
Information and coding theory

Solution of exercise sheet n◦ 6 :

6-1.

(a) The size of the matrix is given by n = 6 and m = 4. n corresponds to the size of the
codewords. The rank of H is equal to m = 4 and corresponds to the number of parity bits.
We define a codeword vector x of components xi, i = 1, 2, ..., n. The condition Hx = 0 can be
written in terms of the system of equations :

x1 + x5 + x6 = 0
x1 + x2 + x6 = 0
x2 + x3 + x6 = 0
x1 + x4 + x6 = 0

We find the following solutions :

x =



1
0
1
0
0
1


,



1
1
1
1
1
0


,



0
1
0
1
1
1


,



0
0
0
0
0
0


The minimal distance between the codewords is 3 and thus, one can only correct single errors.

(b) To correct 1 error and to detect two errors, the minimal Hamming distance has to be
d = 4. This corresponds to having the 3 columns of H linearly independent (see exercise 6-3).
In particular, if the column of the hi,6 can neither be equal to another column of H nor equal
to a linear combination of them. With this one can calculate all the possible combinations of
two columns. This gives us a list of 5 ∗ (5− 1)/2 = 10 columns.

One observes that in this way one generates the 16 possible choices. The column hi,6 cannot
be linearly independent with respect to two other columns. The Hamming distance is thus never
equal to 4.

6-2.

(a) The first 3 columns of G1 are linearly independent and correspond to k = 3 bits of
information Les 3 premières columns whereas the two last columns corresponds to m = 2 pa-
rity bits. There are thus 2k = 8 codewords. The Hamming matrix has thus 2 rows (number of
parity bits) and 5 columns (lengths of the codewords) and contains at least two linearly inde-
pendent columns. The equation Hw = 0 which is valid for all codewords offers the possibility
to determine H. We can try a solution of the form :(

h1,1 h1,2 h1,3 1 0
h2,1 h2,2 h2,3 0 1

)

We find : (
1 1 1 1 0
0 1 1 0 1

)
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Since all codewords have at least two bits the minimal distance between the words is d = 2.
This code permits to detect single errors without correcting them.

(b)
In this case G2, n = 4 and k = 1. The number of codewords is 2k = 2. m = n−k = 3, which

corresponds to 3 parity bits. Thus, 3 columns of H can be written as the identity matrix. We
find :  1 1 0 0

1 0 1 0
1 0 0 1


The code has only two codewords :

x =


0
0
0
0

 ,


1
1
1
1


The Hamming distance is d = 4. This is a repetition code which corrects single errors and
detects double errors.

Remark : The transmission rate is given by R = k/n. We observe that RG1 = 3/5, but it
does not permit to correct any error (can only detect single errors). In contrary RG2 = 1/4
but permits to correct single errors and detect double errors. There is a tradoff between the
transmission rate and the possibility to correct errors.
6-3.

A Hamming code corrects up to e−1 errors and detects (but not necessarily correct) up to e
errors iff the minimal Hamming distance is d = 2e. It remains to show that d = 2e is equivalent
to require that all sets of 2e− 1 columns of the parity matrix H are linearly independent.

If wi is a codeword one has thus Hwi = 0. Let wj = wk + z, thus the number of
1s in z (the weight W (z)) is equal to the distance djk between wj and wk. One has thus
Hwj = Hwk + Hz = 0 and Hwk = 0 since it is a codeword. One obtains thus Hz = 0. This
only holds if there are djk columns of H that are linearly dependent.

But the minimal Hamming distance is d = minij{dij}, that means : d is the smallest number
of linearly dependent columns in H. This again means that one requires all sets of d−1 columns
of H to be linearly independent. Thus, d = 2e is equivalent to require that all sets of 2e − 1
columns of H are linearly independent.

6-4.

Let wi be a codeword and W (wi) its weight. The weight can be written as W (wi) = d(wi,0).
We are going to use the distance property : d(wi,wj) = d(wi − wk,wj − wk). By replacing
k by j one obtains d(wi,wj) = d(wi − wj,0), wi − wj which is also a codeword because all
codewords form a group.

Proof.
The definition of the minimal Hamming distance d = mini,j{d(wi,wj)} implies in particular
wj = 0 (0 is always a codeword) ∀i : d(wi,0) = W (wi) ≥ d. But it also implies that there is at
least one couple (l,m) such that d(wl,wm) = d (since there are at least two codewords which
attain the minimum), which offers the possibility to write d(wl −wm,0) = d. There is thus a
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k wk = wl −wm satisfies W (wk) = d.

Inversely, if on assumes that W (w) ≥ d then ∀i, j ∃k : wk = wi − wj such that d(wi,wj) =
d(wi − wj,0) = W (wk) ≥ d. As there is a z such that W (wz) = d, one also has a pair (a, b)
such that d(wa,wb) = d(wa −wb,0) = W (wz) = d. On obtains thus d = mini,j{d(wi,wj)}.
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