
The Model Driven Architecture

Dennis Wagelaar
Viviane Jonckers

Software Languages Lab

3/21/12
MDA

Slide: 2

Special session:
The Model Driven Architecture (MDA)

  MDA origins, goals

  MDA concepts

–  Platform, CIM, PIM, PSM...

–  Models and meta-models

–  The role of UML in MDA

–  Model transformation

  MDA applied
–  Case study

  Further reading From http://www.omg.org/mda/

3/21/12
MDA

Slide: 3

MDA origins:
Programming vs. software engineering

“The sooner you start, the longer
it takes.”

Fred Brooks Jr, The Mythical Man Month, 1975.

  Good Design Matters
–  Skimp on Requirements Capture
⇒ Design the wrong system

– Unfamiliar application domains

– Multiple stakeholders

–  Skimp on Design
⇒ Inconsistent implementation

– Different programmers think different

3/21/12
MDA

Slide: 4

MDA origins:
The role of modelling

  Models of a system...
–  ...help communicate the properties of that system amongst

its stakeholders (software engineers, customers, ...)

–  ...are used for Requirements Capture as well as Design

  Modelling languages:
–  Object oriented modelling languages

– OMT (Rumbaugh), Booch, Yourdon and now the Unified Modeling
Language (UML)

–  Domain-specific modelling languages

– Matlab Simulink, LabView, MetaCase, SysML, ...

3/21/12
MDA

Slide: 5

MDA origins:
The missing link in modelling

  Models of a system...
–  ...are manually implemented

in a programming language

–  ...serve only as
documentation and provide
no guarantee on the
implemented system

–  ...gradually fall out of sync
with the code and no longer
truthfully represent the
implemented system

From [Kleppe et al., 2003]

3/21/12
MDA

Slide: 6

MDA goals:
Models as part of the automation chain

  Models of a system...
–  ...should be structured and

machine readable

–  ...should be well-defined and
correspond to the
implemented system

–  ...should survive system
evolution

–  Maintenance

–  Platform changes

From [Kleppe et al., 2003]

3/21/12
MDA

Slide: 7

MDA goals:
The MDA pattern

PIM

PSM

Transformation

  Design a Platform Independent
Model (PIM)

  Automatically transform to a
Platform Specific Model (PSM)

  Repeat until you reach code
–  “Platform Independent” is relative:

– Example: independent from J2SE, J2EE
and J2ME, but specific to Java

– Example: independent from OOP, RDBMS,
but specific to data modelling

3/21/12
MDA

Slide: 8

MDA goals:
Envisioned benefits

  Productivity
–  Shift development focus from PSM to PIM

–  Reusable PIM-to-PSM transformations

  Portability

–  PIMs are portable to multiple platforms

  Maintenance and Documentation

–  Automatic transformations keep (derived) artefacts in sync

3/21/12
MDA

Slide: 9

MDA concepts:
Platform

  What exactly is meant by “platform” in the MDA?
–  “A platform is a set of subsystems and technologies that

provide a coherent set of functionality through interfaces
and specified usage patterns, which any application
supported by that platform can use without concern for the
details of how the functionality provided by the platform is
implemented.” [Miller and Mukerji, 2003]

–  Loose interpretation: “The combination of hardware and
software features on which the system under development
depends” → Platforms are about dependencies

–  Examples: Java, J2EE, Hibernate, Linux, i386, AWT, glibc, ...

3/21/12
MDA

Slide: 10

MDA concepts:
CIM, PIM, PSM and PM

  The MDA predefines certain kinds of models:
–  Computation Independent Model (CIM): A conceptual,

data-centric model of the system's application domain

–  Platform Independent Model (PIM): An architectural
model that includes interfacing information between parts of
the system, and may include behavioural specifications

–  Platform Specific Model (PSM): PIM including technical
details with dependencies on a specific platform

–  Platform Model (PM): Model describing platform features
that we can interface with

3/21/12
MDA

Slide: 11

MDA concepts:
CIM example Class hierarchy mostly models

domain-specific data-structure, in
the form of attributes and

associations

Sporadic operation definitions
specify domain-specific behaviour

3/21/12
MDA

Slide: 12

MDA concepts:
PIM example PIM includes architectural

information, i.e. how different parts
of the system interface with each

other

3/21/12
MDA

Slide: 13

MDA concepts:
PSM example

PSM includes references to platform-specific
types/interfaces (platform dependencies) →

These types/interfaces are typically defined in
the Platform Model

PSM includes
implementation details,
such as getter/setter

operations

3/21/12
MDA

Slide: 14

MDA concepts:
PM example

Simplified Java Platform Model (java.util):
Introduces Java API elements. PMs can also take

the form of UML Profiles and introduce new
language constructs (e.g. Java annotations).

More specific PMs are also possible, such as for
the Java J2SE 1.5 platform.

3/21/12
MDA

Slide: 15

MDA concepts:
Models and meta-models

  Models in the MDA are structured and machine
readable

  The structural rules are defined in a meta-model:
“Model about models”

–  Meta-models often expressed in the Meta Object Facility
(MOF) language, which is a simplified UML class diagram
language

–  Can also be formally defined using (type) graphs

–  Goal: Describe the abstract syntax of a modelling language

3/21/12
MDA

Slide: 16

MDA concepts:
Models and meta-models

  Models conform to a meta-model if they follow the syntactic
rules of that meta-model

  Model elements are instances of meta-classes defined in the
meta-model

Model Meta-model

Shape

Rectangle

<<metaclass>>
Class

<<metaclass>>
Generalization

parent child

1

1

general

*

3/21/12
MDA

Slide: 17

MDA concepts:
Models and meta-models

Model Meta-model

Shape

Rectangle

<<metaclass>>
Class

<<metaclass>>
Generalization

parent child

1 1

general

*

Shape : Class Rectangle : Class

 : Generalization
parent

general

child

  Object representation of a model:

<<metaclass>>
Class

<<metaclass>>
Generalization

parent child

1

1

general

*

3/21/12
MDA

Slide: 18

Models and meta-models:
Meta-model stack

M3

Meta-meta-models MOF
Meta-model

M2

Meta-models

M1

Models

M0

Information

UML
Meta-model

UML
Model
UML

Model
UML

Model

object1 : Object object1 : Object object1 : Object

3/21/12
MDA

Slide: 19

Models and meta-models:
Eclipse Ecore meta-modelling language

From [Budinsky et al., 2003]

  Ecore is a simplified version of MOF
–  Available as an Eclipse plug-in

  Meta-reflective
–  Ecore conforms to Ecore

–  EClass is an instance of EClass

3/21/12
MDA

Slide: 20

Models and meta-models:
The role of the UML in the MDA

  The UML is intended as a general-purpose, OO
modelling language

–  Unified but not universal

– Not the ideal language for each application domain, but rather a
compromise

–  Serves as a basis for extension and reuse

– One can build domain-specific languages (DSLs) as UML
extensions, but DSLs can also be defined as stand-alone
languages

–  UML-RT vs. SysML

3/21/12
MDA

Slide: 21

Models and meta-models:
The role of the UML in the MDA

  The UML can be extended via its MOF meta-model,
but it also defines its own extension mechanism:
Profiles
–  Profiles can only add language refinements to the UML,

while staying within the predefined UML semantics

Standard UML semantics

refined semantics
(valid) different semantics

(NOT valid)

Adapted from OMG's UML tutorial

3/21/12
MDA

Slide: 22

The role of the UML in the MDA:
UML Profiles

  Profiles (UML 2.1) consist of
–  Stereotypes

– Used to refine semantics of UML meta-classes

– Can have attributes that allow for adding extra information on
stereotyped model elements

–  Constraints

– Used to narrow down allowed expressions

– Often expressed in the Object Constraint Language (OCL)

3/21/12
MDA

Slide: 23

The role of the UML in the MDA:
UML meta-model: Profiles

Profiles are Packages that
can also contain stereotypes

Stereotypes are classes that
extend meta-classes

UML “Class” is used to model classes as well as
meta-classes → confusing, because MOF

“Class” is already used to model meta-classes

3/21/12
MDA

Slide: 24

The role of the UML in the MDA:
UML Profile example

«Applet»
InstantMessagingClient

{appletInfo = “© 2007, Dennis Wagelaar”}

«stereotype»
Applet

+appletInfo : String

«profile»
Applet

«metaclass»
Class

(from UML)

Profile

Stereotype

Stereotype
attribute

Extension Meta-class

Stereotype
application

(indicated by
keyword)

Stereotype
attribute

value

Definition
Application

3/21/12
MDA

Slide: 25

MDA concepts:
Model transformation

  Model transformation plays a central role in the MDA
–  Generate derived MDA elements, such as PSMs, and code

  The term “model transformation” is ambiguous and
can mean all of the following:

–  Model transformation definition refers to an expression
in a model transformation language that can be executed by
a transformation engine

–  Model transformation execution refers to the application
on a model transformation definition to a specific set of
input models

3/21/12
MDA

Slide: 26

MDA concepts:
Model transformation

  Model transformations use meta-models to express
which model elements it transforms

Model
Transformation

Execution

Input Model

Input Meta-Model

Output Model

Output Meta-Model
(Can be the same)

3/21/12
MDA

Slide: 27

Model transformation:
Transformations as models

Input Model

Input Meta-Model

Output Model

Output Meta-Model

Model Transformation
Definition

Model Transformation
Language

MOF

3/21/12
MDA

Slide: 28

Model transformation:
Scenarios

  PIM-to-PSM transformations are vertical
transformations

–  Can be endogenous (=same input/output language)

–  Can be exogenous (=different input/output language)

Adapted from [Mens and Van Gorp, 2005]

3/21/12
MDA

Slide: 29

Model transformation:
Languages

  Several model transformation languages exist:
–  MOF-based

– QVT (Relations, Operational mappings, Core)

– ATL, Tefkat, Kermeta, BOTL, UMLX, MOLA, ...

–  Graph-based

– Graph grammars (AGG, Atom3, GreAT, Viatra)

– Triple graph grammars (Fujaba)

  We use ATL in our examples

–  good tool support

–  can deal with MOF-based languages, such as UML

For an overview of model transformation languages, see [Czarnecki and Helsen, 2006]

3/21/12
MDA

Slide: 30

Model transformation:
Example

  Class-to-Relational
–  Transforms class diagrams into relational schemas

– Source meta-model Class is a simplification of class diagrams

– Target meta-model Relational is a simplification of relational
schemas

– Expressed in ATL

  Example courtesy from Eclipse OMCW:
–  http://www.eclipse.org/gmt/omcw/resources/

3/21/12
MDA

Slide: 31

Model transformation:
Class-to-Relational example

module Class2Relational;
create Mout : Relational from Min : Class;

rule Class2Table { ... }
rule SingleValuedAttribute2Column { ... }
rule MultiValuedAttribute2Column { ... }

  An ATL transformation module...
–  ...creates one or more output models using one or more

input models

–  ...consists of a number of transformation rules

3/21/12
MDA

Slide: 32

Class-to-Relational example:
Class meta-model

NamedElt

+ name : String

Classifier

Attribute

+ multivalued : Boolean

type +

DataType Class attr +

*
{ ordered }

owner

3/21/12
MDA

Slide: 33

Class-to-Relational example:
Relational meta-model

Named

+ name : String

Table Column

owner +

col +

*
{ ordered }

keyOf + 0..1 key + *

Type * type +

3/21/12
MDA

Slide: 34

Class-to-Relational example:
Class2Table transformation rule

  A Table is created for each Class
  The name of the Table is the name of the Class:
  The columns of the table correspond to the single-valued attributes of

the class

rule Class2Table {
 from
 c : Class!Class
 to
 t : Relational!Table (
 name <- c.name,
 col <- c.attr->select(e|not e.multiValued)

 (
} complex navigation

a simple binding

attributes are automatically resolved
into columns (triggered on '<-’)

3/21/12
MDA

Slide: 35

Class-to-Relational example:
SingleValuedAttribute2Column rule

  A Column is created for each single-valued Attribute:

rule SingleValuedAttribute2Column {
 from -- the guard is used for selection
 a : Class!Attribute (not a.multiValued)
 to
 c : Relational!Column (name <- a.name)
}

3/21/12
MDA

Slide: 36

Class-to-Relational example:
MultiValuedAttribute2Column rule

  A Table with two columns is created for each multi-valued
Attribute

  The identifier of the table is created from the names of the class owner of
the Attribute and the name of the attribute

  The columns get the names ‘Id’ and the name of the attribute and will
store id/value pairs

rule MultiValuedAttribute2Column {
 from
 a : Class!Attribute (a.multiValued)
 to
 t : Relational!Table (
 name <- a.owner.name + ‘_’ + a.name,
 col <- Sequence {id, value}),
 id : Relational!Column (name <- ‘Id’),
 value : Relational!Column (name <- a.name)
}

3/21/12
MDA

Slide: 37

MDA applied:
Case study

  Instant messaging client
–  11 PIM-to-PSM refinement transformations

–  One core PIM and 7 optional feature PIMs

–  Targets various Java client platforms

3/21/12
MDA

Slide: 38

MDA applied:
Case study overview

 PSM1 PSM2 PSM3

PIMs PIMs PIMs

MTE1

MTEn MTEn MTEn

...

MTE1 MTE1

... ...

Step-wise refinement
transformations generate

intermediate PSMs
Different
chains of

refinement
transfor-
mations
result in

PSMs for
different
platforms

3/21/12
MDA

Slide: 39

The Model Driven Architecture:
Summary 1/2

  MDA origins:
–  Good Design Matters: modelling is an important tool for that

–  The connection between model and code was weak

– No guaranteed commonalities between model and code

– Evolving code gradually falls out out sync with model

  MDA goals:

–  Automatic transformation from PIMs to PSMs

–  Envisioned benefits: Productivity, Portability,
Interoperability, Maintenance and Documentation

3/21/12
MDA

Slide: 40

The Model Driven Architecture:
Summary 2/2

  MDA concepts:
–  Platform, CIM, PIM, PSM, PM

–  Model and meta-models

–  The role of the UML in the MDA: profiles and stereotypes

–  Model transformation: scenarios, languages & example

3/21/12
MDA

Slide: 41

Further reading:
Books & Papers

  A. Kleppe, J. Warmer, W. Bast, MDA Explained: The Model Driven Architecture : Practice and
Promise (2003)
http://books.google.be/books?vid=ISBN032119442X

  S.J. Mellor, K. Scott, A. Uhl, D. Weise, MDA Distilled: Principles of Model-Driven Architecture
(2004)
http://my.safaribooksonline.com/0201788918

  S.J. Mellor, M.J. Balcer, Executable UML: A Foundation for Model-Driven Architecture (2002)
http://www.executableumlbook.com/

  J. Miller, J. Mukerji, MDA Guide. Object Management Group, Inc., Version 1.0.1, omg/
03-06-01 (2003)
http://www.omg.org/cgi-bin/apps/doc?omg/03-06-01.pdf

  K. Czarnecki, S. Helsen, Feature-based survey of model transformation approaches. IBM
Systems Journal 45(3), pp. 621—645, July 2006.
http://www.research.ibm.com/journal/sj/453/czarnecki.html

  T. Mens, P. Van Gorp, A Taxonomy of Model Transformation. Electr. Notes Theor. Comput.
Sci. 152, pp. 125—142, 2006.
ftp://ftp.umh.ac.be/pub/ftp_infofs/2005/GraMOT-taxonomy.pdf

3/21/12
MDA

Slide: 42

Further reading:
Websites

  Open Model CourseWare:
http://www.eclipse.org/gmt/omcw/resources/

  ModelWare Project (Videos):
http://www.modelware-ist.org/

  Eclipse Modeling Framework (EMF):
http://www.eclipse.org/modeling/emf/

  ATLAS Transformation Language (ATL):
http://www.eclipse.org/m2m/atl/

  Planet MDE (links to portals, conferences and tools):
http://planet-mde.org/

  MDE research within SSEL:
http://ssel.vub.ac.be/ssel/research/mdd

