
Aspect Oriented
Software Development

Carlos Noguera
2012-2013

1

Friday 15 February 13

Introduction to AOSD

2

Friday 15 February 13

Software Complexity
Functional Requirements

Non-functional requirements

 Software Development Requirements

3

Friday 15 February 13

Software Complexity
Functional Requirements

Non-functional requirements

 Software Development Requirements

+

+

COMPLEXITY

3

Friday 15 February 13

Need adequate software engineering techniques

Accidental vs. Essential
[F.P. Brooks]

Essential

• Irreducible

• The problem is hard.

Accidental

• Reducible

• The tools/approach is bad

4

COMPLEXITY

Friday 15 February 13

(Quick) Evolution of
Software Programming

Difficult to read/
write

Poor evolvability

Poor
maintainablity

Poor reusability

Machine-Level Programming

Program

data

5

Friday 15 February 13

(Quick) Evolution of
Software Programming

Easier to read/
write

Poor evolvability

Poor
maintainablity

Poor reusability

Structured Programming

Program

data

i = 1
while (i < 4) {
 print(i)
 i = i + 1
}

+ Language features
for common patterns

6

Friday 15 February 13

Easier to read/
write

Better evolvability

Better
maintainablity

Better reusability

(Quick) Evolution of
Software Programming

Procedural Programming

Main program

data+ Procedural
 Abstraction
+ Parameter
 Passing
+ Recursion

7

procedure

procedure

Friday 15 February 13

(Quick) Evolution of
Software Programming

Modular Programming

Main program

data

+ Modules

8

module

data

procedure

procedure

module

data

procedure

procedure

Easier to read/
write

Better evolvability

Better
maintainablity

Better reusability

Friday 15 February 13

Easier to read/
write

Better evolvability

Better
maintainablity

Better reusability

(Quick) Evolution of
Software Programming

Object-Oriented Programming

+ Encapsulation
+ Polymorphism
+ Inheritance

9

Object

dataObject

data

Object

data
Object

data

Friday 15 February 13

(Quick) Evolution of
Software Programming

Aspect Oriented
Programming

Components

Model-Driven
Engineering

Magic?
10

Friday 15 February 13

On keeping things
Separate

So, what's the problem?

Let me try to explain to you, what to my taste is
characteristic for all intelligent thinking. It is, that one is

willing to study in depth an aspect of one’s
subject matter in isolation for the sake of its
own consistency, all the time knowing that one is
occupying oneself only with one of the aspects.

11

Friday 15 February 13

On keeping things
Separate

So, what's the problem?

We know that a program must be correct and we can
study it from that viewpoint only; we also know that it
should be efficient and we can study its efficiency on

another day […] But nothing is gained – on the
contrary – by tackling these various aspects

simultaneously. It is what I sometimes have called “the
separation of concerns”

[E.W. Dijkstra] 12

Friday 15 February 13

Separation of Concerns

13

Friday 15 February 13

Separation of Concerns

Piping

13

Friday 15 February 13

Separation of Concerns

Structural

Piping

13

Friday 15 February 13

Electrical

Separation of Concerns

Structural

Piping

13

Friday 15 February 13

Separation of Concerns
con·cern /kənˈsərn/

noun- Something the developer needs to care about
Separation of- to handle each concern in isolation

Separation of Concerns drives evolution of
programming languages and paradigms

e.g., Modular programming groups code by data and
functionality

14

Friday 15 February 13

SoC allows you to

• Reduce complexity

• Promote traceability across artifacts

• Limit the impact of change

• Facilitate reuse

• Simplify integration

15

Friday 15 February 13

What's the problem
again?

XML Parsing in Apache Tomcat

aspectj.org website

16

Friday 15 February 13

What's the problem
again?

URL handling in Apache Tomcat

aspectj.org website

17

Friday 15 February 13

What's the problem
again?

Logging in Apache Tomcat

aspectj.org website

18

Friday 15 February 13

Crosscutting Concerns
XML Parsing
 - Good SoC
 - One class

URL Handling
 - Good SoC
 - Two classes, related by
inheritance

Logging
 - Bad SoC
 - Everywhere

19

Friday 15 February 13

Crosscutting Concerns
XML Parsing
 - Good SoC
 - One class

URL Handling
 - Good SoC
 - Two classes, related by
inheritance

Logging
 - Bad SoC
 - Everywhere

CROSSCUTTING!
19

Friday 15 February 13

Crosscutting Concerns

Scattering

Code addressing the
concern in several
places

Tangling

Code in one region
addresses several
concerns

Scattering and Tangling are symptoms of the same problem

20

Friday 15 February 13

The problem with
Scattering and Tangling

Scattering and tangling results in code that is

• Redundant

• Hard to reason about

• Difficult to change

21

Friday 15 February 13

Where CCC?

22

• Logging

• Caching

• Security

• Access control

• Confidentiality

• Transactions

• Persistence

•

Friday 15 February 13

Where CCC?

22

public void boe(String s, Key k) {
 log(“entering method boe with arguments … “);
 …
 …
 log(“exiting method boe“);
}

• Logging

• Caching

• Security

• Access control

• Confidentiality

• Transactions

• Persistence

•

Friday 15 February 13

Where CCC?

22

public String compute(Object input) {
 Object[] args = new Object[] {input};
 Object res = cache.fetch(“myclz.compute”,args);
 if(res!=null) //cache contains value
 return (String) res;

 …
 //store result into computedResult
 cache.store(“myclz.compute”,args,computedResult);
 return computedResult;
}

• Logging

• Caching

• Security

• Access control

• Confidentiality

• Transactions

• Persistence

•

Friday 15 February 13

Where CCC?

22

public void transactional(Object input) {
 Transaction t =
 transactionManager.startTransaction();
 try{
 …

 }catch(Throwable t) {
 transactionManager.rollback(t);
 }
 transactionManager.commit(t);
}

• Logging

• Caching

• Security

• Access control

• Confidentiality

• Transactions

• Persistence

•

Friday 15 February 13

Modularizing CCCs

Logging in Apache Tomcat

aspectj.org website

23

Friday 15 February 13

Modularizing CCCs
Logging in Apache Tomcat

aspectj.org website

24

Logging Aspect

Friday 15 February 13

Modularizing CCCs
Logging in Apache Tomcat

aspectj.org website

24

Logging Aspect

Friday 15 February 13

AOSD
• Crosscutting is inherent in complex systems

• CCCs have

• a clear purpose

• regular interaction points

• AOP captures CCCs

• Modularization

• Programming support

• tool support

25

What
Where/When

"The tyranny of dominant decomposition"

Friday 15 February 13

Tyranny of Dominant
Decomposition

26

Given one of multiple possible decompositions of the
problem...

Friday 15 February 13

Tyranny of Dominant
Decomposition

26

Given one of multiple possible decompositions of the
problem...

Then, some subproblems cannot be easily modularized.

Friday 15 February 13

Tyranny of Dominant
Decomposition

• True also for all possible decompositions

• True also for other paradigms than OO

• True also for analysis, design, etc....

26

Given one of multiple possible decompositions of the
problem...

Then, some subproblems cannot be easily modularized.

Friday 15 February 13

Aspectual
Decomposition

27

Many existing programming languages, including object-
oriented languages, procedural languages and functional
languages, can be seen as having a common root in that
their key abstraction and composition mechanisms are

all rooted in some form of generalized
procedure.

[G. Kiczales]
Friday 15 February 13

Explicit Invocation

28

Object
data

Object
data

Object
data

Object
data

Program

Friday 15 February 13

Explicit Invocation

28

Object
data

Object
data

Object
data

Object
data

Program

Aspect

Friday 15 February 13

Implicit Invocation

29

Object
data

Object
data

Object
data

Object
data

Program

Friday 15 February 13

Implicit Invocation

29

Object
data

Object
data

Object
data

Object
data

Program

Aspect

Friday 15 February 13

Implicit Invocation

29

Object
data

Object
data

Object
data

Object
data

Program

Aspect

Friday 15 February 13

Implicit invocation:
how does it work?

30

TraceSupport TraceSupport

Objects invoke each
other's methods

Aspects capture invocations
that occur in other modules

Friday 15 February 13

Anatomy of Aspects

31

Aspect

Pointcut

Advice

Where/When
- Applicability

What
- Functionality

Friday 15 February 13

Joinpoints

3231

Object
data

Object
data

Object
data

Object
data

Program

Aspect

A joinpoint is a point of

interest in the program

where concerns may be

composed

• message sends
• method execution
• error throwing
• instance creation
• ...

Friday 15 February 13

Joinpoint model

• Specific to aspect-oriented programming language

• e.g., key points in the dynamic call graph

33

defines the kinds joinpoints available and how
they are used

a Line

a Point

returning or
throwing

dispatch

dispatch

a method calla method execution

returning or throwing
a method execution

Friday 15 February 13

Pointcut

34

Predicate to select joinpoints.

Aspect

Pointcut

Advice

TraceSupport

Friday 15 February 13

Advice

35

behaviour to execute on the selected joinpoints

Aspect

Pointcut

Advice

TraceSupport

Friday 15 February 13

Synchronization

class Buffer {
char[] data;
int numElem;
Semaphore sem;

bool isEmpty() {
bool retV;
sem.writeLock();
retV = numElem ==0;
sem.unlock();
return retV;

}
}

Example:
A synchronized Buffer

36

Concerns:
Buffer

Friday 15 February 13

Synchronization

class Buffer {
char[] data;
int numElem;
Semaphore sem;

bool isEmpty() {
bool retV;
sem.writeLock();
retV = numElem ==0;
sem.unlock();
return retV;

}
}

Example:
A synchronized Buffer

36

Concerns:
Buffer

Friday 15 February 13

Synchronization

class Buffer {
char[] data;
int numElem;
Semaphore sem;

bool isEmpty() {
bool retV;
sem.writeLock();
retV = numElem ==0;
sem.unlock();
return retV;

}
}

Example:
A synchronized Buffer

36

Concerns:
Buffer

Friday 15 February 13

Synchronization

class Buffer {
char[] data;
int numElem;
Semaphore sem;

bool isEmpty() {
bool retV;
sem.writeLock();
retV = numElem ==0;
sem.unlock();
return retV;

}
}

Example:
A synchronized Buffer

36

Concerns:
Buffer

CROSSCUTTING!

Friday 15 February 13

Synchronization
as an Aspect

37

When a Buffer object receives the message
isEmpty() first make sure that the object is not
being accessed by another thread via the get or
set

Friday 15 February 13

Synchronization
as an Aspect

37

When a Buffer object receives the message
isEmpty() first make sure that the object is not
being accessed by another thread via the get or
set

When a Buffer object receives the message
isEmpty() first make sure that the object is not
being accessed by another thread via the get or
set

Pointcut: when to execute
the aspect

Kind of Advice:
composition of when and

what

Advice: what to do at
selected joinpoints

Friday 15 February 13

Synchronization
as an Aspect

38

class Buffer {
char[] data;
int numElem;

bool isEmpty() {
bool retV;
retV = numElem ==0;
return retV;

}
}

aspect Synchronization
Semaphore sem;

before:execution(Buffer.isEmpty())
{
sem.writeLock();

}

after:execution(Buffer.isEmpty())
{
sem.unlock();

}
Pointcut

Advice

Kind

Friday 15 February 13

Advice code

• Domain-Specific Aspect Languages

• Targeted to one kind of aspect (COOL -
Synchronization, RG - Loop optimization)

• Describes a concern, adapted joinpoint model,
pointcut language

• General-Purpose Aspect Languages

• More aspects possible with same abstractions

• Describe croscutting

39

Friday 15 February 13

Described until now

Symmetric vs
Asymmetric

40

Asymmetric

Different module
kind for

crosscutting
concerns

Symmetric

All concerns are
modularized with
the same kind of

module

Friday 15 February 13

Asymmetric Aspects

41

base program

Aspects

weaving

program

Friday 15 February 13

Symmetric Aspects

42

program
fragments

program
fragments

program
fragments

weaving

Friday 15 February 13

Multidimensional SoC
a symmetric approach

43

Expression
 view methods

Literal
view methods

BinaryOP
 view methods

Display

Expression
 get/set methods

Literal
 get/set methods

BinaryOP
 get/set methods

Kernel

Expression
 check methods

Literal
 check methods

BinaryOP
 check methods

Checker

Each concern
is defined in
isolation

Friday 15 February 13

Multidimensional SoC
a symmetric approach

44

Expression
 view methods

Literal
view methods

BinaryOP
 view methods

Display

Expression
 get/set methods

Literal
 get/set methods

BinaryOP
 get/set methods

Kernel

Expression
 check methods

Literal
 check methods

BinaryOP
 check methods

Checker

Composition is
specified in terms of
joinpoints

Friday 15 February 13

Multidimensional SoC
a symmetric approach

44

Expression
 view methods

Literal
view methods

BinaryOP
 view methods

Display

Expression
 get/set methods

Literal
 get/set methods

BinaryOP
 get/set methods

Kernel

Expression
 check methods

Literal
 check methods

BinaryOP
 check methods

Checker

Composition is
specified in terms of
joinpoints

Friday 15 February 13

Multidimensional SoC
a symmetric approach

44

Expression
 view methods

Literal
view methods

BinaryOP
 view methods

Display

Expression
 get/set methods

Literal
 get/set methods

BinaryOP
 get/set methods

Kernel

Expression
 check methods

Literal
 check methods

BinaryOP
 check methods

Checker

Composition is
specified in terms of
joinpoints

Friday 15 February 13

Multidimensional SoC
a symmetric approach

44

Expression
 view methods

Literal
view methods

BinaryOP
 view methods

Display

Expression
 get/set methods

Literal
 get/set methods

BinaryOP
 get/set methods

Kernel

Expression
 check methods

Literal
 check methods

BinaryOP
 check methods

Checker

Composition is
specified in terms of
joinpoints

Friday 15 February 13

Example: symmetric
synchronized buffer

45

class Buffer {
char[] data;
int numElem;

bool isEmpty() {
bool retV;
retV = numElem ==0;
return retV;

}
}

class Synchronization{
Semaphore sem;

bool lock(){
return sem.writeLock();

}

bool unlock(){
return sem.unlock();

}

Friday 15 February 13

Example: symmetric
synchronized buffer

45

class Buffer {
char[] data;
int numElem;

bool isEmpty() {
bool retV;
retV = numElem ==0;
return retV;

}
}

class Synchronization{
Semaphore sem;

bool lock(){
return sem.writeLock();

}

bool unlock(){
return sem.unlock();

}

Friday 15 February 13

Design Patterns & AOSD

Friday 15 February 13

 p.

Agenda

• Design Patterns
– Introduction
– GoF Patterns

• Design Patterns and AOP
– Observer
– Composite
– Flyweight
– Singleton
– ...

Friday 15 February 13

 p.

Design Patterns

• Collect and Characterize recurring
architectures
– Provide solution to a problem
– Common language
– Tend to be small (large ones exist)

• No immediate implementation
– Partial implementation
– Smaller than a Framework
– Architectural counterpart to Programming Idiom

Friday 15 February 13

 p.

Elements of a Design
Pattern

• Name
• Problem

– Conditions of applicability
• Solution

– Elements (classes, objects), Roles,
Responsibilities

– No concrete design, implementation
• Consequences

– Tradeoffs
– Implementation issues

Friday 15 February 13

 p. p. 2

Sorts of Design Patterns

Class Patterns deal with

static relationships between

classes and subclasses

Object Patterns deal with

object relationships which can

be changed at run time

purpose

Creational Patterns:
are concerned with the process of object creation

Structural Patterns:
are concerned with how

classes and objects are

composed to form larger

structures

Behavioural Patterns:
are concerned with

algorithms and the

assignment of responsi-

bilities between objects

scope

Friday 15 February 13

 p. p. 3

Overview

Creational Patterns

• Singleton

• Abstract factory

• Factory Method

• Prototype

• Builder

Structural Patterns

• Composite

• Façade

• Proxy

• Flyweight

• Adapter

• Bridge

• Decorator

Behavioral Patterns

• Chain of
Respons.

• Command

• Interpreter

• Iterator

• Mediator

• Memento

• Observer

• State

• Strategy

• Template
Method

• Visitor

Friday 15 February 13

 p.

Implementing Design
Patterns

• Design patterns offer flexible solutions to
common software development problems
– Sample implementations are geared towards

"state-of-the-art" OO languages
• Implementation language affects DP

implementation
• Roll-your-own vs. Pattern Library

Friday 15 February 13

 p.

Challenges with Design
Pattern Implementations

• Patterns influence the system structure and
vice versa
– Patterns implementations “disappear in the code”

and lose their modularity, pattern code is scattered
and tangled with system code

– Adding or removing a pattern is invasive, difficult to
reverse change

• Pattern composition/overlay
– Systems are difficult to reason about when multiple

patterns are used and involve the same classes

Friday 15 February 13

 p.

Agenda

• Design Patterns
– Introduction
– GoF Patterns

• Design Patterns and AOP
– Observer
– Composite
– Flyweight
– Singleton
– ...

Friday 15 February 13

 p.

GoF design patterns in AspectJ
(Hannemann & Kiczales)

• Develop and compare Java and AspectJ
implementations of the 23 GoF patterns
– Only solution structure and solution implementations

can change
– Not about discovery of new (AOP) patterns

• Results:
– 17 can be modularized
– For 12 of these the modularization enables a core part

of the implementation to be abstracted into reusable
code

– For 14 transparent composition of pattern instances is
possible

Friday 15 February 13

 p.

OBSERVER

Friday 15 February 13

 p. p. 8

The Observer Pattern: The

Problem

Subject Observers

Assume a one to many relationship between
objects, when one changes the dependents must
be updated

- different types of

GUI elements

depicting the same

application data
- different windows
showing different
views on the same
application model

Also known as : Dependants, Publish-Subscribe

Friday 15 February 13

 p. p. 9

Friday 15 February 13

 p.

A simple figure editor

operations that
move elements

Screen

2 Line

-p1:Point
-p2: Point
+getP1()
+getP2()
+setP1(Point)
+setP2(Point)

FigureElement

+setXY(int, int)

Point

-x: int
-y: int
+getX()
+getY()
+setX(int)
+setY(int)

+ update()

Friday 15 February 13

 p.

Screen updating

• Supports the code that refreshes the screen when a figure element moved
• Whithout AOP every method that updates the position of a figure element should call update

aspect DisplayUpdating {

 pointcut move():
 call(void FigureElement.setXY(int, int)) ||
 call(void Line.setP1(Point)) ||
 call(void Line.setP2(Point)) ||
 call(void Point.setX(int)) ||
 call(void Point.setY(int));

 after() returning: move() {
 Screen.update();
 }
}

Friday 15 February 13

 p.

Change monitoring

• Supports the code that monitors whether a figure element moved
• Whithout AOP every method that updates the position of a figure element should manipulate

the dirty bit

aspect MoveTracking {
 private static boolean dirty = false;
 public static boolean testAndClear() {
 boolean result = dirty;
 dirty = false;
 return result; }
 pointcut move():
 call(void FigureElement.setXY(int, int)) ||
 call(void Line.setP1(Point)) ||
 call(void Line.setP2(Point)) ||
 call(void Point.setX(int)) ||
 call(void Point.setY(int));
 after() returning: move() {
 dirty = true;
 }
}

Friday 15 February 13

 p.
 p. 11

Friday 15 February 13

 p. p. 10

The Observer Pattern

Participants
• Subject: knows its observers, provides an interface for attaching

(subscribe) and detaching (unsubscribe) observers and provides a

notify method that calls update on all its observers

• Observer: provides an update interface

• ConcreteSubject: maintains a state relevant for the application

at hand, provides methods for getting and setting that state, calls

notify when its state is changed

• ConcreteObserver: maintains a reference to a concrete subject,

stores a state that is kept consistent with the subject's state and

implements the observer's update interface

Friday 15 February 13

 p.

The observer pattern

BOOKEEPING
UPDATING
STATE
CHANGES

Friday 15 February 13

 p.

The Observer Pattern in Java for
Screen Updates

Friday 15 February 13

 p.

The Observer Pattern in Java for
Screen Updates

BOOKEEPING
UPDATING
STATE
CHANGES

Friday 15 February 13

 p.

A naïve implementation of the
Observer Pattern in AspectJ for
screen updates

Intertype Declarations

Pointcut & Advice

Friday 15 February 13

 p.

A naïve implementation (1)
public aspect ScreenUpdate{
 private Set FigureElement.observers = new HashSet();
 public void FigureElement.addObserver(Screen s) {
 this.observers.add(s);
 }
 public void FigureElement.removeObserver(Screen s) {
 this.observers.remove(s);
 }
 public void FigureElement.notifyObservers() {
 Iterator it = observers.iterator();
 while(it.hasNext()) {
 ((Screen)it.next()).update();
 }
 }

BOOKEEPING

Friday 15 February 13

 p.

A naïve implementation (2)
 public void Screen.update() {
 // Update screen...
 }

 pointcut subjectChange(FigureElement fe):
 (call(void Line.setP1(Point)) ||
 call(void Line.setP2(Point)) ||
 call(void Point.setX(int)) ||
 call(void Point.setY(int))) && target(fe);

 after(FigureElement fe): subjectChange(fe) {
 fe.notifyObservers();
 }
}

UPDATING

STATE
CHANGES

Friday 15 February 13

 p.

The observer pattern with an
explicit change manager

Friday 15 February 13

 p.

A ColorObserving Aspect (1)

public aspect ColorObserver {

 private WeakHashMap perSubjectObservers;

 protected List getObservers(FigureElement subject) {

 if (perSubjectObservers == null) {

 perSubjectObservers = new WeakHashMap();

 }

 List observers =(List)perSubjectObservers.get(subject);

 if (observers == null) {

 observers = new LinkedList();

 perSubjectObservers.put(subject, observers);

 }

 return observers;

 }

 public void addObserver(FigureElement subject, Screen observer) {

 getObservers(subject).add(observer);

 }

 public void removeObserver(FigureElement subject, Screen observer) {

 getObservers(subject).remove(observer);

 }
Friday 15 February 13

 p.

A ColorObserving Aspect (2)

 pointcut subjectChange(FigureElement subject):

 (call(void Point.setColor(Color)) ||

 call(void Line.setColor(Color))) && target(subject);

 after(FigureElement subject): subjectChange(subject) {

 Iterator iter = getObservers(subject).iterator();

 while (iter.hasNext()) {

 updateObserver(subject, ((Screen)iter.next()));

 }

 }

 public void updateObserver(FigureElement subject, Screen observer) {

 // Update screen...

 }

}

Friday 15 February 13

 p.

A CoordinateObserving Aspect (1)

public aspect CoordinateObserver {

 private WeakHashMap perSubjectObservers;

 protected List getObservers(FigureElement subject) {

 if (perSubjectObservers == null) {

 perSubjectObservers = new WeakHashMap();

 }

 List observers =(List)perSubjectObservers.get(subject);

 if (observers == null) {

 observers = new LinkedList();

 perSubjectObservers.put(subject, observers);

 }

 return observers;

 }

 public void addObserver(FigureElement subject, Screen observer) {

 getObservers(subject).add(observer);

 }

 public void removeObserver(FigureElement subject, Screen observer) {

 getObservers(subject).remove(observer);

 }

Friday 15 February 13

 p.

A CoordinateObserving Aspect (2)

 pointcut subjectChange(FigureElement subject):

 (call(void Point.setX(int)) ||

 call(void Point.setY(int)) ||

 call(void Line.setP1(Point)) ||

 call(void Line.setP2(Point))) && target(subject);

 after(FigureElement subject): subjectChange(subject) {

 Iterator iter = getObservers(subject).iterator();

 while (iter.hasNext()) {

 updateObserver(subject, ((Screen)iter.next()));

 }

 }

 public void updateObserver(FigureElement subject, Screen observer) {

 // Update screen...

 }

}

Friday 15 February 13

 p.

An Abstract Observer-
Protocol Aspect (1)

01 public abstract aspect ObserverProtocol {

02

03 protected interface Subject { }

04 protected interface Observer { }

05

06 private WeakHashMap perSubjectObservers;

07

08 protected List getObservers(Subject s) {

09 if (perSubjectObservers == null) {

10 perSubjectObservers = new WeakHashMap();

11 }

12 List observers =

13 (List)perSubjectObservers.get(s);

14 if (observers == null) {

15 observers = new LinkedList();

16 perSubjectObservers.put(s, observers);

17 }

18 return observers;

19 }
Friday 15 February 13

 p.

An Abstract Observer-
Protocol Aspect (2)

20

21 public void addObserver(Subject s,Observer o){

22 getObservers(s).add(o);

23 }

24 public void removeObserver(Subject s,Observer o){

25 getObservers(s).remove(o);

26 }

Friday 15 February 13

 p.

An Abstract Observer-
Protocol Aspect (3)

27

28 abstract protected pointcut

29 subjectChange(Subject s);

30

31 abstract protected void

32 updateObserver(Subject s, Observer o);

33

34 after(Subject s): subjectChange(s) {

35 Iterator iter = getObservers(s).iterator();

36 while (iter.hasNext()) {

37 updateObserver(s, ((Observer)iter.next()));

38 }

39 }

40 }
Friday 15 February 13

 p.

A Concrete ColorObserver
Aspect

01 public aspect ColorObserver extends ObserverProtocol {

02

03 declare parents: Point implements Subject;

04 declare parents: Line implements Subject;
05 declare parents: Screen implements Observer;

06

07 protected pointcut subjectChange(Subject s):

08 (call(void Point.setColor(Color)) ||

09 call(void Line.setColor(Color))) && target(s);
10

11 protected void updateObserver(Subject s,Observer o) {

12

13 ((Screen)o).display("Color change.");

14 }

15 }

Friday 15 February 13

 p.

A Concrete CoordinatorObserver
Aspect

16 public aspect CoordinateObserver extends

17 ObserverProtocol {

18

19 declare parents: Point implements Subject;
20 declare parents: Line implements Subject;

21 declare parents: Screen implements Observer;

22

23! protected pointcut subjectChange(Subject s):

24! (call(void Point.setX(int))
25 || call(void Point.setY(int))

26 || call(void Line.setP1(Point))

27 || call(void Line.setP2(Point))) && target(s);

28

29! protected void updateObserver(Subject s, Observer o) {

30 ((Screen)o).display("Coordinate change.");
31! }

Friday 15 February 13

 p.

A Concrete ScreenObserver
Aspect

01 public aspect ScreenObserver
02 extends ObserverProtocol {
03
04 declare parents: Screen implements Subject;
05 declare parents: Screen implements Observer;
06
07 protected pointcut subjectChange(Subject s):
08 call(void Screen.display(String)) && target(s);
09
10 protected void updateObserver(
11 Subject s, Observer o) {
12 ((Screen)o).display("Screen updated.");
13 }

14 }

Friday 15 February 13

 p.

Properties of this solution

• Locality:
– All pattern code is in the abstract and concrete observer aspects
– The participants are free of pattern context and therefor there is

no coupling between them

• Reusability:
– The abstract ObserverProtocol aspect can be reused and shared

• Composition Transparency
– Because the participants are in no way coupled with the pattern

they can take part in many other patterns

• (Un)pluggability
– Switching between using/not using the pattern is easy because all

the code is in the aspects

Friday 15 February 13

 p.

Generalizing the Results

• Patterns that introduce roles that need no client-
accessible interface and that are only used within
the pattern:
– The role can be realized with empty (protected)

interfaces in an aspect. The interfaces introduce types
to be used within the pattern protocol

– An abstract aspect can define the roles and attach
default implementations where possible

– The abstract aspect can define an abstract pointcut to
capture join points that should trigger important events

• Composite, Command, Mediator, Chain of
Responsibility

Friday 15 February 13

 p.

COMPOSITE

Friday 15 February 13

 p. p. 38

The Composite Pattern:

The Problem

Compose objects into tree-like structures to
represent part-whole hierarchies and let clients
treat individual objects and compositions of
objects uniformly - a drawing tool that lets

users build complex

diagrams from simple

elements
- trees with heterogeneous
nodes e.g. the parse tree of
a program
- a containment hierarchy
for technical equipment

Friday 15 February 13

 p. p. 39

Friday 15 February 13

 p. p. 39 p. 40

Friday 15 February 13

 p. p. 41

The Composite Pattern

Participants

• Component: declares the interface for objects in the

composition, implements default behavior for the interface

common to all objects, declares an interface for accessing and

managing child components, (optional) defines/implements an

interface for accessing a component’s parent

• Leaf: defines behavior for primitive objects in the composition

• Composite: defines behavior for components having children,

stores child components, implements child access and

management operations in the component interface

• Client: manipulates objects in the composition through the

component interface

Friday 15 February 13

 p. p. 42

Friday 15 February 13

 p. p. 44

The Composite Pattern

Collaboration

• Clients use the Component class interface to

interact with objects in the composition

• If the recipient is a Leaf, the request is handled

directly

• If the recipient is a Composite the request is

usually forwarded to child components, some

additional operations before and/or after the

forwarding can happen

Friday 15 February 13

 p. p. 45

The Composite Pattern

Consequences
• + Makes the Client simple: clients can treat composite

structures and individual objects uniformly, clients normally don’t
know and should not care whether they are dealing with a leaf or a
composite

• + Makes it easier to add new types of components: client

code works automatically with newly defined Composite or Leaf
subclasses

• - Can make a design overly general: the disadvantage of
making it easy to add new components is that it is difficult to restrict
the components of a composite, sometimes you want a composite
to have only certain types of children, with the Composite Patterns
you cannot rely on the type system to enforce this for you, you have
to implement and use run-time checks

Friday 15 February 13

 p.

The Composite Pattern

BEHAVIOR
COMPOSITION
MGNT

Friday 15 February 13

 p.

An Abstract Composition Aspect
(1)

public abstract aspect CompositionProtocol {

 protected interface Component {}

 protected interface Composite extends Component {}
 protected interface Leaf extends Component {}

 private WeakHashMap perComponentChildren =

 new WeakHashMap();

 private Vector getChildren(Component s) {

 Vector children;

 children = (Vector)perComponentChildren.get(s);

 if (children == null) {

 children = new Vector();

 perComponentChildren.put(s, children);
 }

BEHAVIOR

Friday 15 February 13

 p.

An Abstract Composition Aspect
(2)

 public void addChild(Composite composite,

 Component component) {

 getChildren(composite).add(component);

 }

 public void removeChild(Composite composite,

 Component component) {

 getChildren(composite).remove(component);

 }

 public Enumeration getAllChildren(Component c) {

 return getChildren(c).elements();

 }

}

BEHAVIOR

Friday 15 February 13

 p.

A Concrete Composition Aspect
(1)

 public aspect FileSystemComposite extends
 CompositeProtocol {

 declare parents: Directory implements Composite;
 declare parents: File implements Leaf;

 public int sizeOnDisk(Component c) {
 return c.sizeOnDisk();
 }

 private abstract int Component.sizeOnDisk();

BEHAVIOR
COMPOSITION
MGNT

Friday 15 February 13

 p.

A Concrete Composition Aspect
(2)

 private int Directory.sizeOnDisk() {
 int diskSize = 0;
 java.util.Enumeration enum;
 for (enum =
 SampleComposite.aspectOf().getAllChildren(this);
 enum.hasMoreElements();) {
 diskSize +=
 ((Component)enum.nextElement()).sizeOnDisk();
 }
 return diskSize;
 }
 private int File.sizeOnDisk() {
 return size;
 }

BEHAVIOR

Friday 15 February 13

 p.

Observer, Composite, Command,
Mediator, Chain of Responsibility

• Patterns that introduce roles that need no client-accessible
interface and that are only used within the pattern:
– The roles can be realized with empty (protected) interfaces in an

aspect. The interfaces introduce types to be used within the
pattern protocol

– An abstract aspect can define the roles and attach default
implementations where possible

– The abstract aspect can define an abstract pointcut to capture join
points that should trigger important events

– Clients use a public method on the aspect to access the new
functionality. The methods that are used on the participants can
be introduced privately and only visible to the aspect

Friday 15 February 13

 p.

Singleton, Prototype, Memento, Iterator,
Flyweight: aspects as object factories

• Patterns that administrate access to specific object instances. They
offer factory methods to clients and share a create on demand
strategy
– These patterns have an abstracted (reusable) implementation in AspectJ

with code for the factory in the aspect
– The factory methods can be parameterized methods on the abstract

aspect or methods introduced to the participants
– In the former case, multiple pattern instances compose transparently,

even if all factory methods have the same name
– The singleton is special, the original constructor can be turned into the

factory method using around advice to return the unique object on all
constructor calls

– Parameterized factory methods can be implemented by making the
factory method return a null of default object and then have other objects
returned by around advice on that method. This allows to extend the
factory in terms of new products without changing the code

Friday 15 February 13

 p.

FLYWEIGHT

Friday 15 February 13

 p. p. 53

The Flyweight Pattern: The

Problem

Some applications benefit from using objects in
their design but a naïve implementation is
prohibitively expensive because of the large
number of objects

• use an object for each

character in a text

document editor

• use a layout object for

each widget in a GUI
h a l l o

Column

Row

Character

Friday 15 February 13

 p. p. 54

Friday 15 February 13

 p. p. 55

Friday 15 February 13

 p. p. 56

Friday 15 February 13

 p. p. 57

Friday 15 February 13

 p. p. 58

The Flyweight Pattern

Applicability

• Apply flyweight when ALL of the following are true:
– An application uses a large number of objects

– Storage cost is high because of the quantity of objects

– Most objects can be made extrinsic

– Many groups of objects can be replaced by relatively few
shared objects once extrinsic state is removed

– The application does not depend on object identity

Friday 15 February 13

 p. p. 59

The Flyweight Pattern

Participants (1)

• Flyweight
– Declares a n interface through which flyweights can receive

and act upon extrinsic state

• Concrete Flyweight
– Implements the flyweight interface and adds storage for

intrinsic state
– A concrete flyweight object must be sharable, i.e. all state must

be intrinsic

• Unshared Concrete Flyweight
– Not all flyweights subclasses need to be shared, unshared

concrete flyweight objects have concrete flyweight objects at
some level in the flyweight object structure

Friday 15 February 13

 p. p. 60

The Flyweight Pattern

Participants (2)

• Flyweight Factory
– Creates and manages flyweight objects

– Ensures that flyweights are shared properly;
when a client requests a flyweight the flyweight
factory supplies an existing one from the pool or
creates one and adds it to the pool

• Client
– Maintains a reference to flyweight(s)

– Computes or stores the extrinsic state of
flyweight(s)

Friday 15 February 13

 p. p. 61

Friday 15 February 13

 p.

Flyweight

CONSTRUCTION

Friday 15 February 13

 p.

The abstract flyweight aspect

public abstract aspect FlyweightProtocol {

! private Hashtable flyweights = new Hashtable();

! protected interface Flyweight{};
! protected abstract Flyweight createFlyweight(Object key);

! public Flyweight getFlyweight(Object key) {

! ! if (flyweights.containsKey(key)) {

! ! ! return (Flyweight) flyweights.get(key);

! ! } else {
! ! ! Flyweight flyweight = createFlyweight(key);

! ! ! flyweights.put(key, flyweight);

! ! ! return flyweight;

! ! }

! }

}

Friday 15 February 13

 p.

A concrete flyweight aspect

public aspect FlyweightImplementation extends FlyweightProtocol {

! declare parents: CharacterFlyweight implements Flyweight;

! protected Flyweight createFlyweight(Object key) {

! ! char c = ((Character) key).charValue();

! ! Flyweight flyweight = new CharacterFlyweight(c);

! ! return flyweight;

! }

}

public class CharacterFlyweight {

! private char c;

! public CharacterFlyweight(char c) {

! ! this.c = c;

 }

! public void print(boolean uppercase) {

! ! System.out.print(uppercase ? Character.toUpperCase(c) : c);

! }

}

Friday 15 February 13

 p.

SINGLETON

Friday 15 February 13

 p. p. 65

The Singleton Pattern: The

Problem

Ensure that a class has exactly one instance and
provide a global point of access to it

- There can be only

one print spooler,

one file system, one

window manager in a

standard application

- There is only one

game board in a

monopoly game; one

maze in a maze-

game

Monopoly Board

: Monopoly Board : Monopoly Board

Friday 15 February 13

 p. p. 66

The Singleton Pattern

Participant &

Collaboration
Participant:

• Singleton:

– is responsible for creating and storing its own unique instance

– defines an Instance operation that lets clients access its unique

instance

Collaboration:

– the “class level” Instance operation will either return or create

and return the sole instance; a “class level” attribute will contain

either a default indicating there is no instance yet or the sole

instance

Friday 15 February 13

 p.

Singleton

Friday 15 February 13

 p.

Abstract singleton aspect

public abstract aspect SingletonProtocol {

!

! public interface Singleton {}

! private Singleton the-singleton = null;

 Object around(): call((Singleton).new(..)) {

! if (the-singleton == null) {

 the-singleton = proceed();

! }

! return the-singleton;

! }

}

Friday 15 February 13

 p.

Concrete singleton aspect

public class Printer { !

! protected static int objectsSoFar = 0;

! protected int id;

! public Printer() {

! ! id = ++ objectsSoFar;

! }

! public void print() {

! ! System.out.println("My ID is "+id);

! }

}

public aspect SingletonInstance extends SingletonProtocol {

! declare parents: Printer implements Singleton;!!

}

Friday 15 February 13

 p.

Adapter, Decorator, Strategy, Visitor,
Proxy: language constructs

• The implementation of these patterns can (partially) disappear
because AspectJ language constructs implement them directly

• Examples:
– Visitor and Adapter (Wrapper) can be realised by extending the interface

of the ConcreteElements or the Adaptee with intertype declarations
– Delegation and protection proxy’s can have alternate implementations

based on attaching advice. (This can not be done for remote and virtual
proxy’s since the Proxy and Subject need to be distinct objects in these
cases)

• These altermatives are often more modular and simple but less
flexible
– The interface adaptation in Adapter cannot be realised if an existng

method must be replaced by one with the same argument signature but
a different return type

– Dynamic reordering of decorators is not possible with advice based
implementations of Decorator

Friday 15 February 13

