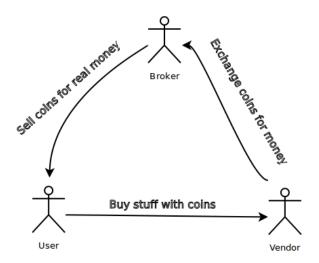
Micromint

Quentin Delhaye

Université Libre de Bruxelles INFO-F-514 Protocols, cryptanalysis and mathematical cryptology

March 19th 2014

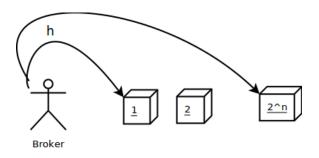
<□> <률> < ≣> < ≣> < ≣> ≥ ♡Q⊙ 1/19


- Outline of the scheme
- 2 Basic Implementation
- 3 Security Concerns

4 Conclusion

- Off-line micropayement scheme.
- Rivest and Shamir in 1995.
- No public key operations.

Outline of the scheme Basic Implementation


Security Concerns Conclusion

- K-way collision based coins.
- Input x on m bits, output y on n bits.
- (x_1, x_2, \dots, x_k) s.t. $h(x_1) = h(x_2) = \dots = h(x_k) = y$
- First collision needs $2^{n(k-1)/k}$ inputs.
- Examining c times as many values, 1 ≤ c ≤ 2^{n/k}, gives c^k collisions.

Collisions Minting Usage

- Ball x, bin of index y.
- Tossing $k2^n$ balls, each with 1/2 chance to be part of a coin.
- Each bin with $\geq k$ balls can produce a coin.

- Storage cost is higher than computation cost.
- Reduce the amount of good balls by fixing the high order bits.
- n = t + u and t is fixed to an arbitrary value z.
- The broker tosses $k2^n$ balls, remembers $k2^u$ and generates 2^{u-1} coins.

Collisions Minting Usage

- User Vendor
 - User buy stuff with his coins and Vendor verifies the validity of those by quickly computing the hashes.
- Vendor Broker
 - Vendor returns the coins, Broker verifies their validity, that they have not been redeemed yet and that they have actually been minted by him.

Long-term Forging Theft of Coins Double Spending

3 Security Concerns

- Long-term Forging
- Theft of Coins
- Double Spending

Long-term Forging Theft of Coins Double Spending

Long-term Forging

• Problem:

Attacker may spend months forging a huge amount of coins hoping to catch up with the broker.

- Solutions:
 - Validity period which is only disclosed at the beginning of the period.
 - Broker can cancel validity period at any time.
 - Hidden predicates.
 - Broker can generate coins for several months in advance.

Long-term Forging Theft of Coins Double Spending

Hidden predicates

The balls have to satisfy some hidden predicates.

 $\underbrace{x_0 x_1 x_2 \dots x_{n-1}}_{random} \underbrace{x_n \dots x_m}_{predicate}$

The m - n last bits determine the predicate to apply on those same bits.

The predicate should be hard, hidden and can be changed on a daily basis.

Long-term Forging Theft of Coins Double Spending

Preventive minting

Minting for the next eight months at the same time. Broker knows the validity for the upcomming months. At the beginning of a new period, Broket should have all the coins for the month j, $\frac{7}{8}$ for the j + 1, ..., $\frac{1}{8}$ for the j+7. All the balls tossed can end up in any of the eight months bins.

Long-term Forging Theft of Coins Double Spending

Theft of Coins

• Problem:

Theft coins could be sold to rogue users for them to use or used by the thief.

- Solutions:
 - Vendor-specific coins.
 - User-specific coins.
 - Generalization of the collision.

Long-term Forging Theft of Coins Double Spending

User-specific coins

- Additional condition h'(x₁,...,x_k) = h'(U), h' being a shorter hash function and U the identifier of a group.
- Trade-off between large groups (more potential rogue users for the thiefs) and small groups (large excess of coins needed to satisfy everyone needs).

Long-term Forging Theft of Coins Double Spending

Generalization of the collision

- A coin is now valid for U iff for y_i = h(x_i), i = 1, ..., k − 1, we have y_{i+1} − y_i = d_i(mod2^u), and where (d₁, ..., d_{k-1}) = h'(U).
- Broker tosses balls in bins as previously, that part is not user-specific.

Long-term Forging Theft of Coins Double Spending

Generalization of the collision (cont'd)

When a user requires coins, Broker proceeds to some additional computations:

- Computes *d_i*'s.
- Picks a random bin y₁ that will serve as the identifier of the coin.
- Computes y_i's.
- Takes the ball out of y_1 and a copy out of bins y_i , i = 2, ..., k.
- If one bin y_i is empty, Broker start again with a new y_1 .

Long-term Forging Theft of Coins Double Spending

Double Spending

• Problem:

Spending many times the same coin.

- Solutions:
 - Coins are tracable.
 - Each coin uniquely identified on the broker side.

Conclusion

Drawbacks:

- High investment cost.
- Continous upgrade.
- Small scale forgery id possible but negligeable.
- Not perfectly anonymous.

Advantages:

- Validity of coins easy to check.
- Off-line, the broker is not a bottleneck.

Questions.

< □ > < □ > < □ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ < □ > < ○ へ (> 19 / 19