Lesson 10 — BPEL Introduction

Ernesto Damiani

Universita di Milano

Service-0Oriented Architecture

Integrate

Orchestrate

Develop Services

Secure

Manage

Monitor

Orchestration Reguirements

Connectivity
Heterogenous Back Ends

Silos of APl and mechanisms
Opaqueiheterogeneous data definiions
Synchronizing multiple data stores

Flow Control
Asynchrony, Flow Coordination, Data
Transformation, Compensation, Version Control,
Auditing

Orchestration

Scalability

Unpredictable loads
Asymmetric performance capabilities

Management and Security
Access control, Encrypbon, Logging. Metering
Independent of the service

Interaction/Access
Catalog, Customization, Access

Orchestration Today

il Not enough metadata
Not tool friendly

: Proprietary languages
Rare skill sets, consuiting

|| Hard Wired/Code
Rigid, difficult to change

Incompatible Infrastructures
Difficult to manage and scale

Process Flow Use Case

SAP Mainframe

What is BPEL? (1)

e Markup language for composing a set of discrete
services into an end-to-end process flow

— 10+ years of R&D from

— MSFT and IBM

— SOAP but also Java, JCA

— Rich Flow Semantics

— Optimized Bindings

— XPATH+XSLT+XQuery

— WS-Security

— A Process is a Service

What is BPEL? (2)

Star Loan

il
-

United Loan =

BPEL History

Proprietary Standard

BPML BPSS WSCI
{Intallio et al) [ebXML) (Sun et al)

BPELAWS 1.1
{OASIS)

200005 2001103 2001705 200106 2002103 2002106 2002108 200304 Z2005/2006

XLang WSFL WSCL BEPELAWS 1.0 WS-BPEL 2.0
Microsoft) (IEM) {HP) {IBM, Microsoft) {OASIS)

BPEL (1)

e BPEL is an XML programming language. As a
programming language it has three basic
components:

— Programming logic

— Data types

— Input/Output (1/0)

e BPEL splits these components up in the following
way:

— Programming logic - BPEL

— Data types - XSD (XML Schema Definition)

— Input/Output (1/0) - WSDL (Web Services Description
Language)

BPEL (2)

e As a simple example, lets take a Hello World
program

e XSD will be used to define the types used in the
program. It will be used to define a string type which
will hold the "Hello World' string

 WSDL will be used to define the web service that
will actually print the string for us

e BPEL will put all these things together to create the
string and print it

Hello World BPEL program

=?uml version="1.0" encoding="UTF-2"7=
<process
mins="hitp:/schemas.zmlsoap.orgws/2002/03/business-process”
milnsprint="nitpweew eclipse orgtptp/choreography2004/2ngine/Print”
<l--Hello Waorld - my first ever BFEL program --=
<import imperiType="http:/'schemas. xmlscap orgiwsdl™
location="_/_Jtest_bucketiservice_libraries/tpip EnginePrinterPort.wsdl'
namespace="hitp:leww. eclipse orgtpip’choreography2004/engina/Print” /=

<partnerLinks>
<parinerLink mams="priniZervice’
partnerLinkType="print:;printLink"
partnerFole="grintServica">
</partnerLinks=

<yariables=
<variable name="helle_world"
messageType="print:Printbessage" /=
“ivariabless
<assign®
<oopyE
<from=<literal=Hello World</literal=</from:=>
<to=Fhelle_world value<ito=
<lcopy=
<fassign>

<invoke partnerLink="printService” operation="print" inputVarable="hello_world" /=
</processs

Import wsdl files (1)

<import importType=htip://schemas.xmlsoap.org/wsdl/
location="_./../test_bucket/service_libraries/tptp_EnginePrinterPor
t.wsdl"namespace="http://www eclipse org/tptp/choreography/20
O4/engine/Print" /=

— The 'import' statement in BPEL is a directive to import a
WSDL or XSD file. Importing XSD files allows commonly
used datatypes or datatypes required for a particular
endpoint (thing that you speak to) to be defined in a file
separate to the BPEL file. Importing WSDL files allows
endpoint descriptions (definitions of things that you speak
to) to be defined in files separate to the BPEL file

— The benefit here is that entire endpoints and any associated
datatypes that they need can be defined outside the BPEL
file and can therefore be re-used in many BPEL files

— WSDL files have a similar import mechanism allowing them
to import common XSD files and even other WSDL files

Import wsdl files (2)

— In this case, a Hello World web service has been defined
iIn the WSDL file '...tptp_EnginePrinterPort.wsdl’

partnerlink definitions
<partnerlLinks>

N ~ T 3 1 L P | e AL | |
<partnerlLink name=" "princesrlvylioe

Partner Links (1)

e Partner Links can be thought of as placeholders
for things that you actually speak to. A web service
IS described in full by the WSDL files that specify it,
but Partner Links allow you to have something like
an instance of the web service that you speak to. A
partner link basically maps to a WSDL web service
'‘portType’, so one partnerLink (e.g. 'printService’
above) maps to a single web service

Partner Links (2)

e However, partner links don't just describe what you
speak to, they also can describe how other web
service clients speak to you. In the partner link
definition above, a 'partnerRole' attribute defines the
web service that this BPEL process will speak to.
Alternatively, the partner link could have a 'myRole’
attribute which would define a web service that this

BPEL process implements

Analogy

— (Programming)?

— (Real World) A web service is like a description of how to
phone a restaurant - you phone up, tell them your address
and you place an order for some food. A partner link is like
bit of paper which has on it a phone number for a particular
restaurant - you can use the partner link to speak to a
specific restaurant (web service). The actual phone number
of the restaurant is called the 'endpoint address’ and is
defined either in the WSDL or in the BPEL (where it may be
copied into an existing partnerLink to speak to a different
restaurant)

VVariable Definitions

<variables>

<variable name="hello_world"
message [ype="print:PrintMessage” />
</variables>

— Variables are used to contain data in BPEL. A variable can
either contain an XSD value or a WSDL message. In the
example above, a variable called 'hello_world' is declared as
a container for WSDL messages of type 'print:PrintMessage’.
Instead of the 'messageType' attribute, the variable could
have had a 'type' attribute which would specify some xsd
simple or complex type like 'xsd:string’ or 'xsd:integer’.

— Variables are used to pass data in and out of web service
endpoints

Variable Assignment (1)

<@assign=
<COopy=
<from=<literal=Hello World</literal=</from=
<to=$hello_world value</to=
</copy=
</assign=

Variables are manipulated in BPEL either through use via
web service endpoints or by assignment. The example
above shows a literal string value being assigned into the
variable 'hello_world'. The variable 'hello_world' in this case
IS a WSDL message with a part called 'value'. The part
called 'value' is an 'xsd:string' type. It can therefore have
other 'xsd:string's assigned into it, including literal strings’

Variable Assignment (2)

— The '$varname’ syntax used to reference the variable
here is standard XPATH expression syntax. The .’
separator is used to specify the WSDL message part. If
the variable or the part were an XSD complex type then
a '/' separator could be used to specify the sub-element
within the complex type (e.g.
'‘$hello_world.value/subvalue’)

Web service invocation

— <invoke partnerLink="printService" operation="print"
iInputVariable="hello_world" />

— The 'invoke' activity in BPEL invokes a web service
endpoint. This is where the BPEL process passes the 'Hello
World' data (stored in the 'hello_world' variable) to the
'print’ web service. The specified partnerLink tells the
BPEL engine the address of the web service you want to
invoke here. The 'print' operation specifies what you
actually want the web service to do and the 'inputVariable
specifies that the input WSDL message should come from
the 'hello_world' variable.

— What the web service actually does and exactly how the
web service Is implemented is not referenced in BPEL at
all - all the implementation and definition information is
contained within the defining WSDL file

Analogy

— (Programming) Invoking a web service is similar to
iInvoking a function or a method on an API or an object.
One important difference though is that BPEL doesn't have
any reference to that object or API, it only knows how to
speak to it (WSDL definition) and the address of the
Implementation (the endpoint reference). The mechanics of
getting to the implementation specified by the endpoint
reference is not dealt with by BPEL.

— (Real World) Invoking the web service is akin to actually
making the call to the restaurant. The variable defined
previously holds the information you need to pass to them
(e.g. a written list of the food you want) and the
partnerLink is, as previously described, the bit of paper
with the restaurant phone number. BPEL looks at the
phone number, dials the restaurant and passes your order
to them

Tutorial: printout service in Java

— So now we have our Hello World BPEL process that passes
a string to a printout web service, we need to have a
printout web service that will print the string out for us

— In order to use a web service, it must be defined
somewhere. That somewhere is in a WSDL file. The WSDL
file describes how to use the web service (the API to the
web service) and also how that web service is bound. It is
possible to split up a WSDL file so that a web service can
be described once but implemented multiple times in lots
of different ways but in this simple example we'll just stick
to one description - one implementation.

wsdl file

«7¥ml version="1 0" encading="UTF-8"7=>
«geTrltions. ymins="Rigschemas. ymisoap orgtssdl™
tarpeiNamesnac e=" o iaEa, eciose. orp o choreography 2004 engine Print”
aminsins="nRo fwaa acdips e. orgipipdchareography 20 T4 fen gine Fring”
AMincesd=" i iwwew. wE org 2001 L S crmmia®
aminsowsdl="hbp:ischemas smisoap.orgwsdl™
Fmins fomrmate"hipischemas ymisoap.orghasdliomatbindng™
¥mingjgsa="hilp:Fechemas smiscap.angwsdijavar
-
«l— smigine primoul port —=
«messags nam=="Frintd=ssage">
«pnart name="valus" bipe="ysd:sirng">
<imessage>
«paritType name="Frnt"=
«gpsabion name="print">
«input message="insFrintdessage”i>
<o pera e
=iporiType*
«pinding name="FrintPoriVefBindng™ fype="tns:Print*>
«jaya:bincingi=
«fomnatbyp=iiapping enooding="Jaya™ shyle="Jawa >
«lomathyp=hiap fypeName="rd:537rg" formalType="java lang. Siing" =
=farmattymflapeing>
«gpsabion name="print">
«jayaoperation memodhames="ornt” parametendnde ey et
o pera o
<ibirzing>

«garsioes
<port name="JavaFrin® o bindng="tnsFrintPor?# sfBinding™>
<jayn:address clssiames"org sclpse. iplp chor=ography |engine Intemal pxi=nslons. wsdblnding wsH.pons. EnginePrAniePort"f>
<iport=
«foersices

pamnefnkType rame="printlink">
<rle namEe"prntSEn ke pori Tynse"trs: Prind =
ziparner inkTypas
=igelinitions=

target namespace (1)

— targetNamespace="http://www.eclipse.org/tptp/choreograp
hy/2004/engine/Print"

— A WSDL file is defining the creation of new things. It is
defining the creation of a new web service and any
associated data types or WSDL Messages that are to be
used with that web service. When each of these things is
defined they are given a name. A WSDL message used to
hold the string value to print, for example, is given the
name 'printMessage'. However, 'printMessage’' might be a
name that many other web services want to use also. In
fact 'printMessage' might be a very popular name indeed. If
this were the case then a BPEL process that wanted to use
two of these web services would need some way to
distinguish when it was referring to web service A's
printMessage and web service B's printMessage

target namespace (2)

— XML namespaces and the target namespace are how BPEL
makes the distinction between web service A's messages
and web service B's messages when they have the same
name

— When BPEL refers to a printMessage (e.g. when the variable
'hello_world' were declared) it prefixes it with a reference to
a hamespace mapping 'print:'. The namespace mapping
'‘print:’' has in turn been defined in the BPEL file to map the
the target namespace where the printMessage message was
defined

— In short, when the WSDL file specified a targetNamespace
of 'X', all the things defined within that WSDL file are
considered defined under the namespace 'X'. The BPEL
process that references these things then has to reference
the namespace of the thing too

target namespace (3)

— The concept of nhamespaces is a general XML concept, and in
general, names which do not have namespaces (like BPEL
variable names) are called 'NCNames'. Names which DO
have namespaces are called 'QNames'. The Q in QName
stands for 'Qualified' as a name which contains a nhamespace
reference is said to be 'fully qualified'.

— Namespaces are defined as mappings by prefixing the
attribute with 'xmins:’ (e.qg.
xmlns:shortnamespace="http://www.my.very.long.namespa
ce.which.would.be.cumbersome.to.write.all.the.time/").

Analogy

— (Programming) XML namespaces are like packages in Java.
The WSDL messages and port type created in the WSDL file
Inherit the XML namespace specified by the
targetNamespace attribute

— (Real World) WSDL Messages: WSDL messages are used to
specify what the containers should be like that hold data
when a WSDL operation is invoked. They are essentially
lists of parts, each of which is an XSD simple or complex

type
— In the example above the 'PrintMessage’ is defined as
having a single part 'value’, which is of type 'xsd:string’

WSDL Port Types (1)

— WSDL Port Types represent the definition of the web service
itself. They describe the API or interface to the web service.
A port type is a list of operations with 'input's and 'output’s.
Each of the 'input's and 'output's is a WSDL message that
must have been previously defined (although it could have
been imported from another WSDL file)

— A WSDL port type operation can also have any number of
'fault’ elements. Each of these specifies an error message
which would be an alternative to the 'output' message.

WSDL Port Types (2)

— The name specified on the port type does not have any
namespace prefix. This is because the port type is being
defined here and now and it will inherit the target
namespace. The 'printMessage’ specified in the operation
definition however DOES have a namespace prefix. This is
because the printMessage has previously been defined and
IS being referenced. The 'tns:' prefix maps to the same
namespace as the target namespace in the previously
defined 'printMessage‘ message

Analogy

— (Programming) The WSDL port type is like an interface or
abstract class. It doesn't specify any particular
Implementation for anything, but it does say exactly what
can be done, and what goes in and comes out

— (Real World) The port type is like a description of how to
phone up and order food from any restaurant. The
description doesn't specify how the food is cooked or which
restaurant to phone, only what the steps are to phone
them and the information they will need

WSDL Port Type Bindings (1)

— A 'binding’ in WSDL specifies how the web service is
actually implemented. Everything up until this point has
been abstract and has dealt with only how to speak to the
web service. The binding specifies what is on the other side

that you are speaking to

— A web service can be bound in many different ways. The
most common bindings for a web service are:

» as a SOAP/HTTP web service - whereby some implementation
would be listening on a specified port and would accept SOAP
messages over an HTTP transport

* as a Java web service - whereby some java class is mapped to
the port type and is used directly as an implementation

WSDL Port Type Bindings (2)

— In the binding above, a mapping has been created which
specifies that the port type operation 'print’ should be
mapped to a Java method called 'print'. In addition to this,
the XSD type 'string' has been mapped to the Java type
'String’.

— Using this mapping information a Java class can be
specified later in the WSDL file as the 'address’ of a
concrete web service implementation. This class can be
instantiated and when calls are made to the 'print’
operation, they will be proxied to the 'print' method of this
class. In the process of proxying the 'print' operation, any
XSD strings will also be converted to Java strings as
specified in the binding

WSDL Service

— The WSDL 'service' element specifies a WSDL 'port'. A
single port is an instance of a web service, which is
Implemented via a particular binding and which is available
at a given address

— In the case of our printout port, we are defining a web
service which is bound using the previously defined Java
binding and which can be found at the address
‘org.eclipse...EnginePrinterPort’.

— The address is binding specific. The Java binding knows to
Interpret the 'className' attribute as a fully qualified Java
class name and understands how to instantiate the class
and proxy the WSDL operations to the Java methods
specified in the 'binding' element

Partner Link Types

— Partner Link Types are actually not a WSDL construct, but a
BPEL construct. WSDL was around before BPEL and is
purely designed towards describing web services. BPEL
however requires that a partner link instance be associated
with a particular WSDL port type. In this case there is only
one end of the partner link which needs to be implemented
— the "printService’ role. It is possible to have two roles in a
single partner link type, each of which can be implemented
by two communicating web services.

— The BPEL partnerLink definition specified a partner link type
for the partner link and also either a 'myRole’' or a
'‘partnerRole’. In our previous example the 'partnerRole' was
defined as 'printService'. This is because the BPEL process
will be speaking TO the 'printService’, rather than acting as
a 'printService' which other web clients can speak to (in
that case the 'myRole’ part of the partner link would have
been defined)

BPEL by Example

<variable> |<process>

start

Ll
<invoke>
Crecelives

L]

Credit Rating PR
anul iandlers>

4

<partnerLink: 4 SendLoa
United Loan -

—<partnerLink:

<partnerLink>

- .'l =
</process>ially 0300

FINE

> o y 4

o

“m

