
Information and coding theory

Solution of exercise sheet n◦ 5 :

5-1.

Channel capacity : C = maxp(x) I(X : Y ). There are three ways to calculate I(X : Y ) :

1. I(X : Y ) =
∑

x,y p(x, y) log2
p(x,y)

p(x)p(y)
.

2. I(X : Y ) = H(X)−H(X|Y ).

3. I(X : Y ) = H(Y )−H(Y |X).

We remark that for the (memoryless) additive noise channel where the input X and the noise
Z are uncorrelated we can use the relation H(Y |X) = H(X + Z|X) = H(Z). Therefore, for
the calculation of the capacity we can use in this exercise the equation

C = max
p(x)
{H(Y )} −H(Z), (1)

where the second term H(Z) no longer depends on X (and thus, p(x)).
In the following we need to distinguish three cases : I) a = 0, II) a > 1 and III) a = 1.
– I) a = 0 : No noise is added, thus Y = X and H(Z) = 0. The capacity is therefore
C = maxp(x)H(p, 1− p) = 1 bit.

– II) a > 1 : The output alphabet reads Y = {0, 1, a, 1 + a}. For the input variable X we
define the general probability distribution P (X = 0) = p, P (X = 1) = 1−p. Then we can
compute probability distribution of the output Y , i.e. P (Y = 0) = P (X = 0)P (Z = 0) =
p/2, P (Y = 1) = P (X = 1)P (Z = 0) = (1−p)/2, P (Y = a) = P (X = 0)P (Z = a) = p/2
and P (Y = a + 1) = P (X = 1)P (Z = a) = (1 − p)/2. We conclude that each output
can be associated to a unique combination of input X and noise Z and thus, we make
no error. We confirm that indeed like in I) again C = 1 bit by injecting the probability
distribution p(y) in equation (1) :

C = max
p
{−p log2(p/2)− (1− p) log2(

1− p
2

)} − 1 bit.

This is maximized by p = 1/2 for which C = 1 bit.
– III) a = 1 : In this case, Y = {0, 1, 2}. We see like above that if one obtains Y = 0, 2

one does not do any error when estimating X. However, Y = 1 corresponds to either
X = 0, Z = 1 or X = 1, Z = 0. We find the output probability distribution p(y) =
{p/2, 1/2, (1 − p)/2}. Injected in the capacity formula (1) we find that C = 1/2 bits for
p = 1/2.

5-2. This exercise can be solved in the same way as in ex. 5-1, i.e. because the input X and
noise Z are independent we can use again Eq. (1) (careful : in general (1) is is not valid !).

(a) We again parametrize the input probability distribution, but now, as the input takes 4
values we set it to p(x) = {a, b, c, d} where a+ b+ c+ d = 1 (alternatively one can include the
constraint into the parametrization, so write p(x) = {a, b, c, 1−a− b− c}). We remark, that −1
mod 4 = 3, so the output alphabet reads Y = {0, 1, 2, 3}. Now, we have to find the parameters
a, b, c, d that maximize the output entropy H(Y ). We can express (similar to ex. 5-1) p(y) as

1



a function of a, b, c, d, which reads p(y) = {a
4

+ c
4

+ d
2
, b
4

+ c
2

+ d
4
, a
4

+ b
2

+ c
4
, a
2

+ b
4

+ d
4
}. We try

now to find a, b, c, d such that the (optimal) uniform distribution p(y) = {1/4, 1/4, 1/4, 1/4}
is reached (careful : in general it may not be possible to achieve this ! Then one needs to
apply the method of Lagrange multipliers). We have thus, 4 equations + 1 equation for the
constraint a + b + c + d = 1 to solve (one equation is linear dependent on the others). We
find that a = c and b = d. Namely, there is an infinite number of solutions and among them
a = b = c = d = 1/4, i.e., the uniform distribution for X is a solution.

(b) When we inject the solution of (a) in Eq. (1) we find C = 1/2 bits.

(c) We need to sum both noises : Ztotal = Z1 + Z2 and again follow a calculation like in
(a). One obtains the new probability distribution (attention : −2 = 2 since we apply “mod
4”) ; Ztotal takes the values : -1, 0, 1, 2 with probabilities 1/4, 3/8, 1/4, 1/8. We have thus
H(Z) = H(1/4, 3/8, 1/4, 1/8) and we find C = log2 4− 1.91 = 0.09 bits.

(d) Ctotal = C1 + C2 = 1 bit. (The capacity is additive !)

5-3.

(a) If p(X = 1) = p and p(X = 0) = 1− p. One obtains :

I(X : Y ) = H(1− p/2, p/2)− p

Taking into account that :
∂H(x, 1− x)

∂x
= log2

1− x
x

(2)

The maximum is found for p∗ = 2/5 and C = Ip=2/5(X, Y ) = log2 5− 2 bits.

(b) The binary symmetric channel has the capacity C = 1−H(α) bits, where α is the error
rate of the channel, because I(X : Y ) = H(Y )−

∑
p(x)H(Y |X = x) = H(Y )−H(α) ≤ 1−H(α)

bits.

(c) We have C = maxp(x) I(X : Y ). Où I(X : Y ) = H(Y ) − H(Y |X). The entropy at
the output is given by H(Y ) = H(1 − pq, pq) and the conditional entropy reads H(Y |X) =

pH(q, 1− q). I(X : Y ) is maximal if ∂I(X:Y )
∂p

= 0, which implies

q log2

1− pq
pq

= H(q, 1− q). (3)

To simplify notations we write H(q, 1− q) = H. The distribution p that maximizes I(X : Y ) is

p =
1

q(1 + 2H/q)
. (4)

We finally obtain the capacity of the channel :

C = log2(1 + 2H/q)− H

q
. (5)

To check consistency we can test Eq. (5) for q = 0.5. Since H(q = 0.5) = 1 we confirm the
result of (a), i.e. C(q = 0.5) = log2 5− 2 bits.

5-4.

(a) It does not attain the capacity because the equiprobable distribution does not maximize
the mutual information of the channel of exercises 5-3.
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(b) For a probability distribution p(x), the maximal transmission rate R is bounded from
above by I(X : Y ). For the channel of exercise 5-3 : Rp=1/2 < Ip=1/2(X : Y ) = 0.3113 bits.

5-5.

(a) C = maxp(x) I(X : Y ) and C̃ = maxp(x) I(X : Ỹ ).

We have I(X : Y, Ỹ ) = H(X : Y ) +H(X : Ỹ |Y ),
and I(X : Y, Ỹ ) = H(X : Ỹ ) +H(X : Y |Ỹ ).
Since H(X : Y |Ỹ ) ≥ 0 and H(X : Ỹ |Y ) = 0 (see exercise 2-3), we deduce that
I(X : Ỹ ) ≤ I(X : Y ). Thus, C̃ > C is impossible.

(b) One requires H(X : Y |Ỹ ) = 0. This chain thus must satisfy X → Ỹ → Y . This is only
possible if Y ↔ Ỹ , i.e. iff Ỹ = f(Y ) is a bijective function.
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