
Towards a Generalized Payment Model for
Internet Services?

Michael Fischer,1 Harald Gall,1 and Manfred Hauswirth2

1 Distributed Systems Group
Technical University of Vienna,

A-1040 Vienna, Austria
{fischer,gall}@infosys.tuwien.ac.at

2 Distributed Information Systems Lab, EPFL
1015 Lausanne, Switzerland
manfred.hauswirth@epfl.ch

Abstract. Prerequisite for the success of new business models in the
Internet, such as pay-per-view, will be an efficient and interoperable elec-
tronic payment system. Many protocols and frameworks for various busi-
ness domains exist. However, they are mostly incompatible which makes
it hard for service providers to design for change. We investigated several
standard payment scenarios and configurations and analyzed shortcom-
ings of existing payment schemes. As a result, we developed expressive,
common payment abstractions and came up with a generalized payment
model which hides the payment mechanisms used, but offers a common,
high-level interface and supports a wide range of business models. In
this paper, we present our generalized payment model and its accom-
panying security model for Internet services. We discuss its abstractions
and protocols and evaluate it in an Internet-scale push system.

1 Introduction

E-commerce sites which require some form of payment for part of their services
are the main segment of growth in the Internet landscape. At the moment the
standard payment instrument are credit cards: When the customer decides to
buy, s/he fills in a form with her/his credit card information which is then
transmitted to the vendor’s site via the Secure Socket Layer (SSL) protocol
(HTTPS) [7].

Only few sites offer electronic payment via a payment protocol such as Se-
cure Electronic Transaction (SET) [26]. Even fewer sites employ micro-payment
protocols such as Millicent [10]. However, electronic payment is important for
e-commerce applications because it enables highly relevant business models such
as pay-per-view, volume-based, time-based, pre-paid, or post-paid.

? This work was supported in part by the European Commission under contract IST-
1999-10288, project OPELIX (Open Personalized Electronic Information Commerce
System).

Assuming that electronic payment will be employed on a large scale in the
near future and on the basis of the state-of-the-art in payment systems, a crit-
ical problem emerges: There will be a number of competing standards which
are incompatible and require applications to be tightly coupled with them. This
impedes component-oriented design for change and makes it hard for customers
to interact with vendors who use different payment protocols. Additionally, ven-
dors (or customers) may want to delegate payment handling to specialized third-
parties who offer appropriate security and sufficient proofs of their transactions.
Such payment intermediaries would have to support a wide range of different
payment protocols and business models at reasonable costs to make a revenue
out of their business.

The analysis of current payment protocols shows that most of the proto-
cols are broker-centric, i.e., the broker is involved in the protocol during the
payment operation. For example, NetBill [28] requires a server for billing and
dispute handling, DigiCash [3] needs one to detect double-spending, and SET
[26] must validate credit card data at a server. One exception is the Millicent
[10] protocol in which the integrity of the electronic “currency” (scrip in Milli-
cent terminology), can be validated by the vendor. A possibly disadvantageous
property of some protocols is that they define the payment and delivery process
as an integrated transaction, e.g., NetBill, which violates the component-based
approach of software composition and restricts flexibility. A limiting factor in
many micro-payment protocols is the requirement to subscribe to a vendor’s
payment broker to obtain the virtual currency.

Besides these problems the current payment approaches are useful in many
settings but still do not meet the requirements of modular system design and
do not adequately address flexible business models as in our push system case
study: (1) we use the Minstrel [13,30] Internet-scale push systems with its op-
timized distribution infrastructure which requires decoupling of payment and
delivery, i.e., an arbitrary number of delivery components may use a single pay-
ment component; (2) the business model and the associated payment model are
not known a priori; (3) there is no interoperability between different payment
schemes; and (4) the customer/vendor has little freedom in choosing the payment
instrument/provider. These constraints motivated our approach.

In this paper we introduce our generalized payment model which supports
account-based and token-based payment schemes. The security model inspired by
the Millicent payment scheme has been extended to meet the requirements of the
various business models we want to support in the Minstrel push system. We have
paid much attention to keep the communication efficient and the transaction
costs low. This makes the system well-suited for small-value transactions, so-
called micro-payments [12], but also addresses a wide range of other business
models.

This paper is organized as follows: Section 2 positions our approach in respect
to related work. Section 3 characterizes common payment abstractions and in-
troduces our generalized payment model. Section 4 discusses the security related

2

aspects of our approach. In Section 5 we evaluate our model in connection with
Minstrel and Section 6 concludes the paper.

2 Related Work

Many electronic payment systems rely on non-electronic payment systems or
extend them. Often they use existing infrastructures such as banks or credit
card companies and create an electronic communication system between ven-
dor, customer, and bank (or credit card company). Besides this “traditional”
approach as first realized by First Virtual Holdings [29] or SET [27] for online
credit card payments, new electronic payment systems have been introduced
[22,23,33]. These systems focus on reduction of transaction costs, improvement
of transaction speed and/or support of anonymity of the customer. So far little
attention has been paid to the issues of generalized payment frameworks and
payment interoperability.

2.1 E-Commerce Systems

SEMPER [19] supports different payment instruments by implementing a Generic
Payment Service Framework (GPSF) [25] which provides a well-defined interface
for higher level services but still having enough flexibility in supporting different
payment models, e.g., check-like or cash-like. But payment is only a small aspect
in SEMPER since it has been designed more generally to provide security for
electronic commerce on the Internet.

2.2 Payment Frameworks

One critical aspect in payment instruments is their integration into e-commerce
applications. Beyond other aspects, it is required to address problems such as
security, different operating system platforms, programming language technolo-
gies, design of a common Application Programming Interface (API), peculiarities
of the payment instrument, and the underlying protocol. At least, the latter two
topics have to be addressed by payment frameworks to facilitate generic appli-
cation development. The Universal Payment Application Interface (U-PAI) [18]
proposes a standard interface to multiple payment mechanisms. It does not ad-
dress negotiation for parameters before a payment transaction begins; nor does
it explicitly address issues like refunds. Additionally a distributed object infras-
tructure such as CORBA [31] is assumed or at least Remote Procedure Calls
(RPC) for non object-oriented applications. Further, a clear security and trust
model are not provided [1].

The Simple Wallet Architecture for Payments, Exchanges, Refunds, and
Other Operations (SWAPEROO) [21] is part of the Stanford Digital Libraries
project and tries to tackle some of the open issues of U-PAI, for example, in-
strument and protocol negotiation. The proposed architecture has been used to
implement a digital wallet on the PalmPilot [1].

3

2.3 Payment Selection Protocol

Payment selection tries to tackle the problem of selecting a payment method
by negotiating the appropriate payment instrument and transport protocol. An
additional goal is to provide methods for encapsulating payment instrument
messages for transport in various application environments, especially the World
Wide Web and e-mail.

The goal of the Joint Electronic Payments Initiative (JEPI) [32] was the
development of an Internet payment negotiation protocol as an extension to
HTTP which should enable automated payment negotiation between computers.
This initiative has been redeemed in 1996 by several other activities of the W3C
in the e-commerce area.

2.4 Payment Protocols

More than 50 payment protocols [33] were proposed within the last decade. None
of them has reached the critical mass to be successful and only a handful are
still supported by banks and merchants.

Some protocols require chip cards which hold cryptographic information,
e.g., tokens which represent coins or keys required for message signing. Chip
cards, popularly referred to as smart cards, are one of the most important secure
hardware devices [22].

Account-Based Systems. CyberCash – as a representative for this type of
systems – was started in April 1995 but has stopped the online-payment system
in Germany [6] by the end of 2000 [15] due to low interest of users. The reason
why CyberCash is listed here is the fact that the system does not really store
coins in the customer wallet: CyberCash provides a safe passage over the Internet
for credit card transaction data. It takes the data that is sent to the CyberCash
server by the merchant, the server resides between the merchant and the acquir-
ing bank, and passes it to the merchant’s bank for processing. The acquiring
bank processes the credit card transaction as they would process transactions
received through a point of sale (POS) terminal in a retail store [20].

Token-Based or Cash-Like Systems. Token-based systems try to map the
concept of real money onto cryptographic properties. MicroMint and Millicent
are two examples for such systems using different concepts for their virtual cur-
rency.

The MicroMint [24] micro-payment system is based on the concept of k-way
hash function collisions. A “coin” is represented by sets of values (w0, w1, ..., wk),
where h(w0) = h(w1) = ... = h(wk). A k-way hash function means that k
different input values map to the same output value. Such coins, worth some
cents, are produced by a broker who sells them to users. The customers pay at
a vendor with these coins. The vendor exchanges these coins with “real” money
at the broker. A successful implementation of this scheme in Java for purchasing

4

Web pages has been done by our group [14]. MicroMint has the disadvantage of
requiring a large hardware base for minting coins, which is infeasible for small
service providers.

Millicent [5,10] is a lightweight protocol for electronic commerce over the
Internet which enables efficient pay-per-view business models via HTTP [17].
It uses a form of electronic currency (scrip) which is intended for small value
transactions, ranging from a minimum of one cent or less to a maximum of
approximately 5 Euro.

3 Towards A Generalized Payment Model

Payment models classify the digital payment systems according to the necessary
flow of information between the participants of an electronic transaction [1]. The
distinguishing property is the presence or absence of a direct communication
between the customer and the vendor. In direct cash-like systems the customer
withdraws money from the payment server, hands the payment tokens over to
the vendor who in turn deposits the payment with its payment broker [33].
Direct account-based systems resemble conventional cheque systems. They allow
the customer to hand over a payment authorization to the vendor, who presents
the payment authorization to its payment broker and who in turn redeems it
from the payment server [33]. In the case of indirect payment models, indirect
push and indirect pull, the communication of the payment itself concerns only
the initiator of the payment, which may be the customer or the vendor, and
the payment server and payment broker. The receiver of the payment is only
informed about the successful payment.

3.1 A Generalized Payment Model

For the support of Minstrel [13] with its efficient dissemination structure, a gen-
eralized payment model was required to facilitate the flexible implementation
of business models such as pay-per-view, volume-based, time-based, pre-paid, or
post-paid. Minstrel is a lightweight push system for information commerce using
a highly efficient HTTP-based dissemination infrastructure consisting of infor-
mation broadcasters and repeaters. Specific client software is used to subscribe
to and receive from information channels provided by the broadcasters.

Figure 1 shows the pay-per-view scenario we use in Minstrel as a UML use
case diagram. The scenario involves the following actors:

– The vendor sends offers about information it wants to sell to customers.
– On the basis of the received offers the customer can decide to request a

shipment, e.g., a piece of the information such as news articles, software,
images, etc.

– Depending on the business model the customer may have to pay before or
after the shipment is sent or may just have to present a certificate (receipt)
which acts as a proof of payment.

5

Payment Server

validate
signature

<<include>>

<<include>><<include>>

<<include>>Payment Broker

send
offer

balance
e−payment

request
shipment

send
shipment

Vendor Customer

send

payment

flow of real money

Fig. 1. Payment Use Case Diagram

– To perform a payment the customer contacts a payment server (defined by
the vendor or the customer’s favorite one).

– The payment server accepts certain kinds of electronic payment and issues
signed receipts for successful payments.

– This server is operated by or cooperates with payment brokers (financial in-
stitutions that are responsible for the real-money transfer from the payment
server’s account to the vendor’s account). We consider this not necessarily
to be a single entity: It may be a bank, the customer’s ISP who offers a
charging service or any other business entity/consortium. The identity of all
parties can be guaranteed through, for example, a Public Key Infrastructure
(PKI).

The benefit for the vendors in this setting is that they do not have to take care
of payment issues. However, it is not required to route all messages through a
payment server [8] or proxy [2] since digital signatures ensure the proper op-
eration of the protocol and can serve as evidence in case of arguments. The
existing infrastructure of ISPs, banks, or credit card companies can be used to
offer payment services to customers supporting their favorite payment scheme
while guaranteeing payment to the vendor account through the certified identity
of the payment server. Thus also the customer is freed from having the “correct”
payment instrument installed: One payment instrument is sufficient to pay at the
payment servers which can mediate between all kinds of payment instruments.

3.2 Mappings

We now describe how the direct cash-like and direct account-based models in-
troduced at the beginning of this section can be mapped onto our generalized
payment model:

Direct Cash-Like: The customer asks for “coins” at the preferred payment
server and does a payment for the benefit of the vendor. The payment server

6

in turn returns certificates, i.e., receipts, representing the requested monetary
value, e.g., 1, 2, or 5 cents each. The customer may now obtain services from
the vendor by handing over the required amount expressed by the receipts.
The vendor then sends the receipts to the payment broker for redemption.

Direct Account-Based: The customer creates a “check” certificate by signing
a guarantee statement from the payment server and the amount to pay to the
vendor’s account. The vendor validates the “check” and sends the payment
authorization to the payment broker for redemption.

The other two models–indirect push and indirect pull–also can be mapped onto
our model by creating appropriate certificates which are sent to the participating
payment server and payment broker, respectively.

3.3 2+1+1 Party Generic Payment Protocol

This section takes a closer look at the sequence of actions during a payment inter-
action (for example, as performed in Minstrel) and describes the 2+1+1PGPP
protocol for payment. Figure 2 shows the sequence diagram for payment in our
model.

11+2 +

Vendor Payment Server Payment BrokerCustomer

a

validate signature()

create response()

b
return(change,receipt)

validate signature()

create request()

1
requestShipment(offerId,receipt)validate signature()

2
sendShipment() view shipment()

sendOffer()

e−payment(amount,vendor,signature)

new offer()

validate signature()
payment(amount,vendor)

sendBalance(amount)

Fig. 2. Payment Sequence

Initially the vendor sends an offer with price and payment information to the
customer (this is not part of the protocol). If the customer accepts the payment
terms and wants to buy, s/he authorizes the payment and sends a payment re-
quest using the preferred instrument, i.e., the payment instrument the customer
and the payment server agreed on, to the payment server ((a) in Figure 2). Be-
sides the information required for the payment instrument the request includes

7

vendor information and the customer digital signature. The payment server val-
idates the request to check its authenticity, performs the payment according to
the payment instrument, generates the receipt, and returns it to the customer
upon successful completion ((b) in Figure 2). The receipt is generated by signing
the customer-signature together with the amount and the vendor information
(the security aspects will be discussed in detail in Section 4).

In a time-based business model, for example, this payment step may be
skipped if the customer already has a valid receipt which may be presented to
the vendor as a proof of payment as described below (Steps 1 and 2 in Figure 2).
The customer validates the attribute certificate to proof the authenticity of the
payment server and can now be sure that the server has accepted the payment
and the amount will be transferred to the vendor’s account. This transfer can
be done via an arbitrary payment protocol and employs similar authentication
checks using digital signatures. Upon successful validation the customer sends
a shipment request to the vendor containing offer information, customer infor-
mation and information from the certificate from the payment server’s response
(amount, id of payment server, serial number, expiration date, payment server
signature) to the vendor (Step 1 in Figure 2). The vendor validates the shipment
request by checking the payment server’s signature which guarantees that the
required amount will be paid to the vendor’s account. Upon successful valida-
tion the vendor sends the shipment plus an updated version of the receipt to the
customer (Step 2 in Figure 2). Steps 1 and 2 may be repeated as many times as
the receipt guarantees a value that is higher than the requested shipment.

The payment server transfers the paid amount to the payment broker using
an arbitrary protocol either immediately or when a certain threshold amount
has been accumulated, or in regular intervals, or according to some other defined
procedure they agreed upon.

The scenario of Figure 2 can be mapped directly to a pay-per-view business
model but can also be generalized easily to other business models depending
on the semantics assigned to the attribute certificate and the additional data it
carries. For example, in a time-based business model the payment would hap-
pen once in a while and the attribute certificate would hold a timestamp until
which the payment is valid; in a volume-based model the certificate would hold
a counter.

4 Security Model for the 2+1+1PGPP

This section describes our approach to ensure the receipt’s integrity and authen-
ticity among the participants. Our approach is based on the technique described
in [10] and uses shared secrets which must be negotiated once via a secure channel
(e.g., SSL). The security model also encourages the use of receipts for business
models on a pay-per-view basis in a more flexible way than most micro-payment
schemes by allowing the payment server to re-issue receipts, e.g., subtraction of
the amount due and returning the updated receipt to the customer (see Sec-
tion 4.4 for details).

8

4.1 Abbreviations

The abbreviations given in Table 1 will be used in the subsequent discussion of
the security mechanisms.

Abbreviation Description
Svcc Signature generated by the customer and used in vendor–

customer relationship.
Spcc Signature generated by the customer. This signature is used

for messages exchanged between payment-server–customer.
Spcp Signature generated by the payment-server in the payment-

server–customer relationship.
Spvp Signature generated by the payment-server to ensure mes-

sage integrity between payment-server and vendor.
PID Unique payment-server ID.
VID Unique ID of the vendor.
CIDP Unique customer ID issued by the payment-server.
CIDV Unique customer ID issued by the vendor.
skvc Shared key, i.e., secret, between vendor and customer.
skpc Shared key between payment-server–customer.
skpv Shared key between payment-server–vendor.
oid Unique offer ID issued by the vendor.
rid A unique ID for a receipt generated by the payment-server

which allows un-ambiguous identification of a payment
transaction.

value Amount of monetary units to be transfered from the cus-
tomer’s account to the vendor’s account.

txc A timestamp generated by the customer and required to
identify the key which has been used to sign a message at
a particular time. A serial counter may be part or used
instead of a date/time field as well.

txp Timestamp generated by the payment-server.
propsvc A canonical representation of vendor–customer properties

(e.g., textual information describing an offered item, liabil-
ity issues, etc.).

propspv payment-server–vendor properties (e.g. expiration date of
the receipt, etc.)

Table 1: Abbreviations used in formulas

4.2 Basic Setting

Message security is achieved by sending the message combined with its signature.
This signature is calculated by applying a secure hash function (e.g., SHA or

9

MD5) to the message and the associated secret, yielding the following Protocol
Data Unit: PDU = message+hash(message+secret). The addressee can verify
the signature by recalculating the signature using the shared secret. The security
stems from the fact that it is infeasible for an outside observer to generate the
signature without knowledge of the secret or deduce the secret by knowing the
message and the signature. In the subsequent discussions of the payment process
we assume the following setting (without constraining generality):

1. The customer is already registered at the vendor’s push system (this implies
that skvc for message authentication has been exchanged, the customer has
a valid CID, and knows VID).

2. The customer is registered at a payment-server, i.e., the customer and the
payment-server have agreed on skpc and the account’s balance is sufficient
for payment.

3. The customer has received an offer from the vendor containing an oid and a
value.

4. The vendor and the payment-server have already authenticated themselves
and agreed on skpv.

4.3 Establishing end-to-end Security

To pay for an offer the customer creates a unique fingerprint for this payment
transaction by performing the following operation which yields the vendor–
customer signature:

Svcc = hash(txc + CIDV + VID + oid + skvc) . (1)

Additional information describing the offer, e.g., a URL or business conditions,
may be included in the signature via the optional propsV C properties field. The
payment model does not make any assumptions on how the data has to be
included during the signature generation process. Since it is conceivable to use a
secure hash sum calculated by the customer instead of inserting the properties
data itself, the preferred scheme is blind signature [4] and transmission of data
to the payment-server can be omitted. Then the customer constructs a signed
payment request (some payment protocols do this implicitly, e.g., Millicent)

Spcc = hash(txc + CIDP + VID + value + Svcc + skpc) . (2)

and sends the request, i.e., txc, which is required here for replay detection, CIDP ,
VID, value, Svcc, some optional information in the propspv field and Spcc, along
with the payment protocol information, e.g., specific information from SET [27]
or other protocols, to the payment-server.

Upon successful completion of the payment transaction the payment-server
returns a receipt to the customer holding two signatures:

Spvp = hash(txp + PID + value + rid + Svcc + skpv) . (3)

Spcp = hash(txp + PID + value + rid + Spvp + skpc) . (4)

10

The first signature is the proof for the vendor that the payment is authentic and
will be fulfilled by the payment-server. The second signature is for the customer
that the payment-server has accepted the payment request.

The payment-server will return the following data items to the customer: txp
the timestamp when the receipt was generated, i.e., signed, rid the unique ID for
this receipt, propspv some optional information from the payment-server to the
vendor, Spvp the signature for the vendor, propspc some optional information
for the customer (e.g., accounting information), and skpc the signature for the
customer by the payment-server.

It is feasible to use Public Key Cryptography (PKC) for the signature gen-
eration process. The appealing thing of the approach using PKC is, that only
a single signature by the payment-server is required and the validation proce-
dure of the receipt for customer and vendor is the same. Disadvantageous on
PKC is the requirement for about 103 times more computational power to fulfill
cryptographic operations in comparison with cryptography using shared secrets.

Now the customer validates the payment-server–customer signature Spcp by
recalculating the signature using the shared secret. If the validation of Spcp
succeeds, the customer can assume that Spvp is correct too. Having successfully
paid, the customer requests a shipment by “reusing” information artefacts from
the previous payment process and sending CID, oid, some information from the
receipt (txp, PID, value, Spvp), and Svcc to the vendor.

The vendor uses this information and the associations between secrets and
signatures to validate the integrity and authenticity of the request. First the
vendor recalculates the customer’s signature by inferring the shared secret skvc

using the customer ID CIDV and then recalculating the signature Svcc. Then the
vendor uses the PID from the request to infer skpv which is used to recalculate
Spvp. If the comparison succeeds the payment (receipt) is valid, which means
that the following condition holds:

Spvp = hash(datapv + hash(datavc + skpc) + skpv) . (5)

i.e., the payment-server’s signature of the receipt for the vendor to validate a
customer request, where datapv denotes the canonical representation of payment-
server–vendor properties and datavc denotes the canonical representation of
vendor–customer properties (txc, rid, oid, etc.). The above process ensures end–
to–end security in terms of authenticity and non-repudiation between payment-
server and vendor by the use of shared secrets. The described method is sufficient
for use within the Minstrel push system, since it is targeted on efficient delivery
of low-value items by assuming a long term customer–vendor relationship where
anonymity is not important. For higher security requirements it may be enhanced
by using asymmetric cryptography in the signature generation/validation pro-
cess to achieve privacy or to generate legal evidences.

4.4 Receipt Rewriting

Receipt rewriting is the alteration process of a receipt’s components by the
receipt-issuing authority. Receipt rewriting through the vendor is enabled by

11

the use of a shared key between payment-server and vendor and allows a vendor
to behave as a payment-server, i.e., to alter the content of a receipt and to return
a new signed receipt to the customer. This activity correlates with the process of
reducing the value of scrip in Millicent. Dependent on the business model, this
feature is used by the vendor to reduce the guarantee amount of a receipt by the
price of a particular service and to return the rewritten receipt to the customer
as change. The change in turn can be used by the customer to pay for subsequent
service requests offered by that vendor. This facilitates the implementation of
an efficient payment scheme, since only one request/response pair is required for
the service request, payment and delivery.

In the case of rewriting a receipt, the vendor needs to update the payment-
server’s timestamp txp, serial counter txc (see Equations 1 and 2) and value field
of the receipt. The vendor also needs to update its receipt database to reflect
the modifications to the txp and txc field. Reusing the data from the shipment
request validation process is possible, when assumptions about the initial value
of the serial field of the customer timestamp txc can be made, e.g., if it can be
assumed that the value is 0. Otherwise the signature has to be regenerated with
the actual value of txc. Then the signatures, i.e., the payment-server–vendor
signature and payment-server–customer signature (see Equations 3 and 4), are
regenerated and the updated receipt items and signatures are sent back to the
customer along with the information from the original request.

On receiving the modified receipt data, the customer increments the serial
values in the txc and txp fields, validates the vendor’s signature and writes the
modified data back to the stored receipt.

To issue a new shipment request, the customer generates a new signature to
maintain the security properties. This is achieved by using the updated times-
tamp txc to regenerate the Svcc signature value.

4.5 Unused Receipts

Another nice property about receipt rewriting is the possibility of returning re-
ceipts with an unused or partially used amount to the payment-server. Clearly,
this cannot happen ad hoc by the customer, since the state of a receipt (used/unused)
can only be determined by the vendor. Consequently, the vendor’s authorization
is required, e.g., by setting the txp field of the receipt to indefinite and thus
invalidating the receipt, to return the receipt for redemption.

5 Validation

The validation of our approach has been done with the Minstrel push system. To
perform this validation, a payment framework, the Minstrel Payment Framework
(see Figure 3), has been created which comprises the following components:

– A 2+1+1PGPP plugin for the vendor (broadcaster) to accept receipts re-
ceived from the customers.

12

– The client (receiver) wallet to handle payments and receipts.
– A payment server to accept payments from the customers and issue receipts.
– A payment broker for issuing currency. In our setup we used Millicent for

this purpose.

S
ervices

C
ustom

er
V

endor
S

ervices

M
illicent

P
aym

ent S
erver

Service
Vendor

Service
Payment

Millicent
Payment Broker

Wallet
MRRP
MADP

P
ay

m
en

t
H

an
dl

er
M

R
R

P
M

A
D

P

Millicent / HTTPXML / HTTP

GenericPayment / HTTP

Communication path coverd by this Framework

Communication path not coverd

Customer
(Receiver)

(B
ro

ad
ca

st
er

)
V

en
do

r

Fig. 3. Overall Architecture of the Payment Framework

The communication between the different entities in the network is based on
XML message exchanges via HTTP and Java Servlets [16]. On-the-wire proto-
cols between vendor and client are the Minstrel Active Distribution Protocol
(MADP), which is used to actively disseminate information to the client, and
the Minstrel Receiver Request Protocol (MRRP), which is used by the client
to request information from the vendor [11]. The remaining communication is
based on a generic method invocation mechanism on top of HTTP.

If a customer requests information in our pay-per-view business model, the
payment information, i.e., the receipt obtained for a valid payment from the
payment server, is piggy-backed onto with a receiver request (MRRP) from the
customer to the server. The above payment is based on the offer information
defined by the business model the user has received via MADP from the vendor
before.

Design and implementation of the payment framework together with the
payment model are discussed in detail in [9].

6 Conclusions

In this paper we have presented a generalized payment model for Internet-based
services. We have described the use cases and the interactions which have to take

13

place independent of the payment instrument used, and the artifacts and roles
involved. Our approach decouples payment from applications in a way which en-
ables the exchange of payment components and supports component-orientation
also for payment. The 2+1+1PGPP payment approach supports interaction with
arbitrary payment systems and facilitates the implementation of different busi-
ness models via the concept of extensible receipts. It also offers “off-line” opera-
tion and requires only minimal resources at the vendor. Its component-oriented
approach naturally supports distribution of the components in a network which
offers new business opportunities for specialized payment services and frees both
vendors and customers from many problems in the domain of e-payment. Since
our approach introduces new security concerns we have presented feasible solu-
tions for that as well. 2+1+1PGPP was validated with a pay-per-view business
model case study in the Minstrel push system.

Though the technical foundations for security and payment exist to a large
degree, there is still a lack of organizational ones. The X.509 Public Key Infras-
tructure (PKI) and its deployment is a good example on how long it can take
till a new technology becomes accepted by the user community.

More research work has to be done in the area of a unified architecture for
micro-payment systems and the development of organizational foundations for
an efficient payment and clearing infrastructure.

References

1. J. L. Abad Peiro, N. Asokan, M. Steiner, and M. Waidner. Designing a generic
payment service. IBM Systems Journal, 37(1):72–88, 1998. http://www.semper.
org/info/212ZR055.ps.gz.

2. ALLCASH. Das Micropayment-System von ALLCASH, 2002. http://www.allcash.
de/.

3. D. Chaum. Untraceable Electronic Mail, Return Addresses, and Digital
Pseudonyms. Communications of the ACM, 24(2):84–88, 1981.

4. D. Chaum. Blind Signatures for Untraceable Payments. In D. Chaum, R.L. Rivest,
and A.T. Sherman, editors, Advances in Cryptology Proceedings of Crypto 82, pages
199–203, 1982.

5. Compaq Computer Corporation. Millicent Microcommerce Network, 1997. http:
//www.millicent.com/home.html.

6. CyberCash GmbH. CyberCash GmbH, 1997. http://www.cybercash.de/.
7. T. Dierks and C. Allen. The TLS Protocol Version 1.0, 1999. RFC 2246. http:

//www.ietf.org/rfc/rfc2246.txt.
8. Firstgate click&buy. Das neue Zahlungssystem im Internet, 2002. http://www.

firstgate.de/.
9. Michael Fischer. Towards a Generalized Payment Model for Internet Services.

Master’s thesis, Distributed Systems Group of the Information Systems Institute,
Technical University of Vienna, September 2002. http://www.infosys.tuwien.ac.
at/Research/Masters.html.

10. S. Glassman, M. Manasse, M. Abadi, P. Gauthier, and P. Sobalvarro. The Millicent
Protocol for Inexpensive Electronic Commerce. In Fourth International World
Wide Web Conference, Boston, Massachusetts, USA. O’Reilly, Nov. 1995. http:
//www.w3.org/Conferences/WWW4/Papers/246/.

14

11. Stefan Haberl. An efficient and open implementation of the Minstrel broadcasting
infrastructure. Master’s thesis, Distributed Systems Group of the Information Sys-
tems Institute, Technical University of Vienna, 2000. http://www.infosys.tuwien.
ac.at/Teaching/Finished/MastersTheses/Haberl/haberl.pdf.zip.

12. Vesna Hassler. Security Fundamentals for E-Commerce. Computer Security. Artech
House Publishers, 2001.

13. Manfred Hauswirth. Internet-Scale Push Systems for Information Distribution-
Architecture, Components, and Communication. PhD thesis, TU Vienna, 1999.
http://www.infosys.tuwien.ac.at/Staff/pooh/diss/Thesis.ps.

14. Manfred Hauswirth, Vessna Hassler, Michael Fischer, and Rober Bihlmeyer. MiMi:
a Java implementation of the MicroMint scheme. In Proceedings of the 2nd
World Conference of the WWW, Internet, and Intranet (WebNet ‘97), Toronto,
Canada, November 1997. http://www.infosys.tuwien.ac.at/reports/repository/
TUV-1841-97-04.ps.

15. heise online. CyberCash: Aus für elektronisches Geld, 2000. http://www.heise.de/
newsticker/data/ad-19.12.00-000/.

16. Jason Hunter and William Crawford. Java Servlet Programming. O’Reilly, 2001.
17. IETF. Hypertext Transfer Protocol – HTTP/1.0, 1996. http://www.ietf.org/rfc/

rfc1945.txt.
18. Steven Ketchpel, Hector Garcia-Molina, Andreas Paepcke, Scott Hassan, and Steve

Cousins. UPAI: A Universal Payment Application Interface. In USENIX 2nd e-
commerce workshop, 1996. http://citeseer.nj.nec.com/ketchpel96upai.html.

19. G. Lacoste, B. Pfitzmann, M. Steiner, and M. Waidner, editors. SEMPER – Secure
Electronic Marketplace for Europe, volume 1854 of LNCS. SV., 2000.

20. Keith Lamond. Credit Card Transactions: CyberCash, 1996. http://www.
virtualschool.edu/mon/ElectronicProperty/klamond/Cyberpmt.htm.

21. N. Daswani and D. Boneh and H. Garcia-Molina and S. Ketchpel and A. Paepcke.
SWAPEROO: A Simple Wallet Architecture for Payments, Exchanges, Refunds,
and Other Operations. In Proceedings of the Third USENIX Workshop on Elec-
tronic Commerce, 1998. http://citeseer.nj.nec.com/daswani98swaperoo.html.

22. Donal O’Mahony, Michael Peirce, and Hitesh Tewari. Electronic Payment Systems.
Artech House Computer Science Library, June 1997.

23. Michael Peirce. Payment mechanisms designed for the Internet, 2001. http://
ganges.cs.tcd.ie/mepeirce/Project/oninternet.html.

24. R. L. Rivest and A. Shamir. PayWord and MicroMint: Two simple micropayment
schemes. 1996.

25. SEMPER. Advanced Services, Architecture and Design, 1999. http://www.semper.
org/info/.

26. SET Secure Electronic Transaction LCC. SET Secure Electronic Transaction
Specification – Book 3: Formal Protocol Definition, 1997. Version 1.0. http:
//www.setco.org/download/set bk3.pdf.

27. SET Secure Electronic Transaction LLC. SET Secure Electronic Transaction Spec-
ification, 1997. http://www.setco.org/.

28. M. Sirbu, B. Cox, and J. D. Tygar. NetBill Security and Transaction Protocol.
pages 77–88, 1995. http://www.ini.cmu.edu/NETBILL/pubs/Usenix.html.

29. Stein, Stefferud, Borenstein, and Rose. The Green Commerce Model, May 1995.
Memo.

30. The Minstrel Development Team. Minstrel Internet-Scale Push System, 1997.
http://www.infosys.tuwien.ac.at/Minstrel/.

31. S. Vinoski. Distributed Object Computing With CORBA. C++ Report, 7/8, 1993.

15

32. W3C. Joint Electronic Payment Initiative, 1995. http://www.w3.org/ECommerce/
JEPI.html.

33. R. Weber. Chablis - Market Analysis of Digital Payment Systems, Aug. 1998.
http://chablis.informatik.tu-muenchen.de/MStudy/.

16

