
Electronic Payment Systems
20-763

Lecture 9:

ELECTRONIC PAYMENT SYSTEMS 20-763 SPRING 2004 COPYRIGHT © 2004 MICHAEL I. SHAMOS

Lecture 9:
Micropayments II

MicroMint

• Brokers produce “coins” having short lifetimes, sell
coins to users

• Users pay vendors with coins
• Vendors exchange the coins with brokers for “real”

money

ELECTRONIC PAYMENT SYSTEMS 20-763 SPRING 2004 COPYRIGHT © 2004 MICHAEL I. SHAMOS

BROKER

CUSTOMER VENDOR

SOURCE: SHERIF

NEW COINS

SPENDING OF COINS

TRANSFER OF INFORMATION

PURCHASE NEW COINS
RETURN UNUSED COINS

EXCHANGE COINS FOR
OTHER FORMS OF VALUE

Minting Coins in MicroMint

• Idea: make coins easy to verify, but difficult to create
(so there is no advantage in counterfeiting)

• In MicroMint, coins are represented by hash-function
collisions, values x, y for which H(x) = H(y)

• If H(•) results in an n-bit hash, we have to try about

ELECTRONIC PAYMENT SYSTEMS 20-763 SPRING 2004 COPYRIGHT © 2004 MICHAEL I. SHAMOS

• If H(•) results in an n-bit hash, we have to try about
2n/2 values of x to find a first collision

• Trying c•2n/2 values of x yields about c2 collisions

• Collisions become cheaper to generate after the first
one is found

Coins as k-way Collisions

• A k-way collision is a set { x1, x2, . . ., xk } with
H(x1) = H(x2) = . . . = H(xk)

• It takes about 2n(k-1)/k values of x to find a k-way
collision

• Trying c• 2n(k-1)/k values of x yields about ck collisions

• If k > 2, finding a first collision is slow, but subsequent

ELECTRONIC PAYMENT SYSTEMS 20-763 SPRING 2004 COPYRIGHT © 2004 MICHAEL I. SHAMOS

• If k > 2, finding a first collision is slow, but subsequent
collisions come fast

• If a k-way collision { x1, x2, . . ., xk } represents a coin,
easily verified by computing H(x1), H(x2), . . ., H(xk)

• A broker can easily generate 10 billion coins per
month using one machine

Selling MicroMint Coins

• Broker generates 10 billion coins and stores (x, H(x))
for each coin, having a validity period of one month

• The function H changes at the start of each month

• Broker sells coins { x1, x2, . . ., xk } to users for “real”
money, records who bought each coin

ELECTRONIC PAYMENT SYSTEMS 20-763 SPRING 2004 COPYRIGHT © 2004 MICHAEL I. SHAMOS

money, records who bought each coin

• At end of month, users return unused coins for new
ones

Spending MicroMint Coins

• User sends vendor a coin { x1, x2, . . ., xk }

• Vendor verifies validity by checking that
H(x1) = H(x2) = . . . = H(xk). (k hash computations)

• Valid but double-spent coins (previously used with a
different vendor) cannot be detected at this point

• At end of day, vendor sends coins to broker

ELECTRONIC PAYMENT SYSTEMS 20-763 SPRING 2004 COPYRIGHT © 2004 MICHAEL I. SHAMOS

• At end of day, vendor sends coins to broker

• Broker verifies coins, checks validity, checks for
double spending, pays vendor

• (Need to deal with double spending at this point)

Detecting MicroMint Forgery

• A forged coin is a k-way collision { x1, x2, . . ., xk }
under H(•) that was not minted by broker

• Vendor cannot determine this in real-time

• Small-scale forgery is impractical

• Forged coins become invalid after one month

ELECTRONIC PAYMENT SYSTEMS 20-763 SPRING 2004 COPYRIGHT © 2004 MICHAEL I. SHAMOS

• New forgery can’t begin before new hash is announced

• Broker can issue recall before the month ends

• Broker can stay many months ahead of forgers

Statistical Schemes
• During World War II, Cola-Cola raised the price of a

bottle from 5 cents ($0.05) to 6 cents ($0.06)
• It was expensive to change the coin mechanism
• Coca-Cola randomly removed 1/5 of the bottles from

its machines but kept the 5-cent mechanism
• 4/5 of the time a customer would receive a bottle for 5

ELECTRONIC PAYMENT SYSTEMS 20-763 SPRING 2004 COPYRIGHT © 2004 MICHAEL I. SHAMOS

• 4/5 of the time a customer would receive a bottle for 5
cents

• 1/5 of the time a customer would pay 5 cents and get
NOTHING

• The AVERAGE price of a bottle was 6 cents
• Rarely, a user might pay a lot for a bottle (1 in 625

bottles cost 20 cents)

Statistical Payment

999/1000
FAIRNESS:

• User, merchant and bank cannot cheat

1/1000

User needs to pay Mapquest $0.01

ELECTRONIC PAYMENT SYSTEMS 20-763 SPRING 2004 COPYRIGHT © 2004 MICHAEL I. SHAMOS

VOID

• User, merchant and bank cannot cheat

• Not always fair to user (might be overcharged)

• Fair to merchant and bank on average

Enable 1000 Transactions
at Cost of 1

$10

MR1 (Micali, Rivest)

• Three parties: user U, merchant M, bank B
• For simplicity, assume every transaction is worth

$0.01 but we only want to process transactions with
probability 1/1000

• U and M have public-private key pairs
• Let F be a publicly available function (everyone can

ELECTRONIC PAYMENT SYSTEMS 20-763 SPRING 2004 COPYRIGHT © 2004 MICHAEL I. SHAMOS

• Let F be a publicly available function (everyone can
obtain the code) that returns a number between 0
and 1 uniformly. (The values of F are uniformly
distributed between 0 and 1.)

• A transaction string
T = User ID || Merchant ID ||Bank ID ||timestamp

SOURCE: RON RIVEST

MR1, continued
• When User U wants to pay Merchant M, he sends M

his digital signature C for transaction string T
C = SigU(T) (hash of T encrypted with U’s private key)

• Merchant M now signs C
D = SigM(C) (hash of C encrypted with M’s private key)

• Merchant M computes F(D)

ELECTRONIC PAYMENT SYSTEMS 20-763 SPRING 2004 COPYRIGHT © 2004 MICHAEL I. SHAMOS

– If F(D) < .001, then C is worth $10; otherwise C is worth $0
– This occurs 1/1000 of the time

• If C has value, M sends to bank C & D = SigM(C)
• Bank verifies signatures and F(D), charges U $10

and credits M with $10
• No risk to bank; U may pay a lot more than the

transaction value SOURCE: RON RIVEST

Properties of MR1

• Payment is off-line
– U and M do not have to be in contact during transaction

– U can send C by email
– M does not have to contact Bank during transaction

• Bank only sees 0.1% of transactions
• No risk to bank

ELECTRONIC PAYMENT SYSTEMS 20-763 SPRING 2004 COPYRIGHT © 2004 MICHAEL I. SHAMOS

• Because of signatures, neither U nor M can cheat (if
protocol is implemented properly)

• U may pay a lot more than the transaction value
• Want a protocol in which U never pays more than the

transaction value

SOURCE: RON RIVEST

MR2 (Micali, Rivest)

• Goal: make sure U never pays more than transaction
value he uses

• Shift risk from User to Bank. This is OK because
Bank processes large number of transactions

• U includes a serial number S as part of the
transaction string

ELECTRONIC PAYMENT SYSTEMS 20-763 SPRING 2004 COPYRIGHT © 2004 MICHAEL I. SHAMOS

transaction string
• Let MaxS be the highest serial number the Bank has

processed for user U so far (starts at 0)
• When Bank processes a payable transaction:

– credits M with $10
– debits U by S – MaxS

– MaxS S

Why Does MR2 Work?

• User NEVER pays more than the number of
transactions he creates

• After n transactions, serial number S = n. Suppose
he has to pay m times

• Total payment =

m m 1

ELECTRONIC PAYMENT SYSTEMS 20-763 SPRING 2004 COPYRIGHT © 2004 MICHAEL I. SHAMOS

• User can cheat (by not incrementing S), but Bank will
catch him

• Bank on average receives as much as it pay out

m

i

m

i
miiii nSMaxSMaxSMaxSS

1

1

1
1

Properties of MR1 and MR2

• Highly scalable: billions of transactions handled with
only millions of payments

• Inexpensive
• Payments are offline
• Global aggregation (can handle payments to many

ELECTRONIC PAYMENT SYSTEMS 20-763 SPRING 2004 COPYRIGHT © 2004 MICHAEL I. SHAMOS

merchants from many customers)

SOURCE: RON RIVEST

Millicent

• Vendors produce vendor-specific “scrip”, sell to brokers
for “real” money at discount

• Brokers sell scrip from many vendors to many users
• Scrip is prepaid: promise of future service from vendor
• Users “spend” scrip with vendors, receive change

ELECTRONIC PAYMENT SYSTEMS 20-763 SPRING 2004 COPYRIGHT © 2004 MICHAEL I. SHAMOS

BROKER

USER VENDOR

SOURCE: COMPAQ

USER SPENDS VENDOR
SCRIP FOR INFORMATION

TRANSFER OF INFORMATION
(CHANGE IN MESSAGE HEADER)

USER BUYS BROKER
SCRIP ($ WEEKLY)

BROKERS PAY
FOR VENDOR SCRIP

($$$ MONTHLY)

(¢ DAILY)

USER EXCHANGES
BROKER SCRIP FOR

VENDOR SCRIP
(AS NEEDED)

Millicent

• Broker
– issues broker scrip to user
– exchanges broker scrip for vendor scrip
– interfaces to banking system
– collects funds from users
– pays vendors (less commission)

• User

ELECTRONIC PAYMENT SYSTEMS 20-763 SPRING 2004 COPYRIGHT © 2004 MICHAEL I. SHAMOS

• User
– buys broker scrip from brokers
– spends by obtaining vendor-specific scrip from broker

• Vendor
– sells scrip to brokers
– accepts vendor scrip from users
– gives change to users in vendor scrip

MilliCent Components

• Wallet
– integrated with browser

as a “proxy”

– User Interface
(content, usage)

• Vendor software

VendorVendor
ServerServerWalletWallet

Tokens

New
tokens

Spent
tokens

ELECTRONIC PAYMENT SYSTEMS 20-763 SPRING 2004 COPYRIGHT © 2004 MICHAEL I. SHAMOS

• Vendor software
– easy to integrate

as a web relay

– utility for price
management

• Broker software
– handles real money

User Vendor

BrokerBroker
ServerServer

Broker

$ $

tokens tokens

MilliCent System Architecture

Broker
Server

Broker (tens?)

HTTP

Vendor (thousands)

Price
File

Document

Price
Configurator

User (millions

ELECTRONIC PAYMENT SYSTEMS 20-763 SPRING 2004 COPYRIGHT © 2004 MICHAEL I. SHAMOS

HTTP

Vendor
Server

Web
Server

Document
Tree

Site Map

Browser Wallet

User (millions
of consumers)

Browser
Cache

Wallet
Contents

HTTP

Millicent Scrip Verification

• Token attached to HTTP requests
• Scrip can not be:

– Spent twice
– Forged
– Stolen

WebWeb
ServerServer

WebWeb
BrowserBrowser

Client Vendor

• Scrip is validated:
– By each vendor, on the fly
– Low computational overhead
– No network connection
– No database look up

ScripScrip

BrokerBroker
ServerServerBroker

MilliCent Scrip

ELECTRONIC PAYMENT SYSTEMS 20-763 SPRING 2004 COPYRIGHT © 2004 MICHAEL I. SHAMOS

Secret

wellsfargo.com / 0.005usd / 0081432 / 101861 / 19961218 {co=us/st=ca} 1d7f4a734b7c02282e48290f04c20

Vendor Value ID# Cust ID# Props StampExpires

Vendor Server

• Vendor server acts as a proxy
for the real Web server

• Vendor server handles all
requests:
– Millicent
– relay to web-server

VendorVendor
ServerServer

Web Web
ServerServer

ELECTRONIC PAYMENT SYSTEMS 20-763 SPRING 2004 COPYRIGHT © 2004 MICHAEL I. SHAMOS

– relay to web-server

• Millicent processing:
– Validates scrip and

generates change
– Sells subscriptions
– Handles replays, cash-outs, and refunds Vendor Site

Price
File

Document
Tree

Major Ideas

• Micropayment systems must be fast and cheap
• They MUST lack features of higher-value payment

systems
• Use of hashing instead of cryptography
• Micropayment parties: buyer, seller, broker

ELECTRONIC PAYMENT SYSTEMS 20-763 SPRING 2004 COPYRIGHT © 2004 MICHAEL I. SHAMOS

• Micromint models minting coins
– High overhead to prevent counterfeiting

• Fraud is not a serious problem with micropayments

ELECTRONIC PAYMENT SYSTEMS 20-763 SPRING 2004 COPYRIGHT © 2004 MICHAEL I. SHAMOS

