. it contributes to realise
a feature of a product

–  some assets are fixed, they occur in every product (e.g. a
platform artefact, a core architecture), some assets are
configurable, they occur in some products (e.g. a plug-in, a
component)

–  assets may have internal variation points

3/21/12
Software Product Lines

Slide: 9

SPL concepts (2)

  “A feature is a system property that is relevant
to some stakeholder and is used to capture
commonalities or discriminate between
systems.” [Czarnecki, Helsen & Eisenecker 2004]

  Feature model (decision model)
–  A description of optional and variable features for the

products in the product line

  Product decisions (configuration)
–  Choices that are made for each of the optional and variable

features in the decision model

3/21/12
Software Product Lines

Slide: 10

SPL concepts (3)

  Production mechanism
–  A (technological) means for composing and configuring

products from the software asset inputs (e.g. a plugin
architecture, a middleware platform in which components
are deployed, MDA style code generation, …)

  Software product outputs

–  Deployable software systems (products) that can be
generated from the core assets (e.g. integrated source code
of a product, a make-file with deployment descriptors, a
packaged product or product installer, …)

3/21/12
Software Product Lines

Slide: 11

SPL process: Overview

1) Scope, commonality & variability (SCV) analysis
–  Determine scope of software product outputs

–  Determine common & variable features for that scope

2) Feature modelling

–  Model feature relationships/dependencies

3) Configuration

–  Select features for a specific software product

4) Derive software products
–  Implement the configurations

Pag. 12 3/21/12
Software Product Lines

SPL process: SCV analysis

  Scope
–  Range of software products that we want to derive

from the software asset inputs

  Scope management ranges between:
–  Proactive: anticipate all products needed on the

foreseeable horizon

–  Reactive: support only products needed in the
immediate term and add new products as the need
arises

Pag. 13 3/21/12
Software Product Lines

SPL process: SCV analysis (2)

  Commonalities
–  Core assets are built for each commonality

–  A typical core asset is a common architecture for the
entire SPL

  Variabilities
–  Are bounded by placing specific limits

–  Are often organised as a hierarchy of sub-variabilities

–  Example: an instant messaging client can support
multiple communication protocols (ICQ, MSN, Jabber).
– A Jabber sub-variability is encryption/no encryption

Pag. 14 3/21/12
Software Product Lines

SPL process:
Feature modelling: example

InstantMessenger

JabberNetwork LocalNetwork

JabberTransport

DefaultJabberTransport MEJabberTransport

UserInterface Packaging

AWTUserInterface SwingUserInterface

LCDUIUserInterface

<1-*>

WebAppletPackaging IpkgAppletPackaging

MIDletPackaging

Network

extra constraints may apply
e.g. MIDletPackaging is not

compatible with
SwingUserInterface

Pag. 15 3/21/12
Software Product Lines

 SPL process: Feature modelling

Pag. 16 3/21/12
Software Product Lines

 SPL process:
 Configuration

  Decision model can be in the form of:
–  Feature model

–  Domain-specific language (DSL) definition

–  Logic rules

  Product decisions conform to the decision model:
–  Constrained feature model (staged configuration)

–  Expression in DSL

–  Logic assumptions

Pag. 17 3/21/12
Software Product Lines

 SPL process:
 Configuration: Staged configuration

Pag. 18 3/21/12
Software Product Lines

 SPL process:
 Configuration: DSML

Domain-specific modelling languages define
their abstract syntax in a meta-model

Pag. 19 3/21/12
Software Product Lines

SPL process:
Configuration: DSML

Additional constraints can be expressed in OCL:
context InstantMessengerConfiguration
inv self.userInterface->select(u|
u.oclIsKindOf(AWTUserInterface))->size() <= 1 and
 self.userInterface->select(u|
u.oclIsKindOf(SwingUserInterface))->size() <= 1 and
 self.userInterface->select(u|
u.oclIsKindOf(LCDUIUserInterface))->size() <= 1

Pag. 20 3/21/12
Software Product Lines

 SPL process:
 Configuration: DSML product decisions

Pag. 21 3/21/12
Software Product Lines

SPL process:
Derive software product

  Manual:
– When new configurations are rarely made

– When only few configurations exist

–  Consistency with configuration must be checked by
hand

  Automatic:
– When configuring often

– When configuring many products

–  Enforces consistent implementation of configurations

Pag. 22 3/21/12
Software Product Lines

SPL process:
Binding times

  SPL core assets can be “bound” to (partial) software
products at various times

Pag. 23 3/21/12
Software Product Lines

SPL process:
Binding times (2)

  Possible binding times:
–  Source reuse time: reuse configurable source artefact
– Development time: architecture, design, coding
–  Static code instantiation time: code assembly
–  Build time: during compilation
–  Package time: deployable packages
–  Customer customisation: on-site adaptations
–  Install time: during software installation
–  Startup time: during software startup
–  Run-time: during software execution

Pag. 24 3/21/12
Software Product Lines

SPL process:
Evolution

  Update paths
–  Changes in core assets must

be reflected in products

–  Introduction of new or
changed assets gives
opportunity to evolve all
products

  Feedback paths
–  Changes in a product must

be generalised in core assets

–  Fixes to core assets can be
propagated to all products

Pag. 25 3/21/12
Software Product Lines

Software Product Lines:
Summary

  SPLs leverage commonalities between related
software products while facilitating variabilities
–  Increased (and enforced) software reuse

–  Controlled variation

  SPLs have a specific development process in addition
to a traditional software engineering process
–  Introduces (shared) overhead in development effort

–  Difficult to apply on smaller scale

Pag. 26 3/21/12
Software Product Lines

MDA & SPL integration:
Overview

  SPLs use models for configuration
– Model transformation can be used to automatically

generate products

  The MDA targets multiple PSMs
–  PSMs can be considered as products in a SPL

  The MDA has no configuration approach for multiple
model transformations
–  SPL configuration is applicable to the MDA

Pag. 27 3/21/12
Software Product Lines

MDA & SPL integration:
Example: MD-SPL configuration

Integration of SPL features
and model transformations

Pag. 28 3/21/12
Software Product Lines

MDA & SPL integration:
Example: MD-SPL configuration

Integration of SPL features
and model transformations

Pag. 29 3/21/12
Software Product Lines

MDA & SPL integration:
Example: MD-SPL configuration

  Integrated configuration DSL
–  Combines model transformation configuration rules

with feature configuration rules

  Integrated product generation
–  Generator applies model transformations to all

selected features

3/21/12
Software Product Lines

Slide: 30

Further reading:
Books

  K. Pohl, G. Böckle, F. van der Linden, Software Product Line
Engineering: Foundations, Principles, and Techniques (2005)
http://www.software-productline.com/

  P. Clements, L. Northrop, Software Product Lines: Practices and
Patterns (2001)
http://www.informit.com/store/product.aspx?isbn=0201703327

  D. M. Weiss, C. T. R. Lai, Software Product-Line Engineering: A
Family-Based Software Development Process (1999)
http://tinyurl.com/cwjllo

  K. Czarnecki, U. W. Eisenecker, Generative Programming - Methods,
Tools, and Applications (2000)
http://www.generative-programming.org/

3/21/12
Software Product Lines

Slide: 31

Further reading:
Papers

  K. Czarnecki, S. Helsen, U. W. Eisenecker, Staged configuration
through specialization and multilevel configuration of feature models,
Software Process: Improvement and Practice 10(2)
http://swen.uwaterloo.ca/~kczarnec/spip05b.pdf

  J. Coplien, D. Hoffman, D. Weiss, Commonality and variability in
software engineering, IEEE Software 15(6)
http://doi.ieeecomputersociety.org/10.1109/52.730836

  D. Benavides, A. Ruiz-Cortéz, P. Trinidad, S. Segura, A Survey on the
Automated Analyses of Feature Models, Proceedings of JISBD'06
http://www.lsi.us.es/~trinidad/docs/benavides06-jisbd.pdf

3/21/12
Software Product Lines

Slide: 32

Further reading:
Websites

  Software Product Lines website at CMU:
http://www.sei.cmu.edu/productlines/

  Software Product Lines website by BigLever:
http://www.softwareproductlines.com

  Software Product Lines Conferences:
http://splc.net/

  Generative Programming and Component Engineering Conferences:
http://www.gpce.org/

  VariBru - Variability in Software-Intensive Product Development:
http://www.varibru.be/

