
Advanced Software Development
Models and Frameworks
CBSD - SOA - AOSD

Viviane Jonckers
2012

Monday 11 March 13

Middleware and

Components

Monday 11 March 13

 p. 2

Client Server History

• Information and processing centralized on
dedicated machines
– 1960s mainframe computer
– 1970s minicomputers

• Information and processing bundled but
scattered
– 1980s personal computers: scattered information,

inconsistency and data loss
• Information centralised, widespread data access

– client/server architectures

Monday 11 March 13

 p. 3

Two-tier systems
• Database server:

– client/server communication through a database language
– business processes on client, server for data persistency and integrity

• Application server:
– clients/server communication on the level of a business transaction
– business processes on server, clients request execution

Monday 11 March 13

 p. 4

Middleware (More-tier systems)

• Pops up to provide flexibility and interoperability
• Addresses some of the liabilities of 2-tier systems
• Examples:

– transaction processing monitor:
• streams of requests from multiple clients
• load balancing between different servers
• failover on server fails

– communication protocol translation
– consolidate requests and answers between clients and multiple

heterogeneous servers
– service metering
– network traffic information
– …

Monday 11 March 13

 p. 6

Formulated at the 1996 ECOOP conference
(Szyperski and Pfister, 1997)

Software Components

 " A software component is a unit of composition with
contractually specified interfaces and explicit context
dependencies only. A software component can be
deployed independently and is subject to composition by
third parties "

Monday 11 March 13

 p. 7

• The ultimate re-use scenario: application development as black-
box assembly of off-the-shelf components (COTS)

• The use of components is a law of nature in any maturing
engineering discipline, the cost of component building can be
spread out over multiple applications

• The concept of component software brings the middle path
between custom-made and standard software: each component is
a standardised product with all the advantages this brings while the
process of component assembly allows for significant
customisations

• Software components are binary units of independent production,
acquisition, and deployment

• Software differs from other engineering discipline as it is the blue
print that is delivered rather than the realisations of it

Component Based
Development

Monday 11 March 13

 p. 8

Components:
coarse grained, third party, black-box, explicit
interfaces, QoS

Monday 11 March 13

 p. 9

• The interface of a component defines its access points, clients (usually
other components) access services provided by a component through
these access points

– Syntax: specification of the provided interfaces using some standard
Interface Description Language

– Semantics: (formal) specification of the functionality of each service
provided (e.g. pre- and post-conditions)

– Syncronisation: (formal) specification of expected or imposed ordering,
grouping and mutual exclusion of services provided

– Quality of Service: specification of guaranteed response times,
upperbounds for resource consumption (CPU-time, memory, etc.), failure
rates, mean time between failure, etc.

• The component must specify what the deployment environment must
provide for the component to be able to function properly

– Required interfaces of other components.
– Since there are multiple component world emerging, components must also

mention the world they are prepared for (I.e. platform, implementation
language, component model, component and library versions etc.)

Interfaces and Explicit Context
Dependencies

Monday 11 March 13

 p. 10

Component "Weight"

Fat Components
• The component is self-

contained and can function
under weak environmental
guarantees

• The context dependencies are
reduced making the component
more robust over time

• But a component with
everything bundled in is not a
component anymore

Lean Components
• Other components are (re)-

used to achieve the
component's services

• The context dependencies
increase making the
component more vulnerable
in case of context evolution

• Re-use is maximized, use is
compromised

In CBSD components have to be loosely coupled

Monday 11 March 13

 p. 11

Scale and Granularity

• A component's size may vary from a single class or function to
a complete subsystem

• Most of the aspects relevant to granularity seem to demand
fairly coarse grained partitionings

Components as units of
abstraction, accounting, compilation,

delivery, dispute, fault containment, instantiation,
loading, maintenance, system management

Monday 11 March 13

 p. 12

Component Composition or
Wiring (1)

• Most class libraries and frameworks are not
components in the strict sense, they are delivered in
source form and implementation inheritance is the
common re-use mechanism which is typically white-
box reuse

Monday 11 March 13

 p. 12

Component Composition or
Wiring (1)

• Most class libraries and frameworks are not
components in the strict sense, they are delivered in
source form and implementation inheritance is the
common re-use mechanism which is typically white-
box reuse

_

__
__
_

Library approach

Monday 11 March 13

 p. 12

Component Composition or
Wiring (1)

• Most class libraries and frameworks are not
components in the strict sense, they are delivered in
source form and implementation inheritance is the
common re-use mechanism which is typically white-
box reuse

_

__
__
_

Library approach
__
__

__
_

_ __
_

Framework approach

Monday 11 March 13

 p. 13

Component Composition or
Wiring (2)

• Software components are third party configurable:
blackbox reuse with plug-and-play composition is
aimed for

• In practice, lots of glue code needs to be written to
make components work together

• Distribution and heterogeneaty aggreviates the
problem

Utopic approach: plug and play In practice: glue code

Monday 11 March 13

 p. 14

Middleware = Component
Infrastructure Technology

• Utopic scenario:
– Select&Wire
– Go

• Real world:
– Interface mismatches
– Heterogeneous, distributed platforms

• Middleware
• Introduces some component-connector

model
• Supports interoperation of components

over heterogeneous systems
• Includes reusable services (persistency,

security, transaction management, etc.)
• Offers deployment and execution

environment
• Find out what components are

currently connected
• make references to components

via some naming scheme
• guarantee once-only delivery of

messages between components

Monday 11 March 13

 p. 15

Technical Solutions

• CORBA
• COM/DCOM
• J2EE
• Web Services

• JAVA BEANS

• EJB
• Active-X

Mi
dd

lew
ar

e
Co

mp
on

en
t m

od
els

Monday 11 March 13

 p. 16

What’s New?

• Distributing Computing = Teamwork among
Computers

• To make distributed programs we need Remote
Procedure Calls (RPC)

• The first generation of RPC made the network
transparent for function invocations

• Remote Method Call (RMI) is the OO-variant
• Middlewares do that AND support transfer of whole

objects across network connections, between
different platforms, running programs in different
languages, provide extra services, etc.

Monday 11 March 13

Case:

CORBA

Monday 11 March 13

 p. 17

OMG's Corba

• OMG is a large consortium in the computer industry
that operates as a non profit organisation and aims at
the standardisation of "whatever it takes" to achieve
interoperability of object-oriented systems
implemented in different languages on different
platforms

• The outcome is the Common Object Request Broker
Architecture which is an open standard

• Corba has essentially three parts: a set of invocation
interfaces, the Object Request Broker (ORB), and a
set of object adapters

Monday 11 March 13

 p. 18

OMG's IDL

• For invocation interfaces and object adapters to work
all interfaces must be described in a common
language and all languages must have a mapping to
this common language, OMG's IDL is this common
language

• Once interfaces are written in IDL they are compiled
and put in a repository which resides with the ORB.
Program fragments that implement these interfaces
are compiled and put in an implementation repository
also with the ORB

• An ORB specific IDL compiler is used to generate
stubs and skeletons (client and server side proxy's)

Monday 11 March 13

 p. 19

Object
adapter

Object Request Broker
Architecture

ORB

ORB
interface

IDL
stubs

Dynamic
invocation
interface

IDL
skeletons

Dynamic
skeleton
interface

Application
Programs

Server
Programs

IDL source

IDL
COMPILER

Monday 11 March 13

Case:

JEE

Monday 11 March 13

 p. 20

J2EE (now Java EE)
middleware for the Java world

• Industry standard for developing portable, robust,
scalable, multi-user, and secure server-side Java
applications

• Builds on the Enterprise Java Beans component model
• EJB is designed to make application creation easy, I.e

free programmers from details of managing transactions,
thread, load balancing, etc.

• Allows to combine components from different vendors, to
combine with non-Java applications and interoperates
with Corba

Monday 11 March 13

 p. 21

EJB basics (1)
• EJB component: A Java class written by a developer, implements

business logic, lives in a EJB container that runs on a EJB server
• EJB container: Resides on the server and provides services such

as transaction and resource management, versioning, scalability,
mobility, persistence…

• EJB object and the remote interface: An EJB object resides on
the client and remotely executes the the EJB components’s
methods (proxy). (The EJB object is created by code generation
tools that come with the EJB container).

Monday 11 March 13

 p. 22

EJB basics (2)
• Two types of Enterprise JavaBeans

– Session Beans:
• Associated with a single client
• Typically not persistent, will not survive server crashes

– Entity Beans:
• Represent information persistently stored in a database
• Associated with database transactions

• The home interface
– Each EJB component has a home interface that defines methods for

creating, destroying and (in case of entity beans) locating EJB instances
– The EJB container is responsible for the life-cycle of server-side

objects, e.g. a client request a container to create an instance of a
particular EJB component and the container installs an instance and
returns an EJB object to manipulate the instance

– The Java Naming and Directory Interface (JNDI) is used by clients to
locate the home interface for the class of beans it wants to use

Monday 11 March 13

 p. 23

J2EE deployment
descriptors

• Deployment descriptors describe the contents of deployment units
and configure components and applications to their environment.

• In J2EE a deployment descriptor is a text based XML file that
conforms to the deployment descriptor's XML schema as defined in
the J2EE specification

• J2EE modules have deployment descriptors specific to the module
type (EJB components, Web components, Client components,
resource adaptors, libraries, …)

• J2EE applications have their own deployment descriptor format. The
application programmer in charge of combining and packaging one
or more modules into a J2EE application is responsible for providing
the deployment descriptor associated with the developed application

• A deployment descriptor contains information about:
– Components and modules that are used
– Initialisations
– Persistency type (in an Entity Bean deployment descriptor)
– Security roles (in an application deployment descriptor)
– . . .

Monday 11 March 13

 p. 24

J2EE global architecture

Monday 11 March 13

 p. 25

N-tier architectures with
J2EE technology

Monday 11 March 13

Case:

SPRING

Monday 11 March 13

 p.

Spring

• A Layered Java Application framework
• Plain POJO beans instead of EJB
• Dependency injection instead of lookup
• Convention over configuration
• Abstraction layers for external APIs
• Compatible with a large range of application

servers
• http://www.springsource.org/

Monday 11 March 13

 p.

Typical Spring Architecture

DB

DAO (Data Access
Objects)

Domain
Objects
(passive)

Services (business logic)

Website UI

WS UI
MVC

View Rendering

Monday 11 March 13

 p.

POJO Bean??

• Plain Old Java Object
• But with a couple of naming conventions:

– A setter for property prop is named setProp
– A getter for property prop is named getProp

• Example:
public class MyComponent {

private String name;

public String getName() { //the getter
return name; }

public void setName(String name) { //the setter
this.name=name; }

}

Monday 11 March 13

 p.

Dependency Injection?

• References and properties are injected by
the container

• Container follows the composition specified
in a Spring Beans Configuration file (XML)

Monday 11 March 13

Service Oriented Architecture

Monday 11 March 13

 p. 26

Services:
more coarse grained components, self-
contained, more loosely-coupled

Directory
Service

Client
Application

Monday 11 March 13

 p. 27

What is Service Oriented
Architecture (SOA)?

• An SOA application is a
composition of services

• A “service” is the atomic unit of an
SOA; one service encapsulate a
business process

• Service use involves: Find, Bind,
Execute
– Service Providers provide stateless,

location transparent business services
– Service Registry allows service consumers

to locate service providers that meet
required criteria

– Service Consumers use service providers to
complete business processes

• Most well-known instance is Web
 Services

Service
Registry

Service
Provider

Service
Consumer

Find Register

Bind,
Execute

Monday 11 March 13

 p. 28

Why is SOA different?

• SOA reflects the reality of
ownership boundaries
– CORBA, RMI, COM, DCOM, etc. all

try to implement transparent
distributed systems

– Ownership is of the essence in SOA
• SOA is task oriented

– Services are organized by function
• Getting something done

• SOA is inspired by human
organizations
– It worked for us, it should work for

machines

Monday 11 March 13

 p. 29

Web Services

XML

ProgrammabilityConnectivity

HTML

Presentation
TCP/IP

Technology

Innovation

FTP, E-mail, Gopher
Web Pages

Web Services

Monday 11 March 13

 p. 29

Web Services

XML

ProgrammabilityConnectivity

HTML

Presentation
TCP/IP

Technology

Innovation

FTP, E-mail, Gopher
Web Pages

Browse
the Web

Program
the Web

Web Services

Monday 11 March 13

 p. 30

How Is It Done in Web
Services?

• We need a protocol to transport data and function calls over the
network (i.e. to support RPC)
• SOAP (Simple Object Access Protocol) over HTTP

• We need to find out what function calls and parameters are
expected by a given web service.
• WSDL (Web Service Description Language)

• We need to find out which web services there are
• UDDI (Universal Description, Discovery and Integration

Service)
• (Today often informally: go there and there to find the WSDL

file …)

Monday 11 March 13

 p. 31

SOA/Web Services Related
Standards

Source: http://roadmap.cbdiforum.com/reports/protocols/

Monday 11 March 13

 p. 32

Service Oriented Architecture:
service composition & orchestration

• Revival of Workflow and
Business Process Modelling
Languages

Monday 11 March 13

AOSD

Monday 11 March 13

 p. 33

AOSD

• crosscutting is inherent in complex systems
“tyranny of the dominant decomposition”

• crosscutting concerns
– have a clear purpose What
– have some regular interaction points Where/When

• AOSD proposes to capture crosscutting concerns
explicitly...
– in a modular way
– not only in programming languages but in all stages of

software development
– and with appropriate tool support

Monday 11 March 13

 p. 34

Aspect-Oriented Programming:
modularisation of crosscutting concerns

aspect

Monday 11 March 13

 p. 35

Aspect-Oriented Programming:
inversion of control

Pointcut

Advice

• Pointcut describes a number
of joinpoints, i.e. points of
interest in the base program
[Where/When]

• Advice is extra code to be
executed (before-after-
instead) a jointpoint is
reached [What]

Monday 11 March 13

 p. 36

AO Programming

JAsCo, CaesarJ, AspectS, Object Teams,
HyperJ, JBOSS AOP, Compose*, DemeterJ,
AspectC++, ...

• Aspectual language features
– Advice models
– Join point models
– Pointcut languages
– Weaving: a technology for bringing aspects and base

code together
• Development support

– IDE’s

Monday 11 March 13

 p. 37

Closing the circle

• Application server middleware supports separation of
concerns in a (limited) way

• AOP for middleware: Application servers are a killer
application for AOP. Implementing sophisticated, flexible,
and extensible middleware would benefit from AOP
facilities

• Middleware for AOP: AOP frameworks emerge that build
AOP facilities in or upon application server middleware

Monday 11 March 13

Spring AOP

Monday 11 March 13

 p.

Spring and AOP

• Spring explicitly supports AspectJ AOP
• Aspects can be configured like normal Spring

components (dependency injection)
• Supported syntax:

– XML-based definition
– AspectJ annotation-based development style
– AspectJ language
– Domain Specific Languages for e.g. Transaction

Management
• Aspect library

Monday 11 March 13

 p.

Spring AOP Weavers

• AspectJ weaver or built-in Spring weaver
• Built-in Spring weaver:

– No external tools
– Weaving happens automagically
– Proxy-based:

• only weaving on configured beans
• as such domain classes are typically excluded from

weaving

– Only supports execution pointcuts
• No call, field set, field get etc...

Monday 11 March 13

 p.

Spring/AOP
Syntax & Weavers

AspectJ
Language

AspectJ
Annotation

Style

XML
Definition DSL

Spring
Weaver No Yes Yes Yes

AspectJ
Weaver Yes Yes No No

Monday 11 March 13

Security

• Several facets:
– Authentication: is the user who he says he is?
– Authorization: is the user allowed to do a

certain operation?
– Confidentiality: make sure this data is not

readable by non-authorized users

Monday 11 March 13

Security

DB

DAO (Data Access
Objects)

Domain
Objects
(passive)

Services (business logic)

Website UI

WS UI
MVC

View Rendering

Authorization

Authentication

Monday 11 March 13

Authentication Aspect

• For each controller invocation, check
whether user has authenticated

around(XController c) : controllerInvocation(c) {
if(isAllowedViewWithoutLogin(c.getViewName()))

return proceed();

else if(getCurrentAuthenticatedUser()==null)
return getLoginView();

else return proceed();

}

Monday 11 March 13

Authorization Aspect

• For each domain object invocation,
check whether the current user has
the correct credentials.

around(DomainObject o) : domainObjectInvocation(o) {

if(hasAccess(getCurrentUser(),o))

return proceed();

else throw new SecurityException(....);

}

Monday 11 March 13

