
MiMi: A Java Implementation of the MicroMint Scheme�

Vesna Hassler, Robert Bihlmeyer,
Michael Fischer, Manfred Hauswirth

Technical University of Vienna, Distributed Systems Department

Abstract

In this paper we describe an experimental implementation of the MicroMint micropayment
scheme in Java. We apply this scheme to purchasing Web pages. A prerequisite was to ac-
complish this without having to change the code of either the Web server or the Web client.
We discuss the implementation issues and security considerations. Our implementation re-
quires the local protocol handler feature offered by Sun Microsystems’ HotJava 1.0 browser.

Keywords: network security, Web security, Java security, electronic commerce, micro-
payment schemes

1 Introduction

The main motivation for introducing so-calledmicropayment schemesinto electronic com-
merce protocols is that not all Internet commerce applications require transactions of large
amounts of money. Accordingly, the security risks related to a single purchase are not
so high. It is therefore rather expensive to deploy security mechanisms suitable for high
security risks. For example, a typical charge for purchasing a Web page is one cent. Con-
sequently, the only attack worth trying would be a large-scale forgery. Therefore micropay-
ment schemes should be aimed at preventing large-scale attacks that would involve hundreds
of thousands of purchases rather than at preventing a few losses in the range of one cent.

In a micropayment scheme, typical participants are a customer, a broker and a vendor.
The customer buysdigital coinsfrom the broker and gives them to the vendor as payment
for some service. The vendor returns coins to the broker in return for payment by other
means (redemption).

In this paper we describe an implementation of a micropayment scheme (MicroMint [7])
calledMiMi , applied for purchasing Web pages. In this setting the vendor is an information
server that charges customers for accessing its Web pages. The server is implemented as a

�This work was supported in part by a grant from Hewlett Packard Laboratories.

1



standalone Java application, but could also be implemented as an extension of a Web server
(e.g. using the Java Servlet API [12]).

2 MicroMint

MicroMint [7] is a micropayment scheme intended for facilitating small purchases over
the Internet. It offers low security, but is very fast because it makes no use of public-key
cryptography. Its main advantages over other micropayment schemes [9] are as follows:

� it is off-line from the broker’s point of view,

� it does not use either digital signatures or any other public-key scheme, and

� small-scale forgery attempts do not pay off.

At the beginning of each month the broker issues new coins. Unused coins are returned
to the broker at the end of each month. Each coin is represented byk integer values (we
use 32-bit integers) such that their hash values (i.e. MD5 digests [6]) all have identical low-
ordern bits. This is called ak-way collision. Additionally, thec high-order bits of the hash
value are specified by the broker, and are different for each month. For a detailed discussion
of the MicroMint scheme see [7].

3 Java Security

The necessity for a sound security concept for the Java programming language results from
the fact that most Java code is intended to be automatically downloaded across the network
to run on a user’s machine [13]. The main problem here, from the security point of view,
is how to protect the user’s host and data from being damaged by running malicious Java
code. Due to the Java Virtual Machine [5] concept, Java code runs on all of the most popular
platforms without recompilation. In other words, Java is an implementation of Web-based
executable content.

The purpose of the Java security reference model [2] is the enforcement of Java language
semantics [10] and a Java-enabled application’s security policy. The Java Virtual Machine
(JVM) enforces the Java language security features, like access modifiers for variables and
methods. It calls the Class Loader in order to ensure that class names are mapped to class
code in a proper way. JVM also provides the Bytecode Verifier to validate non-system
classes. And finally, the Security Manager performs run-time checks on ”dangerous” meth-
ods, like file read/write operations. Each Java-enabled browser uses its own version of the
Security Manager. The Security Manager policy of most browsers is usually very restric-
tive. For example, applets cannot access local files at all. The new release of the HotJava
browser (1.0 preBeta2) enables applets to gain different access permissions based on their
digital signature [11].

2



Figure 1: MiMi - Loading a Web page

The initial design of MiMi was intended to work with any Java-enabled browser. If
a customer wished to purchase a Web page, an applet provided by the vendor would be
downloaded by the customer’s browser. This applet would take care of the communication
between the customer and the vendor, i.e. its originating host, which is allowed by most
browsers. However, since the vendor’s applet cannot be trusted (most browsers’ Security
Managers do not allow non-local applets to access local resources at all), it could not read
the coin(s) required for purchasing the requested page. Thus it would be necessary to have
an additional, local applet that would communicate with the vendor’s applet and operate on
local files in which the coins and the security relevant information are stored. Unfortunately,
inter-applet communication is not possible for applets with different security contexts (i.e.
different Security Managers), so we had to abandon that solution.

HotJava 1.0 preBeta2 allows an applet to get access permissions for local files based on
its certificate and digital signature. It is an extension of the Access Control Lists of Sun’s
Appletviewer [10]. This feature would allow a trusted digitally signed applet originating
from the vendor to access the customer’s wallet. A problem with this solution is that it
might be necessary to repeatedly download the vendor’s applet for each requested Web
page. The vendor’s applet should therefore stay resident in the browser and reactivate itself
if the customer requested a new page from the same vendor.

In the current solution we don’t use applets, but a locally installed protocol handler for
HotJava. The client program defines a protocol calledMiMi . The MiMi protocol handler
is installed locally, so that it can get all permissions necessary to access local files without
causing security problems.

4 An Overview of MiMi

MiMi comprises three Java applications (MMOrder, MMBroker and MMVendor), a
protocol handler [15], as well as the HotJava 1.0 preBeta1 browser. The overall structure
is depicted in Figure 2. The MiMi protocol handler enables the communication between
the HotJava browser and the information server, i.e. MMVendor. Disadvantages of this
approach are that the protocol handler has to be installed locally, and that this feature is

3



Figure 2: MiMi - An Overview

currently not supported by browsers other than HotJava.
In our example setting MMVendor requires one digital coin for purchasing any of its

Web pages. The customer can buy coins from MMBroker using the MMOrder application.
The coins are stored in the customer’s directory, in a file calledWallet. MMBroker mints
coins and stores them in its own wallet file.

If the user wishes to access a MMVendor’s page, s/he starts HotJava and types in a
MiMi URL, like mimi://host:port/dir/page.html(see Fig.1). When purchasing a Web page,
the user is asked to pay one coin to MMVendor. MMVendor checks whether the coin is
really ak-way collision, and whether it has already received it that month. If everything is
correct, MMVendor accepts the coin and sends the requested page to the user. The user can
view the page in his/her HotJava browser or, otherwise, the corresponding error message.
At the end of each day MMVendor returns all collected coins to MMBroker. MMBroker
checks each returned coin to verify whether it has been previously redeemed. For each valid
coin MMBroker pays MMVendor a certain amount of money, e.g. one cent.

4.1 Some design issues

OMT model. In Fig.3 the OMT model [8] with the main vendor and customer classes
is shown. For simplicity, we omitted some attributes and operations that are of little or no
importance for this explanation.

4



Figure 3: MiMi - The object model

How much to pay for a page? In the current MiMi implementation, one coin is required
for one Web page. However, parts of a Web page (e.g. pictures) may be given as hyperlinks
or as local links pointing to local files. If the reference is given as an hyperlink for the
HTTP protocol, it is assumed to be public domain, so no additional coin is requested. If the
reference is given as an hyperlink for the MiMi protocol, an additional coin is requested,
i.e. a new window asking for a coin appears. If the customer does not want to pay for the
”extra” pages, s/he can simply refuse further payments and download only the content the
originally requested reference is pointing to.

4.2 MiMi security considerations

Customer-Broker. When purchasing coins from the broker, the customer must be sure
that s/he is contacting the genuine one whose coins will be accepted as expected. In other
words, the broker has to be authenticated. If the customer is authenticated, the broker can
automatically withdraw the appropriate amount of real money from the customer’s account,
either locally at the broker or at the customer’s bank. If the customer is not authenticated,
s/he can anonymously order some coins from the broker and get them after having trans-
ferred the corresponding amount of real money to the broker’s account. The coins must
be transferred from the broker to the customer’s wallet in a confidential way in order to
prevent eavesdropping. The current version (February 1997) of MMOrder does not include
authenticity and confidentiality, but we plan to implement these security services based on
the SSL protocol [4]. Another possible solution is to use secure mail.

5



Broker-Vendor. Digital coins that the vendor has collected from the customers are re-
deemed by the broker that issued them. In order to prevent the man-in-the-middle attack it
is recommendable to authenticate the broker, or at least use a long-term symmetric encryp-
tion key that would provide both weak authentication and confidentiality. Otherwise, using
Web spoofing techniques [3] an attacker could masquerade as the broker, collect the coins
from the vendor and redeem them at the genuine broker. In order to prevent eavesdropping,
this exchange should be confidential. If the vendor is authenticated, the broker can automat-
ically transfer the real money to its account. Otherwise, the broker could issue a digitally
signed check and send it to the vendor in a confidential way. Here it is also be possible to
use secure mail.

Customer-Vendor. The security problems that can arise by the customer-vendor com-
munication are stealing of coins and stealing of Web pages. One of the design goals of
MicroMint is to completely avoid public-key cryptography. However, it is recommendable
to use a long-term symmetric encryption key between the customer and the vendor because
it provides both weak authentication and confidentiality. This method would protect against
stealing of both coins and Web pages. For each exchange of the long-term key the vendor
should be authenticated using some strong authentication protocol. There are also other
techniques to prevent stealing of coins proposed by the authors of MicroMint, like user-
specific or vendor-specific coins [7]. If the [non-specific] coins are sent in cleartext, an
attacker could use Web spoofing techniques [3] to collect coins and send in return fake Web
pages. However, this attacker would have to provide Web pages that in the long run look
similar to the genuine pages, to a large number of customers. Otherwise, this attack would
not pay. If the vendor’s Web pages are sent in cleartext, an attacker could collect them,
become a vendor him/herself and sell the stolen pages. However, this would be revealed
pretty soon, by the genuine vendor or by an honest customer. Moreover, if the contents of
the Web pages change on a daily basis (like newspapers), this type of attack does not pay at
all.

5 Conclusions

In this paper we presented a simple solution for applying the MicroMint scheme to pur-
chasing Web pages. At the moment this solution works with Sun’s HotJava browser only,
because we use one of its advanced features (locally installed protocol handler). We hope
that in the near future this feature will be offered by other browsers as well, and that it will
be possible to dynamically load the protocol handler.

The new release of HotJava 1.0 (preBeta2) enables applet authentication, so that an
applet can access the local environment if it is digitally signed and if its originator has a
proper certificate. Having this feature in Java-enabled Web browsers would make it possible
for the protocol handler to work with applets loaded over the network, even without an
integrated protocol handler support [14].

6



If the protocol handler could also be loaded dynamically, it would have to undergo strict
security checks. This is most probably the reason why the new HotJava release (1.0 pre-
Beta2) still does not allow dynamically loaded protocol handlers, although it was expected;
this feature would namely require a security concept, similar to applets.

References

[1] Berners-Lee, T., R. Fielding, H. Frystyk,Hyptertext Transfer Protocol – HTTP/1.0, Request
For Comments, RFC 1945, May 1996, URL:�ftp//ds.internic.net/rfc/rfc1945.txt�

[2] Erdos, M., B. Hartman, M. Mueller,Security Reference Model for the Java Developer’s Kit
1.0.2, Nov 1996, URL:�http//www.javasoft.com/security/SRM.html�

[3] Felten, E.W., D. Balfanz, D. Dean, D.S. Wallach,Web Spoofing: An Internet Con Game, Tech-
nical Report 540-96, Department of Computer Science, Princeton University, 1996
URL:�http//www.cs.princeton.edu/sip/pub/
spoofingDocumentWithLongUntypeableName.html�

[4] Freier, A.O., P. Karlton, P.C. Kocher,The SSL Protocol. Version 3.0, Internet Draft, March
1996, URL:�ftp//ietf.cnri.reston.va.us/internet-drafts/draft-freier-ssl-version3-01.txt�

[5] Lindholm, T., F. Yellin, The Java Virtual Machine Specification, Addison-Wesley: Tha Java
Series, 1996

[6] Rivest, R.L.,The MD5 message-digest algorithm, Internet Requests for Comments, RFC 1321,
April 1992

[7] Rivest, R.L., A. Shamir,PayWord and MicroMint: Two simple micropayment schemes, also
presented at the RSA ’96 conference, URL:�http//theory.lcs.mit.edu/ rivest/RivestShamir-
mpay.ps�,

[8] Rumbaugh, J., M. Blaha, W. Premberlani, F. Eddy, W. Lorensen,Object-Oriented Modeling
and Design, Prentice Hall, 1991

[9] Hallam-Baker, P.M.,Electronic Payment Schemes,
URL:�http://www.w3.org/pub/WWW/Payments/roadmap.html�

[10] JavaSoft,Frequently Asked Questions: Applet Security,
URL:�http://java.sun.com/sfaq/index.html�

[11] JavaSoft,Java Security: New!, URL:�http://www.javasoft.com/index.html�

[12] JavaSoft,The Java Servlet Development Kit, URL:�http://jeeves.javasoft.com/products/java-
server/sdk�

[13] McGraw, G., E.W. Felten,Java Security. Hostile Applets, Holes and Antidotes, John Wiley &
Sons, Inc., 1997

[14] Niemeyer, P., J. Peck,Exploring Java, O’Reilly & Associates, Inc., 1996

[15] Sun Microsystems, Inc.,HotJava 1.0 preBeta2: User’s Guide: Installing a Local Protocol
Handler, 1997

7




