
Software architecture

Assignment 2

Dehouck Samuel, Delhaye Quentin

March 20, 2014

1 Introduction

In this project, we were asked to refactor (flawed) three-tier architecture that
implements a web portal applicaton which allows to store and retreive informa-
tions about books, articles, etc. Moreover, we needed to identify the different
flaws of this architecture.
More precisely, we had to refactor the database layer in order to be able to
easily insert a new format of database. The details of this new implementation
will be detailed in the first section. Next, we will give the flaws that we found
in the architecture.

2 Refactoring

For this project, we had to refactor the database layer in order to add a new
database based on CSV files. The original implementation didn’t allow us to
easily add this new layer and that is where the refactoring is done.
First, we needed to change some names to make them more precise: Raw-
Database became RawDataseSQL, UserDatabase UserDatabaseSQL, Regular-
Database RegularDatabaseSQL and finally Database DatabaseSQL.
In a second time, we added a new level of abstraction with some interfaces that
are implemented by the SQL components inherit: RawDatabase, UserDatabase,
RegularDatabase. We also created a new abstract class Database from which
DatabaseSQL inherits. With this generic interfaces and the abstract class, it
became much easier to add a new kind of database.
Finally, we created the CSV database with some new classes RawDatabaseCSV,
UserDatabaseCSV and RegularDatabase that implement the corresponding in-
terfaces and DatabaseCSV inheriting from Database.
All these classes have been reorganized in the new packages db.flatfile and db.sql.
The figure 1 present those modifications.

As we can see with this new architecture, it is much easier to add a new kind
of database.

1



Figure 1: Classes diagram of the refactoring the database architecture.

Some others changes needed to be done in order to have a working imple-
mentation:

• We apended a new line in the file web portal.cfg to specify the format
of the database: dbFormat=csv, if a csv based database is to be used,
dbFormat=sql in case SQL.

• The constructor of the class ApplicationFacade has been modified to take
the format into account.

• The constructor of the class DatabaseFacade has been modified in the
same way and now build the database accordingly.

• In order to store the user profiles into the database, a new method asCSV
has been added in the classes UserProfile and children.

3 Configuration

Several files need to be changed to switch between the databases:

Inside web portal.cfg: dbUrl=/path/to/project/DB and dbFormat=csv

Inside WebContent/WEB-INF/web.xml: param-value=/path/to/project/web portal.cfg

4 Design flaws

When we refactored the database layer, we found that the database needed to
ask the UserProfile to give its information in a format that it was possible to
store (asSQL and asCSV methods). It clearly introduce some coupling that
could be avoided if the database could ask the UserProfile to give a generic
format of itself. Then, it would be the job of the database to convert it into
SQL or CSV in order to store it.

An other problem is the coupling between the data objects and the database
type. All the constructors receive a resultset as a parameter, which is typical
of usage of an SQL-type database. Those constructors should be independant
of the database type, i.e. receive a generic object as argument. The translation
from resultset to that structure should be done in the database layer.

2



Following the same idea, the ui package knows to much about the data

package as well. When the AdministrationPage wants to add information
to the database, it first creates objects typed from the data package, and
then sends them to the ApplicationFacade (which will forward them to the
DataBaseFacade). The user interface package should structure the data inde-
pendently from the data package before sending it to the facade.

5 Conclusion

The application can now use csv database and adding new type of database is
easier. There is still a high degree of coupling between the layers that should
be refactored.

3


