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Preface

The fifth Financial Cryptography conference was held February 19–22, 2001.
After half a decade, we moved beyond our Anguillan origins to Grand Cayman,
BWI. The venue changed but the focus of the program remained to present the
best research in securing electronic financial transactions and electronic com-
merce. As in the past few years, most of the contributed papers focused on the
technical cryptographic and security aspects of financial cryptography, while the
financial aspects are reflected primarily in invited talks and panels. (And in the
informal discussion.) This year, in addition to the submitted papers, we had a
provocative invited talk by Richard Rahn on money laundering as well as panels
on digital rights management and the business of electronic voting. There was
also a rump session, chaired by Rebecca Wright.
There were many interesting and many technically strong submissions. I

thank the program committee (listed on the next page) for their help in the
difficult task of choosing those papers that made the strongest contribution to
the conference. We had additional reviewing help from Olivier Baudron, Paul
Fahn, Juan Garay, Markus Jakobsson, Guenter Karjoth, Phong Nguyen, David
Pointcheval, Thomas Pornin, Sholom Rosen, Dawn Song, Susanne Wetzel, and
Rebecca Wright. (My apologies if I have overlooked anyone.) I would also like to
thank George Davida, the electronic submissions chair, and his student, Dawn
Marie Gibson, for setting up and running the submissions process at the Univer-
sity of Wisconsin. An extra big thank you to Yair Frankel, who was always there
with his experience and advice that greatly improved the job I did as program
chair, as well as making it more enjoyable. Matt Franklin also provided valuable
advice. Thanks to all the people who submitted papers, without which there
would be no program. Authors were given the opportunity to revise their papers
following the conference. These were collected without further review and are
included in this volume.
Thanks to general chair Stuart Haber for doing many things that none of the

attendees noticed because he did them so nicely. He was ably assisted by Hinde
ten Berge. Thanks to Harris McCoy for handling local arrangements and Jason
Cronk for maintaining the Web site. Thanks to the IFCA directors for keeping
FC thriving, to Adam Shostack for venue arrangements, and to Barb Fox, the
sponsorship chair. Thanks to our financial sponsors, who are listed on the next
page.
Special thanks to Ray Hirschfeld whose advice to me and to the others men-

tioned here has been invaluable. Thanks finally to attendees without whom there
would be no conference.

March 2001 Paul Syverson
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Amortized E-Cash

Moses Liskov1 and Silvio Micali2

1 MIT Laboratory for Computer Science
mliskov@theory.lcs.mit.edu

2 MIT Laboratory for Computer Science
silvio@lcs.mit.edu

Abstract. We present an e-cash scheme which provides a trade-off be-
tween anonymity and efficiency, by amortizing the cost of zero-knowledge
and signature computation in the cash generation phase.
Our work solves an open problem of Okamoto in divisible e-cash. Namely,
we achieve results similar to those of Okamoto, but (1) based on tradi-
tional complexity assumptions (rather than ad hoc ones), and (2) within
a much crisper definitional framework that highlights the anonymity
properties, and (3) in a simple fashion.

1 Introduction

Ever since the work of Chaum [5], there has been an interest in e-cash systems
that are not only unforgeable and anonymous but also off-line. That is, the mer-
chant can recognize the value of the e-cash without having to check with the
bank (unlike, for example, in a credit-card transaction). While very desirable,
however, off-line e-cash comes at a price: it cannot totally prevent double spend-
ing; that is, the ability of a malicious user to spend an “e-coin” more than once.
Indeed, an e-coin is a self-verifiable string of bits that is easily reproducible, and
therefore could be spent multiple times given the absence of any checking with
a central database. Thus, the typical defense envisaged against double spending
in off-line e-cash is less than ideal: if double spending occurs, then anonymity is
removed and the malicious customer’s identity is revealed.1

Most e-cash schemes use zero knowledge computation during e-coin genera-
tion to guarantee these complex properties and security requirements.

Zero-Knowledge and Signatures in E-Cash. To exemplify a common use
of zero-knowledge and signatures in off-line e-cash, let us use the proposal of [19].
In their work, an e-coin is authenticated by a blind signature from the bank, so
that the bank is unaware of the actual coin it is issuing. As a protection against
double spending, the e-coin has the customer’s identity secretly embedded, in
a way that enables this identity to be revealed if double spending occurs. Of
course, before the bank signs such an e-coin, it must be assured that this secret
embedding has been properly done. It is here that zero knowledge plays its role:
it enables the bank to check the correctness of the coin structure without learning
its specifics, which otherwise would violate the anonymity requirement.
1 Of course, the possibility of revealing a malicious customer’s identity necessitates
the assurance that an honest customer cannot be framed for double spending.

P. Syverson (Ed.): FC 2001, LNCS 2339, pp. 1–20, 2002.
c© Springer-Verlag Berlin Heidelberg 2002
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1.1 Amortized E-Cash

Signatures and zero-knowledge protocols are the most expensive steps of e-coin
generation, and thus make it impractical for coins to have small denominations:
such coins would not be worth the computation it takes to generate them. In
this paper, therefore, we put forward a method to amortize these expensive steps
across many coins.

Notice that having the bank validate a list of coins with a single signature,
after verifying with zero-knowledge computation that each coin in the list is
well-formed, does not provide sufficient amortization: the zero-knowledge com-
putation is simply n times as large as it was before. For amortization to be at
all useful, the efficiency of generating n new coins should be significantly less
than n times that required for generating a single old coin. Ideally, we should
be able to generate n new coins with essentially the same effort required for a
single coin.

Let us give an overview of how our solution achieves amortization and double
spending protection.

Amortization. Our solution is based on the notion of a wallet. A wallet is a
collection of n coins (strings), each composed of two logically indivisible subcoins
(substrings). The first subcoin of each coin is common to the wallet: it specifies
the wallet name and the number of coins in it, secretly embeds the customer’s
ID, and contains a compact description of all allowable second subcoins. The
second subcoin of each coin is individual: it contains information essential for
spending that coin.

The common subcoin contains all the information the bank verifies by means
of a zero-knowledge protocol. Therefore, a single zero-knowledge computation is
amortized across many coins. Moreover, the common subcoin is the only data
that the bank needs to sign. Therefore, a single signature computation is amor-
tized across many coins.

We shall show that double spending any coin in the wallet causes the cus-
tomer’s identity, secretly embedded in the common subcoin, to be revealed.
Moreover, we shall also prove that the common subcoin specifies all the individ-
ual subcoins that can be used with it, so that it is impossible for a malicious user
to generate unpaid-for coins by using the already bank-signed common subcoin,
and then manufacturing additional individual subcoins.

Double Spending. Our scheme includes choosing a secret key SK that is both
the encryption key of a symmetric-key encryption scheme (E,D) and the secret
signing key of a digital signature scheme with public key PK.2

The way in which we use such a step to protect against double spending is
best explained in the simple case in which a wallet contains a single coin.

2 Such “secret key overloading” is potentially dangerous: many security flaws are
known to arise when this is done. Thus, we will have to argue that these flaws to not
arise in our scheme. We discuss this issue in section 4.4, under “wallet anonymity.”
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In this case, a customer C randomly generates a signature key pair (PK,SK).
Then, the common subcoin of the wallet contains PK and the customer’s iden-
tity encrypted with SK: ESK(IDC). Spending the coin consists of providing
a signature (on a challenge) relative to the signature public key PK. The sig-
nature scheme used will be one-time, meaning that signing a single message is
secure, while signing any two different messages is guaranteed to reveal the secret
signing key SK. Because the secret signing key is also the encryption key (and
thus the decryption key), double spending (i.e. signing two different challenges)
reveals the customer’s identity.

This approach becomes more complex when there are more coins in the same
wallet. Having a single, one-time signature public key PK for all coins in the
wallet does not work: legitimately spending two different coins in the wallet
would correspond to signing two different challenges relative to the same one-
time PK, thus revealing SK and therefore, the customer’s identity. On the other
hand, if each key in the wallet were to have its own key pair (PKi, SKi), then
the common coin would have to include ESKi(IDC) for every i. Regardless that
the common subcoin is growing rapidly in size, this does not provide adequate
amortization because each ESKi(IDC) must be verified as correct through a
zero-knowledge protocol.

As we shall see, our solution uses n ephemeral signing keys (one per coin
in the wallet) so that any two signatures computed using the same ephemeral
signing key reveal a master signing key SK, which is the same as the encryption
key used to embed the customer’s identity.

Anonymity. Our scheme satisfies a new type of anonymity requirement: wallet
anonymity. Informally,

– Coins (from any wallet) cannot be linked to a user’s identity.
– Coins from different wallets (of course, if spent in different transactions)

cannot be linked to one another.

However, coins from the same wallet can be linked to one another, since
they have the same common subcoin. This linkage could be utilized to infer
something about the customer from his coin transactions. For example, two
merchants, one selling tobacco products and the other gambling products, could
compare notes, discover that coins have been spent with each of them that pos-
sess the same common subcoin, and thus deduce that they share an anonymous
customer (who smokes and gambles). In the extreme, imagine that all the coins
a customer spends are from the same wallet. Then, if all the merchants he visits
compare notes, they might be able to pinpoint the customer not by mathemati-
cally breaking the scheme, but with the sheer amount of information about his
spending habits.3

Though less than perfect, wallet anonymity is useful. Zero-knowledge com-
putation is the true bottleneck of e-cash generation, and our scheme allows e-
coins to be generated efficiently, while still providing a good deal of anonymity.
3 It is worth noting that in practice our scheme will not be that vulnerable to this
kind of linking. Small wallets, the certainty of there being some honest merchants,
and the low value of most associates make this kind of linking not a great concern.
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Furthermore, our anonymity level can be increased by either (1) having wallets
consist of few coins, or (2) having a customer devote different wallets to different
type of purchases.

For example, Alice may have one wallet to purchase a given magazine, and a
different wallet to purchase electronics. Then, the fact that the same customer
keeps on buying the same (or similar) magazines is not much information. Fur-
thermore, because the two wallets are distinct, the producers of the electronics
cannot discover that they have a client who reads those magazines, and thus
have no incentive to increase their advertising in those magazines.

1.2 Amortized E-Cash vs. Divisible E-Cash and Multi-spendable
Coins

The concept of amortized e-cash has been studied previously under the name of
“divisible e-cash” ([26,27,8,10,28]) and “multi-spendable coins” [1]. Divisible e-
cash is based on the idea of having a coin which can be divided, at spending, into
smaller coins. What we call a wallet is what was previously called a (divisible
or multi-spendable) coin, and what we call a coin is merely the atomic part of a
coin. However,

1. It is fair to say that most of the research in this area has privileged the
algorithmic aspects at the expense of defining what this different concept
should mean. No formal treatment of the subtle anonymity properties satis-
fied by a divisible e-cash scheme has been presented. After been pointed to
some “linkability problems,” the reader was largely left alone in figuring out
precisely what they were. Indeed, in his 95 paper [26], Okamoto recognizes
that the security requirements discussed in his paper are quite ad hoc, and
poses as a remaining problem to
“Find requirements which are formally shown to be sufficient for the security
of electronic cash schemes.”

2. Prior e-cash schemes such as that of Okamoto [26], were based on ad hoc com-
plexity assumptions, that leave in doubt the security of these fast schemes.
Indeed, Okamoto poses as an open problem in his paper to
“Prove the security under more primitive assumptions such as the hardness
of factoring and discrete logarithm.”

In our paper, we fill the mentioned definitional gap, and use the term “amor-
tized” to evoke that the traditional anonymity requirements have purposely been
weakened.

Further, we prove the security of our scheme based on the simple assumption
that a zero-knowledge based signature scheme (e.g., any of [12,21,17,30] ) is se-
cure. (For concreteness, we present our scheme based on the Schnorr signature
scheme [30], whose security provably equals that of the discrete logarithm prob-
lem in the random-oracle model. Thus this security assumption alone suffices for
amortized e-cash.)

We also attain efficiency in our scheme that is approximately as good as
that in [26]. The actual efficiency issues will be discussed later, but for now
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we should mention that for simplicity we present a scheme in which only one
coin can be spent at a time. This simplified scheme is not as efficient in terms
of the computation needed to make and verify payments, but we present an
improvement over the simplified scheme that makes our scheme comparable to
divisible e-cash schemes in these aspects.

Finally, our algorithmic structure is conceptually simpler. For instance, rather
than using complex tree-structures of special type of commitments, we can get
by with conventional Merkle trees.

2 Definition of Wallet-Based E-Cash

2.1 Notation

Protocols.
4 A two-party protocol, P , to be run by parties A and B, is a pair

of Interactive Turing Machines (ITMs): P = (PA, PB). Following [14], on input
(x, y), where x is a private input for A and y a private input for B, and random
input (rA, rB), where rA is a private random tape for A and rB a private random
tape for B, protocol (PA, PB) computes in a sequence of rounds, alternating
between A-rounds and B-rounds. In an A-round (B-round) only A (only B) is
active and sends a message (i.e., a string) that will become an available input to
B (to A) in the next B-round (A-round). A computation of (PA, PB) ends in a
B-round in which PB sends the empty message and computes a private output.5

An ITM A is called a polynomial-time ITM (ptITM) if there exists a fixed
polynomial p such that, for any ITM B and for any execution of (A,B) or (B,A)
in which the length of A’s private input is ≤ k, the number of steps taken by A
in that execution is ≤ p(k). A polynomial time protocol is a protocol in which
both ITMs are polynomial-time.

Transcripts, Views, and Outputs. Letting E be an execution of protocol
(PA, PB) on input (x, y) and random input (rA, rB), we make the following
definitions:

– The transcript of E consists of the sequence of messages exchanged by A
and B, and is denoted by TRANSPA,PB (x, y, rA, rB);

– The view of A consists of the triplet (x, rA, t), where t is E’s transcript, and
is denoted by VIEWPA,PB

A (x, y, rA, rB);
– The view of B consists of the triplet (y, rB , t), where t is E’s transcript, and

is denoted by VIEWPA,PB

B (x, y, rA, rB);
– The output of E consists of the string z output by PB in the last round of

E, and is denoted by OUTPA,PB (x, y, rA, rB).

We consider the three random variables TRANS(x, y, ·, rB),
TRANS(x, y, rA, ·), and TRANS(x, y, ·, ·), respectively obtained by ran-
domly selecting rA, rB, or both, and then outputting TRANS(x, y, rA, rB).
4 We shall use almost verbatim the protocol notation of [4].
5 Due to the one-sidedness of secure computation, only machine PB produces an
output.
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We also consider the similarly defined random variables VIEWA(x, y, ·, rB),
VIEWA(x, y, rA, ·), VIEWA(x, y, ·, ·), VIEWB(x, y, ·, rB), VIEWB(x, y, rA, ·),
VIEWB(x, y, ·, ·), OUTB(x, y, ·, rB), OUTB(x, y, rA, ·), and OUTB(x, y, ·, ·).

Probabilistic experiments.
6 If A(·) is an algorithm, then for any input x,

the notation “A(x)” refers to the probability space that assigns to the string
σ the probability that A, on input x, outputs σ. The set of strings having a
positive probability in A(x) will be denoted by “{A(x)}”.

If S is a probability space, then “x← S” denotes the algorithm which assigns
to x an element randomly selected according to S, and “x1, . . . , xn ← S” denotes
the algorithm that respectively assigns to, x1, . . . , xn, n elements randomly and
independently selected according to S. If F is a finite set, then the notation
“x← F” denotes the algorithm that chooses x uniformly from F .

If p is a predicate, the notation Pr[x ← S; y ← T ; · · · : p(x, y, · · ·)] denotes
the probability that p(x, y, · · ·) will be true after the ordered execution of the
algorithms x← S; y ← T ; · · ·.
The notation [x ← S; y ← T ; · · · : (x, y, · · ·)] denotes the probability space over
{(x, y, · · ·)} generated by the ordered execution of the algorithms x ← S, y ←
T, · · ·.

Adversarial TMs. An adversarial TM (ATM) is a probabilistic, polynomial-
time Turing machine that is capable of retaining its internal state from one
execution to the next. If the same ATM A occurs twice or more in a proba-
bilistic experiment, it is understood that the first time A starts executing on its
initial state, the second time starts with the state reached at the end of its first
execution, and so on.

2.2 Wallet-Based E-Cash

To be as general as possible, a wallet-based e-cash scheme involves

– three players: the bank, the customer, and the merchant;
– three protocols: withdrawal (to be run between the bank and the customer to

generate wallets and e-coins); spending (to be run between the customer and
the merchant in which an e-coin is spent on a transaction); and depositing (to
be run between the merchant and the bank, in which a merchant convinces
the bank that an e-coin was spent with him); and

– a procedure reveal (in principle a protocol too), that reveals the customer’s
identity in case of double spending.

However, our scheme is simpler and more efficient: spending an e-coin consists of
running an algorithm pay producing a signature-like string, which is universally
verifiable by running an algorithm ver. Thus, assuming that a transaction spec-
ifies the merchant involved, depositing an e-coin simply consists of the merchant
sending such a string to the bank (who can then run ver on its own). Further rev
also is an algorithm, which reveals the identity of a double-spending customer
6 Verbatim from [2] and [15].
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when run on two payments relative to the same coin. It is therefore this better
(because less interactive) type of wallet-based e-cash that we formalize below.

Because wallet-based e-cash is a special case of e-cash, our formalization will
necessarily need to include basic properties common to other e-cash schemes.
Because these are not particularly novel, however, we shall deal with them rather
informally, so as to focus the reader’s attention to the anonymity properties
unique to wallet-based e-cash.

Fundamental Components. A wallet-based e-cash scheme consists of

– A security parameter, 1k (i.e., an integer k in unary notation).
– A GMR-secure digital signature scheme, DSS = (GEN, SIG,VERIFY). [15]

(It is assumed that each DSS public key has been authenticated by a certi-
fying authority.)

– A polynomial-time protocol W = (WB ,WC), for e-coin withdrawal.
– A probabilistic polynomial-time algorithm pay.
– A probabilistic polynomial-time algorithm ver.
– A probabilistic polynomial-time algorithm rev.

Basic Properties

Honest Inputs and Honest Outputs. Protocol W is performed between the bank
and the customer. In an execution of W , both parties must be aware of n, the
size of the wallet to be produced, and the security parameter 1k. The bank takes
as additional inputs its DSS secret key, SKB, and the DSS public key of the
customer, PKC . The customer takes as an additional input his DSS secret key,
SKC .

Because WC is the second ITM in protocol W , it is the customer who sees the
output of W . Each such output is called a wallet and consists of a pair (x, xs).
Component x is referred to as the public wallet (since it is shown with payment)
and specifies its own size, n, and the public key, PKB, of the bank that issued it.
Component xs is referred to as the secret wallet, since it must be kept secret as it
allows the customer to spend the coins in the wallet. Conceptually, x and xs can
be considered as a public-secret key pair of a special kind of digital signature
scheme.7 It is worth remarking that x and xs together make up the common
subcoin for any coin in the wallet, while the individual subcoin is just an integer
i in the range [1, n].

Algorithm pay receives 4 inputs: x, xs, a wallet of size n, an integer i ∈
[1, n] (the coin number), and t, the transaction on which to spend the coin
(conceptually, a string to be signed). The output of pay on such inputs is a 4-
tuple y, x, i, t. Conceptually, y is the signature of t with public key x and coin i.

Algorithm ver receives 4 inputs: y, x, i, and t, and outputs a bit: 1 indicates
that the payment was valid, while 0 indicates otherwise.

7 It is not quite a signature key pair, because it has not been generated by an inde-
pendent key generation algorithm, but has similar properties.
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If the customer and the bank behave honestly in withdrawal and payment,
the customer should be able to spend any coin in the wallet produced. That is, if
ver is run on the output of an honest execution of pay, based on a wallet of size
n which was the output from an honest execution of W , and a value i ∈ [1, n],
ver should always output 1.

E-Coins Cannot Be Forged. Informally, this is the old e-cash property that a
malicious customer cannot ever spend more different coins than he withdrew
from the bank. In our setting, this means two things. First, he cannot interact
with an honest bank and end up with a wallet with more than n coins if the
common input was n. Second, he cannot use a wallet of size n to produce a valid
payment on a coin i > n. This basic property remains true even if the customer
is allowed to be adaptive, in that he may interact with the bank to withdraw
wallets many times, each time based on information he learned before.

Double-Spending and No Framing. On any input, algorithm rev outputs either
the empty string ε or a customer identity with the following constraints:

1. On input two quadruples (y1, x, i, t1) and (y2, x, i, t2) such that
ver(y1, x, i, t1) = ver(y2, x, i, t2) = 1, but t1 �= t2, algorithm rev outputs
the identity of some customer with probability essentially equal to 1.

2. If a customer C never double spends any coins, then it is computationally
hard to find an input to rev (even given all the payments C legitimately
makes) on which rev outputs C’s identity.

This, we can consider inputs to rev that produce a customer’s identity to
be irrefutable proof that the customer has double-spent, since if they have not,
it would be computationally intractable to generate such proof. (It should be
noted that while this requirement is so formulated not to lose generality, in our
scheme a “more convincing” requirement is actually met: namely, rev outputs a
customer’s DSS signature of the sentence “I have double spent.”)

No Spending on Behalf of Others. If (x, xs) is a wallet of an honest customer
C, then it is computationally hard to generate a 4-tuple (y, x, i, t) such that
ver(y, x, i, t) = 1 with only x, i, and t as inputs. This continues to hold even if
the adversary can impersonate any player except C and force C to withdraw
arbitrarily many wallets of arbitrary size in an adaptive manner, as well as
produce payment for arbitrarily many transactions t′ �= t in an adaptive manner.

Anonymity. We now wish to express more formally the two crucial anonymity
properties, that characterize wallet-based e-cash, that we discussed informally
in the introduction.

Wallet Anonymity. At a minimum, this requirement should ensure that given a
single coin i, from some wallet x, it is impossible to determine to which customer
the coin belongs. Notice that the customer necessarily is one having withdrawn
money. Moreover, because each coin reveals the size of the wallet, the customer
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must be one who has retrieved a wallet of that size. Thus, wallet anonymity
guarantees that, if m customers have withdrawn wallets of size n, the bank
cannot determine which of the customers is spending a given coin better than
random guessing. This should remain true even if the bank is dishonest both
during its own key generation (it may help to have a special key rather than a
random one!) and during the withdrawal protocol.

But we wish to guarantee a stronger property, namely, that the customer
behind any spent coin cannot be guessed better than at random, even if the bank
has available how all other mn−1 coins have been spent. This should be true even
if the bank chooses all the transactions on which each coin is to be spent (which
might arise via collaboration with the merchants). We allow these transactions
to be chosen adaptively as follows. Initially, the m customers’ original names
are renamed according to a random permutation σ: i → σ(i). After that, the
bank chooses a transaction t1, a customer name j1 (which under the permutation
corresponds to customer σ(j1)), and a coin i1 from that customer’s wallet. Then,
the bank receives a payment of that transaction with that coin. Based on this
result, the bank chooses a second transaction, a second identity, and a second
coin, and receives the corresponding payment. And so on, for mn times. At the
end, we let the bank choose a single coin and guess the original identity of its
customer. Of course, if the bank asks for any coin to be spent twice, it will
(by double-spending) learn the identity of the corresponding customer, but if all
spending requests relate to different coins, then the bank should not be able to
do better than random guessing.

Formally, denoting by Sm, the set of all permutations over m elements, wallet
anonymity is so expressed:

∀c > 0, ∀m,n > 0, ∀ ATM A, ∃k0 : ∀k > k0

Pr[(SKC1 , PKC1), . . . , (SKCm , PKCm)← GEN(1k);
(SKB, PKB)← A(PKC1 , . . . , PKCm);
(x1, xs1)← OUTA,WC (ε, (SKC1, PKB, n), ·, ·);
· · ·
(xm, xsm)← OUTA,WC (ε, (SKCm , PKB, n), ·, ·);
σ ← Sm;
(t1, j1, i1)← A(ε);
(y1, xσ(j1), i1, t1)← pay(xσ(j1), xsσ(j1) , i1, t1);
(t2, j2, i2)← A(y1, xσ(j1));
· · ·
(ymn, xσ(jmn), imn, tmn)← pay(xσ(jmn), xsσ(jmn) , imn, tmn);
(a, b)← A(ymn, xσ(jmn)) :

σ(a) = b and ((ju, iu) = (jv, iv)⇒ u = v)] < 1/m + kc.

Wallet Unlinkability. At a minimum, this requirement should ensure that given
a pair of wallets each of the same size, it is impossible for the dishonest bank
to determine whether the wallets belong to the same customer or not. This is
extended and formalized by means of the following game.

First, each of the two customers withdraws two wallets (each consisting of n
coins).
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Second, the bank determines adaptively the transactions on which all the 4n
coins will be spent. Initially, the 4 original wallets are renamed according to a
random permutation σ: i → σ(i). Then, the bank selects a transaction t1, and
a wallet name j1 (which under the permutation corresponds to wallet σ(j1))
as well as a coin i1 in that wallet. The bank then receives a payment of that
transaction with that coin from customer who owns wallet σ(j1). (Notice that
such a customer is σ(j1)/2�, if we assume that customer 0 owns wallets 0 and
1, and customer 1 owns wallets 2 and 3.) Based on this result, the bank chooses
a second transaction, a second (possibly different) wallet, and a second coin, and
receives the corresponding payment, and so on, for 4n times.

Finally, we let the bank choose two different wallets: the bank tries to choose
two wallets that belong to the same customer. Of course, if the bank requests
double spending, it will be able to correctly choose two such wallets, but if all
spending requests relate to different coins, then the bank should not be able to
do better than randomly guessing a pair of wallets (which has a probability of
success of 1/3, since there are two correct answers out of six choices). Formally,
wallet unlinkability is so expressed:

∀c > 0, ∀n > 0, ∀ ATM A, ∃k0 : ∀k > k0

Pr[(SKC0 , PKC0), (SKC1 , PKC1)← GEN(1k);
(PKB, SKB)← A(PKC0 , PKC1);
(x0, xs0)← OUTA,WC (ε, (PKB, SKC0 , n), ·, ·);
(x1, xs1)← OUTA,WC (ε, (PKB, SKC0 , n), ·, ·);
(x2, xs2)← OUTA,WC (ε, (PKB, SKC1 , n), ·, ·);
(x3, xs3)← OUTA,WC (ε, (PKB, SKC1 , n), ·, ·);
σ ← S4;
(t1, j1, i1)← A(ε);
(y1, xσ(j1), i1, t1)← pay(xσ(j1), xsσ(j1) , i1, t1);
(t2, j2, i2)← A(y1, xσ(j1));
· · ·
(y4n, xσ(j4n), i4n, t4n)← pay(xσ(j4n), xsσ(j4n) , i4n, t4n);
(a, b)← A(y4n, xσ(j4n)) :

a �= b and σ(a)/2� = σ(b)/2� and ((ju, iu) = (jv, iv)⇒ u = v)] < 1/3 + kc.

3 Our Scheme

Our solution relies on zero-knowledge based signature schemes such as those
presented in [12,17,21,30]. Such schemes sign a message M in three steps: a
commitment step, which is independent of the message, a challenge step, which
is message dependent, and a response step, in which the secret key is used. Our
e-cash scheme can work with any such a signature scheme. But, for concreteness
(and to avoid an ad hoc, general notation), in this extended abstract we shall
present our scheme based on the Schnorr signature scheme. Our solution, like
most other e-cash schemes, relies on blind signatures [5] for security.
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3.1 Blind Signatures

We present an ad hoc summary of blind signatures, using blind RSA signatures
as our example [5].

In a blind signature scheme, there is a finite message space, and if Alice wants
Bob to sign a message M without revealing it to him, she first generates a random
value ρ and then uses the “blinding” function F to compute a random M ′ =
F (M,ρ) and asks Bob to generate the signature SIGSKB (M ′) on M ′. (Function
F is such that, for every M , for a random choice of ρ F (M,ρ) is uniformly
distributed in the message space.) Then, Alice uses the “unblinding” function G
to compute SIGSKB (M) = G(SIGSKB (M ′), ρ). For example, suppose N = PQ is
an RSA public modulus and that d and e are the private and public exponents,
respectively, for Bob’s RSA key. In order to compute a blind signature, Alice
generates ρ, a random value modulo N , and computes M ′ = F (M,ρ) = ρeM
Then, Bob computes the signature (ρeM)d = ρMd and Alice computes Md by
dividing ρMd by ρ modulo N . Conceptually, Bob will have no idea what he
signed since the distribution of M ′ is independent of M . To highlight that any
secure blind signature scheme can be used with our protocol, we will use the
abstract notation. However, it should be mentioned that it is important if the
overall scheme is to have security based on only one cryptographic assumption
that a blind signature scheme be chosen whose security depends on the same
assumption. For example, the protocol of [20] depends on the discrete logarithm
assumption, which is in line with the other assumptions we will need (since we
use the Schnorr signature scheme).

3.2 Schnorr’s Signature Scheme

We present a summary of the Schnorr signature scheme [30]:

– Common public parameters: p and q (two large primes such that q di-
vides p−1), g (a generator of the subgroup of Z∗

p of size q), and H (a collision
resistant hash function producing outputs in Zq).

– Secret-public key pairs: (x, gx), where x is generated at random in the
interval [1, q − 1].

– Signing a message M :
STEP 1: Randomly select r ∈ [1, q− 1] and compute gr mod p (the commit-
ment)
STEP 2: Compute e = H(M, gr) (the challenge)
STEP 3: Output (gr mod p, r + ex mod q) (the signature of M)

– Verifying a signature of a message M : To verify a signature (a, b),
compute e = H(M,a) and check that gb = a(gx)e mod p.

3.3 Crucial Properties of the Schnorr Scheme

The quantity gr mod p computed in Step 1 is called an ephemeral key, because
it is generated just as a public key and because it is used only once: signing a
new message entails generating a new ephemeral key.

Let us now highlight two properties of the Schnorr scheme that we use heavily
in our scheme:
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1. The ephemeral key can be generated off line. That is, it can be generated
before the message to be signed is chosen or known: gr is a random public
key!

2. If the ephemeral key is fixed, then the Schnorr scheme is strictly one-time.
That is, if one insists in using the Schnorr scheme only with a particular
ephemeral key, then the scheme is secure (i.e., not existentially forgeable
against a chosen ciphertext attack) as long as one signs no more than one
message. However, as soon as one signs any two different messages M1 and
M2 with the same ephemeral key, then the scheme becomes totally insecure,
meaning that the very secret signing key x is revealed. Indeed, because H is
collision resistant and because M1 �= M2, we are essentially guaranteed that
e1 = H(M1, g

r) �= e2 = H(M2, g
r), and the two signatures will consist of gr

mod p and, respectively, r + e1x and r + e2x mod q. Because e1 − e2 �= 0
mod q, we can solve:

x = [(r + e1x)− (r + e2x)](e1 − e2)−1 mod q.

3. The Schnorr scheme’s security is based on simple assumptions.
The security of the Schnorr scheme depends on the difficulty of the discrete
logarithm problem. The proof of this is done under the random oracle model
in the paper by Schnorr [30].

3.4 Our Use of the Crucial Properties

To embed the customer’s identity we use a secure symmetric scheme (E′, D′).
(Our scheme actually construct (E′, D′) from an underlying secure symmetric
encryption scheme (E,D). The precise description of how (E′, D′) are derived
from (E,D) and why this auxiliary step is needed will be explained in the security
sketch, section 3.5.)

Our scheme also uses Schnorr’s signature scheme with public parameters
p, q, g, and H , but only to compute and verify payments. (If the security param-
eter is 1k, then we assume q is of length k and thus so are the outputs produced
by H .)

For all other purposes, as demanded by our definition, our scheme uses a sec-
ond signature scheme. To avoid confusion between the two schemes, the Schnorr
keys and signatures are explicitly spelled out, while keys and signatures under
the second scheme are denoted “abstractly.” Thus, the permanent key pair (i.e.,
that relative to the second scheme) of a customer C is denoted (PKC , SKC),
and that of a bank B is denoted (PKB, SKB). Customer C’s signature of a
message M in this second scheme will be denoted by SIGSKC (M); B’s signature
of M will be denoted by SIGSKB (M).

NOTE: For simplicity, we assume that in the second scheme the signature of
a message M always includes M (in the clear).

The second signature scheme is chosen so as to allow blind signatures [5].
To highlight that any such a secure scheme can be used, we use the following
abstract notation. There are two efficient algorithms, F and G. The bank’s blind
signature of M is obtained by (1) computing F (M) = (M ′, ρ); (2) asking the
bank to sign M ′, and (3) computing SIGSKB (M) by running G(SIGSKB (M ′), ρ).
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The Withdrawal Protocol W . For simplicity, we assume that each wallet
size is a fixed power of 2, 2d.

Here is how a customer withdraws a wallet of size 2d.
1. The customer generates a random public/private key pair (gx, x) in the

Schnorr scheme.
2. The customer uses his permanent secret key to sign the sentence “C has

double spent”; that is, he computes s = SIGSKC (C has double spent ). Then, he
uses the symmetric encryption scheme to encrypt signature s using as encryption
key the just generated Schnorr secret signing key; that is, he computes z = E′

x(s).
3. The customer then generates 2d ephemeral key pairs (gr1 , r1) . . . (gr2d , r2d ).
4. The customer creates a Merkle hash tree [23], T , of depth d which stores

the public parts of the ephemeral keys (gr1 , . . . , gr2d ) in its leaves (where gri is
stored in leaf i). Denote by R the root value of T .

5. The customer generates a random value ρ, computes M ′ = F (M,ρ), and
sends M ′ to the bank, where M = (R, d, z, gx).

6. The customer proves interactively with the bank that M ′ has properly
formed. Specifically, the customer proves that M ′ = F (M,ρ) where M is a
quadruple of values (a1, a2, a3, a4) such that (1) a2 = d and (2) a3 is the en-
cryption under E′, using the discrete log of a4 as a secret key, of C’s permanent
signature of the value “C has double spent”. These proofs are accomplished via
general zero-knowledge proof methods, such as those in [16].8

(Comment: the complexity of such a zero-knowledge proof is essentially in-
dependent of d: it grows in poly(log(d)), and thus is polynomial in log log(n),
where n = 2d is the size of the wallet.)

7. The bank provides a signature SIGSKB (M ′) and sends it to the customer.
8. The customer unblinds the signature, that is, he computes w =

G(SIGSKB (M ′), ρ). The public part of the wallet consists of (w,R, d, z, gx), while
the secret part of the wallet consists of the secret parts of the ephemeral keys
(r1, . . . , r2d) along with the secret key x.

(Comment: the public wallet is compact as its size does not depend on d, but
on log d. As described above, the secret wallet grows linearly in n, the size of the
wallet. However, r1, . . . , r2d could be outputs from a pseudorandom generator
on input a short seed of length k, the security parameter: then, the secret wallet
could consist of just 2k bits: the seed and x.)

The Payment Algorithm pay. On input ((w,R, d, z, gx), (r1, . . . , r2d ), x, i, t),
pay runs as follows:
1. The customer (re)generates the ephemeral public key gri from ri and the
public parameters. Then he computes (gri mod p, ri + ex mod q), the Schnorr
signature on message t using secret key x and ephemeral key pair (gri , ri).

8 The [16] result shows how to solve any NP problem in zero-knowledge. The problem
of whether M ′ was generated from appropriate inputs can obviously be solved in
NP (we just “guess” the a1, a2, a3, a4 values that were used).



14 Moses Liskov and Silvio Micali

2. The customer generates the authentication path, path, in Merkle tree T for
leaf i. (Comment: This list of d values of length k authenticates gri as the ith
public ephemeral key.)
3. The customer outputs ((gri mod p, ri + ex mod q, path), (w,R, d, z, gx), i, t).

The Payment Verification Algorithm ver. On input ((a, b, path),
(w,R, d, z, gx), i, t), ver runs as follows:

1. Check that (a, b) is a valid Schnorr signature relative to public key gx on
message t. If not, halt and output 0.

2. Check that w is a signature on (R, d, z, gx) relative to the bank’s public
key PKB. If not, halt and output 0.

3. Check that path is of size d and correctly authenticates that a is stored in
the ith leaf of a Merkle tree with root value R. If not, output 0.

4. (Else) output 1.

The Identity Revealing Algorithm rev. The rev algorithm, on input y1 =
((a1, b1, path1), (w1, R1, d1, z1, g

x1), i1, t1) and
y2 = ((a2, b2, path2), (w2, R2, d2, z2, g

x2), i2, t2) runs as follows:
1. Check that (1) ver(y1) = 1, (2) ver(y2) = 1, (3) w1 = w2, (4) i1 = i2, and

(5) t1 �= t2. If any of these checks fail, halt and output ε.
2. Let e1 = H(t1, a1) and e2 = H(t2, a2), and compute (e1 − e2)−1 mod q.
3. Compute x = (b1 − b2)(e1 − e2)−1 mod q.
4. Compute s = D′

x(z1). Output s, which should be customer C’s signature
of “C has double spent.”

3.5 Security Sketch

In this extended abstract, we only informally give arguments that our scheme
satisfies our definitions of a wallet-based e-cash scheme. In particular,

Honest Inputs and Honest Outputs. All the algorithms fit the format specified
for a wallet-based e-cash scheme. All that must be shown is that when the
withdrawal protocol is run honestly, the customer can successfully spend any
coin in the wallet she generates.

Since the customer has access to x, ri, and t, she can generate the signature
(gr1 mod p, ri + ex mod q) correctly. Furthermore, since she knows all the leaves
of the Merkle tree, she can easily compute path. Thus, she can compute pay
correctly.

Since the signature generated in pay was valid, and the wallet involved was
signed by the bank in the withdrawal protocol, and path was correct, the algo-
rithm ver will approve the output the customer generates.

E-Coins Cannot Be Forged. Since we assume that the blind signature scheme
is immune to forgery, and the zero-knowledge proofs are correctly implemented,
there is no way the customer can create any wallets other than those she gener-
ates with the bank, and the wallets so generated all have the same size as the
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bank was aware of. Thus, the only possible way the customer could forge coins is
if the customer were able to spend more than 2d different coins out of a wallet.
However, if this were possible, the customer would have been able to produce
2d +1 different authentication paths of length d, which can be used to produce a
hash collision. Since we assume it is computationally hard to find hash collisions,
it is computationally hard for the customer to forge coins.

Double-Spending and No Framing. Clearly, if the customer spends the same
coin on two different transactions, then unless those two transactions represent
a collision for the hash function H , then the rev algorithm “extracts” x and
decrypts z to get the user’s identity. On the other hand, since the Schnorr signa-
ture scheme is secure when we never use an ephemeral key more than once, it is
computationally hard for the bank to come up with inputs to rev which reveal
a customer’s identity if that customer did not double spend any coins.

No Spending on Behalf of Others. If one has a wallet but is not aware of x, one
cannot produce signatures where x is the secret signing key, because the Schnorr
signature scheme is secure. Thus, one cannot sign without access to the secret
wallet.

Wallet Anonymity. Informally, in the withdrawal protocol the bank only sees
M ′ (which it receives in Step 5 and digitally signs by w), and the values PKC

and d (which it receives in order to carry out the zero knowledge proof that M ′

is the “blinded version” of a wallet being issued to customer C of size 2d).
The bank never sees M = (R, d, z, gx). Moreover, by the security of a blind

signature, the bank cannot infer anything about M from M ′. It is true that the
customer proves to the bank that M ′ corresponds to an M which embeds an
encryption of the customer’s identity. But because this proof is a zero-knowledge
one, the bank cannot learn any more about M than claimed.

During payment verification, the bank only sees the values ((a, b, path),
(w,R, d, z, gx), i, t), the value M = (R, d, z, gx), its own signature w of M ,
the coin number i, the transaction t, the Schnorr’s signature (a, b) of t rela-
tive to public key gx, and the authentication path that coin i equals a in the
Merkle tree rooted at R. Thus the only thing the bank learns which depends
on the customer’s identity in any way is M , because M contains the value
z = E′

x(SIGSKC (C has double spent). Due to the security of the blind signa-
ture, the bank cannot link M to the M ′ it saw during withdrawal. Thus, the only
way the bank can associate the customer’s identity to his payments is through
z, and all that remains to prove is that this is impossible.

Being the encryption scheme E′ secure, if SIGSKC (C has double spent) were
encrypted with a totally secret random key, z would provably not betray C.
Notice, however, that, in order to guarantee that double spending reveals C, we
must encrypt SIGSKC (C has double spent) with key x, that is with the same
secret key corresponding to the Schnorr’s public key gx that is known to the bank.
While in practice this step may very well be secure, the same cannot be claimed
from a theoretical point of view: x is essentially random (because the secret key
in the Schnorr scheme is a random element of Zq and therefore is essentially a
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random string), but it is not totally secret (because gx is information about x).
The best way to prove that gx does not interfere with the security of encryption
would be a “simulation argument,” but no such an argument appears to be
possible here. Therefore, we resort to design the encryption scheme E′ so that
we can prove that the information provided by gx is computationally irrelevant.

The idea is to use the Goldreich-Levin bit construction [13].
Let us assume that the discrete logarithm problem is at least as hard as 2kα

.
More formally,
∀A probabilistic TM ∃n : ∀k ≥ n
Pr[(q, g)← DLGEN(1k);x← {2, . . . , q − 2};
y ← A2kα (q, g, gx) : y = x] < 1

2k ,
where A2kα (q, g, gx) denotes that A is allowed to run on input q, g, gx for

only 2kα

steps before its execution is cut off and an empty result returned.
This is not the traditional discrete logarithm assumption. The difference is

that in the traditional discrete logarithm assumption, we assume the above is
true for some α > 0, but in our case we need to use α in the protocol, so we
need to assume the truth of the above statement using our given α.

Let f : {0, 1}� → {0, 1}� be a one-way function with complexity greater than
2k, let x be a random 8-bit string, and let ρ1, . . . , ρk be 8-bit random strings.
Then informally, on auxiliary inputs f , f(x) and ρ1, . . . , ρk, the k bits bi = x · ρi

are indistinguishable from k random bits by any polynomial-time algorithm.
This suggests to construct (E′, D′) from a secure symmetric cipher (E,D)

and Schnorr public parameters p, q and g as follows. Select ρ1, . . . , ρk, x
at random in Zq, compute gx mod p, compute b1, . . . , bk such that bi =
x · ρi, and define the encryption of a string σ with key x to be E′

x(σ) =
(gxmodp, ρ1, . . . , ρk, Eb1...bk

(σ)). Because b1 . . . bk is polynomially random even
given knowledge of gxmodp, ρ1, . . . , ρk, this encryption is secure.

In terms of how to apply these techniques to our protocol, if k is the security
parameter desired for the scheme, it should represent the length of the encryption
key. Thus, the security parameter needed for the Schnorr scheme is in fact not
k but k1/α. (It is presumed that 0 < α < 1). The encryption of a message M
is computed by first generating k random bit strings t1, . . . , tk of length equal
to that of x. (The discrete log function x �→ gx is the one-way function we will
use.) Then, the bits b1, . . . bk are calculated by computing bi = x · ti. Finally,
the underlying secure symmetric encryption scheme is used to compute Eb(M)
where b = b1b2 . . . bk. The ciphertext consists of the list of strings t1, . . . , tk and
the encryption Eb(M). Decryption using x as the key involves recalculating b
and then decrypting C = Eb(M) to get M .

For our scheme to be secure, we depend on the strong discrete log assumption
described above. It is worth mentioning, however, that in practice the difference
between this assumption and the discrete log assumption is insignificant. When-
ever we use a scheme the security of which is based on some problem, we must
make a concrete guess as to the difficulty of that problem. Without doing this, we
could not adequately choose security parameters to use in such schemes. Thus,
ultimately, our scheme differs from these other schemes only in that we use this
guess about the difficulty of the discrete logarithm problem not just to pick our
security parameter but also in the details of our scheme.
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Wallet Unlinkability. Since the scheme satisfies wallet anonymity, the only way
an adversary can correlate two wallets of the same customer is for payments
from those two wallets to be correlated to one another.

Informally, the only way in which two different wallets belonging to the same
customer are related is that the same customer’s identity is embedded in both
wallets. Other than these two encryptions, z1 and z2, all other information in
the two wallets is generated independently.

Thus, if the symmetric encryption algorithm satisfies polynomial indistin-
guishability, to determine whether z1 and z2 relate to the same customer is
computationally hard.

4 Efficiency

We are concerned with the time complexity of the withdrawal protocol, the
storage requirement of the wallet, the time complexity of the pay algorithm, and
the time complexity of the ver algorithm. In the following, we will assume 1k

is the security parameter, and n is the number of coins in a wallet. poly will
represent some unnamed polynomial.

The withdrawal protocol requires O(n) modular exponentiations (modulo a
prime the size of which depends on 1k) which the customer computes before
interacting with the bank, a zero-knowledge proof protocol between the bank
and the customer, which takes O(poly(log logn + 1k)) time, and a signature by
the bank on a message of length O(log logn+1k). Thus, the entire protocol takes
time O(poly(log logn + 1k)).

There is a simple trade-off between the time complexity of the pay algorithm
and the storage size of a wallet. On one side, the customer keeps stored the entire
tree and all its leaves (which takes O(1kn) space), in addition to x and d, but
needs only compute one modular exponentiation in pay. On the other side, the
customer keeps only x, d and a pseudo-random seed stored in the wallet, which
takes only O(1k + log logn) space, but must compute all the leaves each time,
which takes O(n) modular exponentiations.

However, there is a middle ground. The customer can choose a parameter
ε (presumably as large as possible so that his available storage space is not
exceeded), and store the top h = ε logn levels of the tree in addition to x and
d. This takes O(1knε) storage. The customer will still have to recompute part
of the tree each time they execute the pay protocol, but the portion they must
compute is smaller, and thus requires only O(n1−ε) modular exponentiations.

The time complexity of the ver algorithm is simply the time required to do
two signature verifications.

4.1 Multi-coin Spending

It is also worth discussing a solution to the problem that the scheme described
above is only capable of spending one coin at a time. However, it can be easily
modified to spend multiple coins at once as follows.
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Instead of having a typical hash tree where the parent is computed from left
and right children by computing H(LR) where LR denotes the concatenation
of the two child node values, we each internal node of the tree have its own
ephemeral key gr. Then, the parent node is computed as H(LgrR). In order to
spend a node (and any node may be spent, not just leaf nodes) the customer
must provide a signature on the transaction t using the ephemeral key of that
node, and must provide a signature on a standard phrase (for example, “PATH”)
on all ancestors of that node. The customer must also provide the ephemeral keys
for all internal nodes on the path from the node being spent to the root.

Now, in order to prevent double-spending we must ensure that (1) no node
can be spent twice without revealing the customer’s identity and that (2) if a
node is spent, no ancestor or descendent of that node can be spent without
revealing the customer’s identity.

If the customer violates (1), then some node will be used to sign two different
transactions t and t′ and these signatures can be used to reveal x.

If the customer violates (2), then the node of the two which was closer to the
root would be used to sign both the standard phrase and a transaction t, and
these signatures can be used to reveal x.

Note that two different descendents of the same node can be spent without
revealing the customer’s identity. Those keys on both paths will only be used
to sign the standard phrase, and thus the bank cannot recover the customer’s
secret key. Also note that the customer does not actually have to take the time
to generate all the signatures on the standard phrase when running the spending
protocol; these can be precomputed and stored with the secret information of
the wallet.

With this technique, transactions of size m can be completed by spending
O(log m) nodes in this manner. This requires O(d log m) signature verifications
for the total transaction, which may be more than m (for example, if m is small
relative to d). The size of the wallet also grows by a factor of 2.
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Abstract. We introduce a new micropayment scheme, suitable for cer-
tain kinds of transactions, that requires neither online transactions nor
trusted hardware for either the payer or payee. Each payer is periodically
issued certified credentials that encode the type of transactions and cir-
cumstances under which payment can be guaranteed. A risk management
strategy, taking into account the payers’ history, and other factors, can be
used to generate these credentials in a way that limits the aggregated risk
of uncollectable or fraudulent transactions to an acceptable level. These
credentials can also permit or restrict types of purchases. We show a
practical architecture for such a system that uses a Trust Management
System to encode the credentials and policies. We describe a prototype
implementation of the system in which vending machine purchases are
made using consumer PDAs.
Keywords: Trust Management; Risk Management; Microbilling; Pay-
ments; Digital Cash.

1 Introduction

Current electronic payment systems are not well matched to occasional, low-
valued transactions. (For the purposes of this discussion, we use the term “elec-
tronic payment system” broadly, to encompass conventional credit cards, stored-
value cards, online and offline digital cash, etc.)

A central requirement for any electronic payment system is that a single
compromise or failure should not have catastrophic consequences. For example,
it should not be possible to double spend in a digital cash system, nor should the
compromise of a client’s authorization secret entail unlimited client liability or
uncollectible transactions. Traditional payment systems are designed to prevent
such failures. Unfortunately, the prevention mechanisms are generally too ex-
pensive to support occasional, low-valued transactions. Typically, such systems
require online transactions, trusted client hardware such as smartcards, or must
assume conditions that are not always true, such as that payers can be held
responsible for any and all fraud or misuse of their authorization secrets.

In this paper, however, we present a new approach that focuses instead on risk
management. Our central observation is that in some applications we can relax
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many of the expensive requirements associated with electronic payment systems
while still keeping fraud or uncollectible transactions within acceptable levels.
We shift the security functions performed by online authorization of transactions
to certified code that can authorize offline transactions under certain conditions.
These conditions are customized to each client according to a risk management
strategy customized to the application.

There are three main contributions in this paper. First, we describe a frame-
work in which certified offline authorizations created by a risk management
strategy replace online authorizations for occasional, low-valued transactions.
We then describe an architecture for a practical payment system in which a
trust management system [BFL96] is used to encode the client risk management
strategy. Finally, we describe a prototype implementation based on the KeyNote
trust management toolkit [BFIK99], in which users can purchase vending ma-
chine items using credentials stored on conventional palmtop computers.

1.1 Related Work

Most currently-used protocols for Internet e-commerce are based on credit card
charging over SSL [Hic95]. Such schemes require the merchant to perform a
“hidden” (from the user’s point of view) online credit check. The cost of such
checks can be on the order of 10 (US) cents, making them expensive for low-value
transactions. The more recently developed SET [SET] and CyberCash protocols
[EBCY96] do not address this issue.

NetBill [CTS95] is a transactional payment protocol with many advanced
features (atomicity, group membership, pseudonyms, etc.) that requires commu-
nication with the NetBill server for each transaction, thus exhibiting the same
drawback with respect to micropayments as the simpler online protocols already
mentioned. Other general-purpose payment protocols [NM95, BGH+95, FB98]
are unattractive for micropayments for these same reasons.

Digital cash-based systems [Cha82, Cha92, MN94, BGJY98, dST98] provide
many desirable features (potentially total anonymity, inherent off-line opera-
tion), but do not directly address the issue of double-spending (fraud). Some
e-cash systems use online checking (thus negating the off-line operation capabil-
ity). Others rely on detection after the fact, which introduces the potential for
large-scale simultaneous multiple-spending. The same drawback is manifest in
several micropayment protocols, such as PayWord [RS], PayTree [JY96], micro-
iKP [HSW96], and others [Tan95]. While the double-spending possibility is an
inherent property of all such systems, none of the above protocols employ any
kind of risk management scheme to address it.

NetCents [PHS98] and Millicent [Man95] are scrip-based off-line-friendly mi-
cropayment protocols. As the monetary unit used in these protocols is vendor-
specific, double-spending is made very difficult (if not impossible). The assump-
tion behind both protocols is that people tend to re-use the same merchants
repeatedly. If this assumption holds, the interactions between the customer and
the bank are kept at a minimum. A hidden assumption is that merchants have
“total information” over their sales, so double-spending with the same mer-
chant is detectable. If the merchant has many distinct points of sale, the poten-
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tial for double-spending is re-introduced, unless continuous communication and
database synchronization is maintained between the different points. This would
consequently negate the benefits of off-line operation.

IBM’s MiniPay [HY96, Her98] uses a protocol that is somewhat similar to
that described in this paper. MiniPay was developed primarily for use within a
web browser, and a lot of effort has gone into the user interface aspect. Risk man-
agement is implemented as a decision to perform an online check with the billing
server based on the total spending by the customer that day, and some parame-
ter set by the merchant. The billing provider cannot customize risk-management
parameters on a per-customer and/or per-merchant basis.

Person-to-person (P2P) payment systems, such as PayPal or X.com (now
merged), allow users to exchange money online. Typically, the provider’s web
server needs to be contacted and an instruction issued for a money transfer.
In that respect, the transaction is very similar to a bank wire transfer. There
also exist modules that allow users to directly exchange money through palmtop
computers. Such systems typically have no built-in security mechanisms; in the
best of circumstances, they are a straight variant of offline digital cash.

While our system can operate on its own, it could also be integrated in some
type of electronic wallet, such as SWAPEROO [DBGM+98].

Finally, the use of a PDA as an electronic wallet is not new. [DB99] describes
an implementation of the PayWord system for the PalmPilot.

1.2 Offline Transactions and Risk Management

Consider a simplified view of how transactions are processed in traditional credit-
or debit- card systems. Each payer has an account with a card issuer, against
which charges can be made up to some limit. When a user wants to charge a
transaction, she provides her account number to the merchant, who calls the
card issuer for authorization. The card issuer checks that the transaction is less
than the available balance, and if so, subtracts the transaction amount from
the balance and authorizes the transaction. The user also signs an authorization
to charge her account for the transaction amount. At periodic intervals, each
merchant sends the signed authorizations they have collected to the card issuer,
which transfers appropriate funds to the back to the merchants and bills the
cardholders’ accounts accordingly. (Real credit and check card authorization
and clearing mechanisms are more complicated than this in practice, but still
follow approximately this basic procedure).

Observe that even though settlement and clearing can be (and are) done
offline and in batches, each transaction still requires an online authorization. This
step is needed for two reasons, both related to the general-purpose design of the
credit / check card model. First, losses from uncollectible transactions are limited
by imposing an account limit on each user, which must be checked and debited
with each transaction to prevent credit overruns or negative balances. Secondly,
the account number must be checked to be sure that it is actually associated
with an account in good standing, to prevent fraud from stolen or forged account
numbers. (Observe that the online transaction could, in principle, be eliminated
if the card holder can be given trusted hardware, such as a smartcard, that



24 Matt Blaze et al.

maintains its own state about the status of the account and produces signed
transaction authorizations).

Such systems become extremely vulnerable to fraud and abuse if the online
transaction authorization (or the trusted hardware) is eliminated. (For example,
consider why few retailers will accept checks from random customers without
verifying their validity with the bank). There would be no limit to what the
account holder could spend during the validity period of the card, and no mech-
anism to detect invalid or forged account numbers. Clearly, such a vulnerability
is unacceptable in a general-purpose payment system.

We observe that in some applications, however, it is acceptable to risk the
occasional uncollectible or fraudulent transaction if, in the aggregate, tolerating
the losses costs less than preventing them through online transactions or deploy-
ing secure hardware. In fact, assuming risk and tolerating loss is the basis upon
which credit systems work.

The basic idea behind our scheme is that we include with the user’s account
identifier certified information that describes the circumstances under which
transactions can be authorized offline. These circumstances would differ from
application to application, and indeed, from user to user, but are selected in a
way that makes it difficult to profitably exploit or abuse a compromised account.
The rules are designed to allow offline authorization for those transactions where
fraud is unlikely and in which the cost of an online authorization is greater than
the value of the transaction itself.

We assume that each user’s authorization data is managed by a small, por-
table device of modest computational ability and with some capacity for com-
munication, such as infrared or low-power radio. Ideally, the device is something
the user already owns for some other purpose; PDAs and cellular telephones are
especially good examples.

In this scheme, the users’ credentials manage and limit risk in several ways.
First, credentials would have a limited lifetime, perhaps a day or two, and would
have to be refreshed by communicating with the issuer at regular intervals. The
validity period would be determined by the length of time the issuer is willing
to tolerate loss from stolen client devices, and also by the natural interval that
the user is likely to be able to communicate back with the issuer.

Because each transaction is authorized by trust management credentials, the
system can also be used in applications where the ability to conduct certain kinds
of transactions must be restricted in various ways and where different treatment
is given to different classes of customers. For example, some transactions (alcohol,
tobacco, pornography, binding contracts, etc.) might be restricted to adults; it
is a simple matter to encode a requirement for an “adulthood” credential in the
vendor’s policy. Similarly, certain transactions might require licenses or special
permission (dangerous goods, car rental, medical supplies), which are also easy to
encode as credentials and check for in a policy. Conversely, the credential-based
mechanism also makes it easy to create restricted forms of money that can only
be used for certain things, such as social welfare food stamps or spending money
given by parents to their children.

The most important mechanism for limiting fraud and abuse is the transac-
tion limit encoded in the credentials. The kinds of transactions permitted are
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determined according to the risk management strategy of the account issuer, and
are designed to limit the usefulness to a thief of a compromised user’s credentials
and secrets. For example, an encoded strategy might permit the offline purchase
of newspapers, but only a few copies from any given vendor. If a user’s device
is stolen, the thief would be able to buy only newspapers, and only as many as
she can find vendors.

Although not suitable as a general replacement for credit cards or cash, such a
scheme has a number of important properties that make it especially well suited
to the kinds of occasional transactions for which credit cards and specialized
digital cash systems are too expensive.

2 Architecture

First, some terminology. The main players in our scheme are Merchants, who
sell things and collect payments, and Payers, who buy things and pay for them.
Merchants and Payers sign up for service with a Provisioning Agent (PA). Mer-
chants interact with Payers through the Merchant Payment Processor (MPP).
Payers are assumed to hold portable lightweight devices capable of some pro-
cessing (cellphones, PDAs, etc.) A Clearing and Settlement Center (CSC) for
reconciling transactions may be a separate entity, or may be part of the PA.

Our microbilling architecture is designed to operate efficiently under a num-
ber of constraints.

Foremost is that communication between the PA and the Payers and Mer-
chants is relatively expensive. This implies that transactions must be able to be
consummated between Payers and Merchants directly, with the CSC verifying
them at a later time1. Thus, the Payer will have to provide proof that she is
allowed to perform a transaction. Likewise, the Merchant will have to convince
the Payer that she really is an authorized Merchant. Assuming a large number
of Payers and Merchants, with a potentially high turnover rate, massive periodic
reconfiguration of all devices involved is impractical.

A public-key credential-based architecture fits nicely here. The PA would
act as a trusted third party to Payers and Merchants, who would be able to
authenticate each other offline using the appropriate credentials. Although com-
putationally intensive, public key operations are not prohibitively expensive on
the latest generation of lightweight computing devices (see Section 3 for some
performance figures for the Palm PDA). Some devices also provide hardware
cryptographic acceleration in the form of ASIC modules. Modern cellphones,
for example, already have significant cryptographic support in hardware. These
trends should mitigate, if not altogether eliminate, performance concerns.

Loss of the Payer’s (or Merchant’s) device/credentials should not be catas-
trophic. While the Merchant, Payer, or PA (depending on agreements) may have
to incur some costs as a result of the loss (similar to credit card loss or theft), it
should be possible to limit the potential damage. Payer and Merchant credentials
1 There exist established and efficient infrastructures that can process large volumes
of micro-transactions and reconcile these against the associated accounts. Obvious
examples are telephone and utility companies, banks, etc.
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utilized should therefore be short-lived (and thus frequently-refreshed) and fairly
restrictive with regard to the Payer’s or Merchant’s capabilities (what items can
be bought/sold, in what quantities/prices, etc.) Thus, we must be able to encode
risk-management strategies in the credentials we use. The refresh rate of the cre-
dentials and the capabilities expressed therein depend on the risk-management
strategy of the PA and thus have to be flexible2.

An added benefit of such an approach is that the different levels of physi-
cal security and tamper-resistance (ranging from none to very secure) can be
taken into consideration on an individual-user basis as part of the PA’s risk-
management strategy. Other parameters that may influence risk-management
can also be adjusted on a per-user basis as well.

The user devices used for the transactions can be very versatile (e.g., cell-
phones, PDAs, even laptop or desktop computers), and the architecture does
not depend on any particular communication technology for the transactions,
only that the user device has some ability to communicate back to the PA from
time-to-time, whether by telephone, cellular text message, Internet, etc.

Since the PA has no physical control over the user device, it is necessary to
verify any information received by it. Thus the Payer device must provide prove
to the Merchant that it is authorized to perform a transaction, and must able
to provide signed messages that the Merchant can use to clear payment for a
transaction.

A central principle behind our system is the use of a trust-management sys-
tem as the core component to express and encode the risk-management strate-
gies. The following subsections give an overview of trust management, describe
the mapping between risk and trust management, present our architecture, and
discuss how it meets the requirements for an offline micropayment system.

2.1 Trust Management

Trust management, introduced in the PolicyMaker system [BFL96], is a unified
approach to specifying and interpreting security policies, credentials, and rela-
tionships between users of the system (principals); it allows direct authoriza-
tion of security-critical actions. A trust-management system provides standard,
general-purpose mechanisms for specifying application security policies and cre-
dentials. Trust-management credentials describe a specific delegation of trust and
subsume the role of public key certificates; unlike traditional certificates, which
bind keys to names, credentials can bind keys directly to the authorization to
perform specific tasks.

A trust-management system has five basic components:

– A language for describing ‘actions’, which are operations with security con-
sequences that are to be controlled by the system.

– A mechanism for identifying ‘principals’, which are entities that can be au-
thorized to perform actions.

2 The refresh rate also depends on the frequency of communication between the user’s
device and the PA. We discuss this later in this section.
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– A language for specifying application ‘policies’, which govern the actions
that principals are authorized to perform.

– A language for specifying ‘credentials’, which allow principals to delegate
authorization to other principals.

– A ‘compliance checker’, which provides a service to applications for deter-
mining how an action requested by principals should be handled, given a
policy and a set of credentials.

Trust management unifies the notions of security policy, credentials, access
control, and authorization. An application that uses a trust-management system
can simply ask the compliance checker whether a requested action should be al-
lowed. Furthermore, policies and credentials are written in standard languages
that are shared by all trust-managed applications; the security configuration
mechanism for one application carries exactly the same syntactic and seman-
tic structure as that of another, even when the semantics of the applications
themselves are quite different.

2.2 Mapping Risk Management to Trust Management

Given a trust-management system, it is possible to describe risk-management
strategies in the language used for specifying credentials. The details of the
transaction (such as item purchased, price, quantity, etc.), potential history in-
formation (prior transactions between the Payer and Merchant), and other infor-
mation (time of day, device status, etc.), are encoded in the trust management
action language. The credential language then determines whether the transac-
tion should be permitted based on that information. The principals in the system
(Merchants, Payers, PAs, and CSCs) are identified by their public keys.

User policies identify the PAs that are trusted to introduce other users. For
a Payer and a Merchant to be able to perform a transaction, they must share at
least one common PA. Note that it is not necessary to restrict the architecture
to a two-layer scheme (PAs and Payers/Merchants); multiple layers of PAs can
be used.

All user devices and CSCs utilize compliance checkers; these are used by the
users to verify transactions as they are performed, and by the CSCs during rec-
onciliation. This allows for a decentralized decision-making process with regards
to risk-management, relieving CSCs or PAs from the burden of maintaining a
large, online, highly-available infrastructure for transaction verification.

2.3 Microbilling through Risk Management

We can now describe our microbilling architecture in some detail.
The users (Payers and Merchants) are assumed to possess some device that

can perform transactions on their behalf. Each user has a public/private key
pair, and signs up for service with one or more PAs who issue the necessary
credentials. While the details of the business arrangements that might arise are
outside the scope of our architecture, it is important to note that these do affect
the risk decisions made by the agents and thus the strategies encoded in the
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credentials. For example, an account with a higher monthly premium may be
allowed to make more purchases every day than one with no premium. We give
some example credentials in Section 3.

As we have already mentioned, credentials are short-lived to restrict potential
damage from loss of the device or compromise of the cryptographic key, and
to avoid maintaining and distributing revocation lists at update time3. Thus,
relatively frequent updates of the credentials have to be performed, depending
on the specific implementation. When and how the updates are performed (and
their frequency) is device-specific: cellphones might receive their credentials every
night in the form of an SMS (or similar) message, or they might place a call to a
voicemail or other service number; PDAs might download new credentials every
few days during backup. To avoid disruption of service, a device could be issued
several credentials representing different tradeoffs between purchasing power and
validity duration; the higher-value credential would expire first, but the longer-
lived lower value credential would still allow some purchases to be made in the
event a credential update is missed. Also note that credentials issued to some
Merchants can be made longer-lived, to avoid frequent updates to unattended
selling points.

A pair of Payers and Merchants thus equipped with their respective creden-
tials can perform a transaction through a simple authentication/authorization
protocol, an example of which is given in Section 3. In simple terms, the two
users authenticate each other and then verify each other’s capabilities: the Payer
verifies that the Merchant is known to the PA and is authorized to charge the
Payer’s account for the particular type of transaction; the Merchant verifies that
the Payer is authorized by a recognized and accepted PA to proceed with the
specific transaction.

When a transaction completes, the Payer receives the goods or services pur-
chased; in return, the Merchant receives from the Payer a Microcheck, which
is a specially encoded signed message that authorizes a one-time charge to the
Payer’s account and a credit to the Merchant’s account; for simplicity, the Mi-
crocheck can also be encoded as a trust-management credential.

Periodically, the Merchant provides its collected Microchecks (along with the
related transaction records) to the CSC, which uses this information to verify
the transaction and charge/credit the relevant accounts. The Payer’s device (the
“Microcheck Writer”) may also keep a record of all transactions, which can
be used to reconcile posted and billed charges against the payer’s records. CSCs
communicate with PAs to indicate the status of Payers’ and Merchants’ accounts.

Note that it is not strictly necessary for the Payer to authenticate the Mer-
chant during the transaction. Surprisingly, this carries no loss in security: regard-
less of whether the transaction protocol was completed or not, the Merchant can
always not dispense the goods, or the Payer can always claim that she never
received them. Mutual authentication does not help in either case, and the dis-

3 Since we cannot do online revocation check at the time a transaction is underway,
the only other approach involving revocation lists involves updating all the users of
a PA with the revoked credentials at update time.
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pute would have to be settled through other means4. Given the low value of the
transactions, and the fact that a dispute history of the Merchant and the Payer
can be maintained and referenced by the PA and/or CSC, fraudulent transaction
disputes need not be a major concern. For the remainder of this paper, we will
assume Payers do not authenticate the Merchants.

Figure 1 gives a schematic description of the architecture.

PROVISIONING

PAYER VENDOR

Vendor’s BankPayer’s Bank

CLEARING

Fig. 1. Microbilling architecture diagram. The arrows represent communication
between the two parties: Provisioning issues credentials to Payers and Merchants;
these communicate to complete transactions; Merchants send transaction infor-
mation to Clearing which verifies the transaction and posts the necessary cred-
its/charges or arranges money transfers. Provisioning and Clearing exchange
information on the status of Payer and Merchant accounts

2.4 Security Analysis

We need to examine a number of issues associated with our system. Minimally,
we have three types of communication: provisioning, reconciliation, and trans-
action. We shall not worry about the value transfers to banks, as there already
exist well-established systems for handling those. The inter-PA and PA-CSC
communication is also relatively simple to secure, and can use well-established
cryptographic protocols such as IPsec or SSL.

The Payer must be provisioned over a secure link; security can be physical, as
in our prototype where the Palm PDA is connected to the provisioning computer
4 The Payer can simply verify the signature on the Merchant credential, to avoid
beginning a transaction with an unauthorized Merchant. A fraudulent Merchant
cannot use another’s credentials, as those will not be accepted by the CSC (and since
no charges will be posted to the Payer’s account, no dispute needs to be resolved.)
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over a direct serial link in the user’s presence. More commonly, security would
be provided over a cryptographically protected network link. For that purpose,
the Payer and the PA must share some long-term security parameters, so that
short-term credentials can be generated with fresh public keys every refreshing
period. An IPsec or SSL link between the PA and the Payer, or the encrypted
channel already being used by a cellphone to exchange signaling information
with its provider, is sufficient – there is no need to invent another protocol.

The length of the asymmetric keys generated for the short-term creden-
tials needs some examination. The public key of the Payer may be exposed
to third parties during the actual transaction and during the deposit of all the
Microchecks by the Merchant. In addition, if the adversary is the Merchant him-
self, then he already has the Payer’s public key. Either way, if an adversary can
factor the RSA key of the Payer, all it can do is make purchases for the duration
of the short-lived credential. In other words, cryptanalysis of the Payer key is
no worse than discovering the secret by stealing the device or hardware compro-
mise. The utility of this to the adversary is limited by the fact that the possible
transactions are all low-value ones, and therefore the amortized cost of a machine
big enough to discover keys within the time-frame allowed is uneconomical even
for relatively small RSA modulus sizes (e.g., 512 bits).

If the Merchant is considered an adversary, the situation is slightly different;
the Merchant really also has the extra time between the expiration of the cre-
dential and the next time he has to call up the CSC to deposit the Microchecks
(since he can “pre-date” fraudulent transactions). Since this might happen only
infrequently (perhaps only once a month), the vulnerability interval could be
larger. Therefore, it may be advisable to encode a maximum number of pur-
chases per day per vendor ID in the payer’s short-term credential. This is where
fraud-detection techniques also come into play. The CSC can verify, e.g., that
only a reasonable number of purchases have been made per vending machine;
it can also verify that the purchases have not been made at unreasonably dis-
parate geographical locations, and so on. This is one of the ways where using a
trust-management system with programmable policies (such as KeyNote) is es-
pecially advantageous. If better policies for fraud detection have to be deployed,
or different policies need to apply to different people, they can all be encoded in
the credentials.

Provisioning the Merchant’s Payment Processor (MPP) is in many ways eas-
ier than provisioning the Payer. The MPP need never sign anything – it only
verifies the signatures of the credentials that the Payer sends it. The MPP does
need to have long-term secrets so that its communication with the CSC can be
secure, but this is just part of the communication protocol, so all the well-known
IPsec considerations apply. Provisioning the MPP can be as simple as inserting
a floppy disk or a read-only memory chipcard with the necessary IPsec key ma-
terial. The MPP should also have some concept of real time, but that does not
need to be very accurate. In the case of the Merchant, the adversary is the Payer.

Since value is not stored in either the Payer or the Merchant, there is no need
for tamper resistance against the owner of the Payer or Merchant hardware. The
security of the payment system really only depends on the signing key of the
PA; the PA secret must be well protected, and in many applications it will be
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appropriate to use techniques such as hardware security and shared secrets to
protect it.

3 KeyNote Microchecks

It was straightforward to design a practical payment system based on the archi-
tecture of the previous section, using the KeyNote Trust Management System
[BFIK99] as the basis for specifying credentials and risk-management policies.

KeyNote is a simple trust management system and language developed to
support a variety of applications. Although it is beyond the scope of this paper
to give a complete tutorial or reference on KeyNote syntax and semantics (for
which the reader is referred to [BFIK99]), we review a few basic concepts to give
the reader a taste of what is going on.

The basic service provided by the KeyNote system is compliance checking;
that is, checking whether a proposed action conforms to local policy. Actions in
KeyNote are specified as a set of name-value pairs, called an Action Attribute Set.
Policies are written in the KeyNote assertion language and either accept or reject
action attribute sets presented to it. Policies can be broken up and distributed
via credentials, which are signed assertions that can be set over a network and to
which a local policy can defer in making its decisions. The credential mechanism
allows for complex graphs of trust, in which credentials signed by several entities
are considered when authorizing actions.

In our micropayment system, various players issue KeyNote credentials to
encode the short-lived risk management strategies and use KeyNote compliance
checkers to make risk management decisions. We also use KeyNote credentials
to encode the payment messages, which we call KeyNote Microchecks.

Let us now examine how we encode various aspects of our system with
KeyNote.

3.1 Merchant Policy

Each merchant must have a policy that identifies the public keys of the Provi-
sioning Agents (PAs) that are trusted to issue Payer credentials.

For the purpose of simplicity, we assume that there is only one PA (and only
one PA key). Each merchant would then have a KeyNote policy as follows:

Local-Constants: PA KEY = "rsa-base64:MIGJAoGBAM8ibp27l02IIZA+\
5xANbFmgRtV3Yh0pSic2wk8YB/dGpHQDysmQ9buUtf7pJ/xhW5s+GV\
4K5HwXsPo1MSimOw4z5fjvCDEfSwzBOfsp7p01u+NWwJyd8hrb/iLYq\
6tGmhha7R0+KG+fUEvLhArtyV0pQ0oWfVBji4oOtIa9GrGzAgMBAAE="

Authorizer: "POLICY"
Licensees: PA KEY
Conditions: app domain == "deli" -> "true";
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This KeyNote policy essentially says that any actions in the “deli” application
should be authorized if they are signed with (or authorized by a credential issued
by) the RSA key identified as “PA KEY”.

This policy is stored in each Merchant’s computer and is consulted whenever
an offline purchase is to be made.

As another example from a different application area, the following policy
could be used by a car rental agency. This policy not only requires proof of
payment, but also a driver’s certificate from the Department of Motor Vehicles.

Local-Constants: PA KEY = "rsa-base64:MIGJAoGBAM8ibp27l02IIZA+\
5xANbFmgRtV3Yh0pSic2wk8YB/dGpHQDysmQ9buUtf7pJ/xhW5s+GV\
4K5HwXsPo1MSimOw4z5fjvCDEfSwzBOfsp7p01u+NWwJyd8hrb/iLYq\
6tGmhha7R0+KG+fUEvLhArtyV0pQ0oWfVBji4oOtIa9GrGzAgMBAAE="
DMV KEY = "rsa-base64:MCgCIQGB0f8lSVZfHDwdck\
ESR/Dh+ONPMrYvd0QlU9QdKbKbRQIDAQAB"

Authorizer: "POLICY"
Licensees: PA KEY && DMV KEY
Conditions: app domain == "car rental" -> "true";

3.2 Payer Credentials

The Payer credentials are where most of the risk management strategy is en-
coded. These credentials are issued to each payer by the PA at relatively frequent
intervals and specify the exact conditions under which an offline payment can be
authorized. Recall that the Merchant policies will authorize anything authorized
by the PA public key; the Payer credentials, therefore, are signed by the PA key
and encode the exact restrictions for a given payer.

Different payers can be allowed to do different things, and this will be reflected
in the details of their credentials. Each Payer has her own public key, which is
encoded in the credential along with the restrictions. For example:

Local-Constants: PA KEY = "rsa-base64:MIGJAoGBAM8ibp27l02IIZA+\
K5Hw5xANbFmgRtV3Yh0pSic2wk8YB/dGpHQDysmQ9buUtf7pJ/xhW5s+\
GV4XsPo1MSimOw4z5fjvCDEfSwzBOfsp7p01u+NWwJyd8hrb/iLYq6tG\
mhha7R0+KG+fUEvLhArtyV0pQ0oWfVBji4oOtIa9GrGzAgMBAAE="

PAYER KEY = "rsa-base64:MCgCIQGB0f8lSVZfHDwdck\
ESR/Dh+ONPMrYvd0QlU9QdKbKbRQIDAQAB"

Authorizer: PA KEY

Licensees: PAYER KEY

Conditions: app domain == "deli" && currency == "USD"

&& &amount < 1.51 && date < "20001024" -> "true";

Signature: "sig-rsa-sha1-base64:QU6SZtG9R3IXXAU9vRDBguUp\
PpFgh8s5O0pbO0KOYMRxbzLfVpLvyyzV16fw9uT4Gkq1ToZAdhZVkF5z\
uhumHXi2wmgZqzFexpoiitvpXRCuERkZPPK60SikMpzi0IfNkPYLiqSp\
p7mHrdEAChZpPnBTl2tUGxQBK/17fKVSRPa0="
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This very simple credential allows the Payer holding the PAYER KEY to
make any offline purchases in the “deli” application for up to 1.51 each (in
USD) until the date is “20001024”. Presumably, this credential would have been
issued to the payer a day or two before that.

The conditions in the Payer credential can be more complex, of course, if
the risk management strategy demands it and if the merchant is able to store
and refer to state about recent transactions. For example, we might provide a
maximum number of transactions or maximum total value than can be pur-
chased from any one Merchant, or it might require that the time between two
transactions at the same merchant be at least some interval.

The payer credential is stored on the Payer’s portable computing device and
is transmitted to the Merchant whenever she wants to make a purchase.

3.3 Making a Purchase

When a Payer wants to buy something from a Merchant, the Merchant first
encodes the details of the proposed transaction into an offer which is transmitted
to the Payers computer. (We assume that the parties have some mechanism for
negotiating the details of the offer, such as entering keys on a cash register or
pushing buttons on a vending machine, and that there is some communication
mechanism, such as infrared, between the Merchant’s and Payer’s devices).
The offer is a set of attributes and values that describes the transaction, e.g.:

merchant = "LEE’S DELI"
currency = USD
product = "CelRay Soda"
date = 20001023
amount = 0.55
app domain = "deli"
nonce = eb2c3dfc860dde9a

This offer is from “Lee’s deli” and is for a product called “CelRay Soda” that
costs 0.55 in USD.

Observe that the name of the Merchant and the product description are just
text strings. These, along with the price of the product, will be displayed on the
Payer’s device to prompt the user for approval.

If the Payer wishes to proceed, she must issue to the Merchant a KeyNote
Microcheck for this offer. The Microchecks are also encoded as KeyNote creden-
tials, that authorize payment for a specific transaction. The Payer creates the
following KeyNote credential signed with her RSA key, and sends it, along with
her Payer credential, from the PA to the Merchant:
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Local-Constants: PAYER KEY = "rsa-base64:Mcg..."
Authorizer: PAYER KEY
Licensees: "LEE’S DELI"
Conditions: app domain == "deli" &&

currency == "USD" && amount == "0.55" &&
nonce == "eb2c3dfc860dde9a" &&
date == "20001023" -> "true";

Signature: "sig-rsa-sha1-base64:Qpf..."

(Key and signature encodings have been truncated for readability.)
This credential is effectively a check signed by the Payer (the Authorizer),

and payable to Lee’s Deli (the Licensee). The conditions under which this check
is valid are that the payment is for something costing 55 cents, purchased on
the 23rd of October 2000, and for the particular nonce given in the Merchant’s
offer. The nonce maps payments to specific transactions, and prevents double-
depositing of Microchecks by the Merchant.

To determine whether he can expect to be paid (and therefore whether to
accept the payment), the Merchant sends the action description (the attributes
and values in the offer) and the Payer’s key along with his policy (that identi-
fies the PA key), the Payer credential (signed by the PA) and the Microchecks
credential (signed by the Payer) to his local KeyNote compliance checker. If the
compliance checker authorizes the transaction, the Merchant is guaranteed that
the PA will allow payment. In the case of the policies, credentials, and trans-
action details given in the examples, the compliance checker would approve the
transaction. The correct linkage among the Merchant’s policy, the PA key, the
Payer key, and the transaction details follow from KeyNote’s semantics.

If the transaction is approved, the Merchant should give the item to the Payer
and should store a copy of the Microcheck along with the payer credential and
associated offer details for later settlement and payment.

If the transaction is not approved because the limits in the payer credentials
have been exceeded, then, depending on their network connectivity, either the
Payer or the Merchant can request a transaction-specific credential that can be
used to authorize the transaction. Observe that if this is implemented trans-
parently and automatically it provides a continuum between online and offline
transactions tuned to the risk and operational conditions.

3.4 Clearing and Settlement

Periodically, the Merchant will ‘deposit’ the Microchecks (and associated trans-
action details) he has collected with the Clearing and Settlement Center (CSC).
The CSC may or may not be run by the same company as the PA, but it must
have the proper authorization to transmit billing and payment records to the
PA for the PA’s customers. The CSC receives payment records from the various
Merchants; these records consist of the Offer, and the KeyNote Microcheck and
credential from the payer sent in response to the offer.
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In order to verify that a Microcheck is good, the CSC goes through the same
procedure as the Merchant did when accepting the Microcheck. If the KeyNote
compliance checker approves, the check is accepted. Using her public key as an
index the payer’s account is debited for the amount of the transaction. Similarly,
the Merchant’s account is credited for the same amount.

3.5 Prototype Implementation

We built a prototype KeyNote Microcheck system based on soda vending ma-
chines and Palm PDA computers. It is described in detail in the Appendix.

4 Discussion and Conclusions

We have demonstrated a simple and, for some applications, practical scheme
for offline micropayments without the overhead of either secure hardware or
online transaction authorization. Our scheme represents a departure from the
usual approach to designing such systems. In particular, we chose to tolerate
manageable losses, rather than preventing them, and we made no attempt to
provide anonymity.

Risk management has long been a central part of the financial world - it is the
basic value-service provided by credit card issuers, loan underwriters, insurers,
the financial markets, etc. In this respect, it is rather surprising that platforms
to support risk management techniques for avoiding online authorization have
not previously been applied to electronic micropayment systems. (Indeed, older
manual credit card processing protocols often included a “floor limit” on trans-
actions below which it a telephone authorization was not required, although the
limit was not specific to the individual cardholder.) Instead, previous electronic
systems have focused on preventing fraud and failure, rather than on managing
it. Unfortunately, the prevention mechanisms can be too expensive for micro-
payments, making a risk management approach especially attractive.

We have described a platform that makes it possible to encode risk manage-
ment rules for offline micropayments. An obvious future direction for research is
in the area of systems that generate and adapt these rules to actual operational
conditions. We hope to stimulate work in this direction.
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A Prototype Implementation

We built a prototype microbilling system in order to test the feasibility of a such
a system, and also study users’ reactions. We chose to implement our prototype
Payer system, the “Electronic Check Writer (ECW)” on a 3Com Palm-III PDA.
A large number of people in our location already have Palm PDAs, which makes
it easy to get volunteers to test our system without having to buy or carry
additional hardware. (Many modern mobile phones have infrared ports, and
would also have been suitable as an ECW platform).

We developed the ECW software for the Palm Computing Platform using the
ssl port, gnu utilities under Linux. The Palm-III (as well as all newer models) has
an infrared interface, and sufficient processing power to compute an RSA signa-
ture with a 257-bit modulus in approximately five seconds, which makes for an
acceptable user delay. While a 257-bit modulus can hardly be considered secure,
it makes for acceptable user delay while still providing proper authentication.

In order to make this an attractive and realistic demonstration, we used an
actual soda vending machine. We purchased and modified a generic vending
machine from a mail-order distributor. Figure 2 is a sketch of the machine with
the associated hardware. It can dispense eight kinds of 12oz cans of soda. It has
eight selection buttons in the front, and eight 24V motors to operate the dispense
mechanisms. To use it, we removed and discarded the original controller, the bill
collector, and the coin collector, and brought the wires that sense the push-
buttons and drive the dispensing motors out to a Z-World PK2275 industrial
controller (Figure 3), which is programmed in a variant of C called Dynamic C.
The controller is connected via a serial port to a Linux PC.

A Vacuum Fluorescent Display (VFD) is mounted on vending machine, and
is used to give prompts and status information to the user (Figure 4). It is
connected to the PC using a serial port.

Also connected to the Linux PC is a JetEye IrDA adaptor, which is used to
communicate with the Palm unit with the IrDA protocol suite.

The “Provisioning Agent” in our system is a BSD Unix workstation with a
palm cradle; users get their initial credentials (and the ECW software) in person
but receive their ongoing short-term credentials via electronic mail.

Before the system can be put to work, the Provisioning Agent station must
set up keys for itself. This one-time operation is done with a key generation
command to the KeyNote toolkit. Specifically, we generate an RSA key pair
with a modulus size of 1024 bits. The public and private components are stored
in regular text files.

The provisioning agent must make its public key known to all Merchants and
clearing agents. In our case, the provisioning agent also serves as the clearing

http://www.setco.org/
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Fig. 2. Front of the vending machine, showing the display, infrared port, and
some of the pushbuttons.

agent; sending the key to the Merchants is simply done by copying the public
key to the vending machine’s permanent storage.

Provisioning each user PDA consists of generating a short-term certificate,
in the form of a signed KeyNote assertion, specifying that its public key can
sign electronic checks meeting the conditions expressed in the assertion. As an
implementation shortcut, the provisioning agent also generates the PDA’s RSA
key pair, and uses the public key in the assertion it generates. The key pair,
along with the short-live certificate, are then compiled into an executable, called
“SodaPop”, which is loaded in the PDA.

The PDA is provisioned by going to a provisioning station, which is a PC
running Linux, and has a copy of the source code of the ECW application. A
simple command line interface is used to invoke a script that builds the new
set of keys and the certificate, compiles them into the ECW application, and
uploads it to the PDA which has been placed on the synchronization cradle.

Our vending machine looks superficially like a standard vending machine, but
the coin mechanism has been replaced with a small display and infrared port.
There are eight buttons to select drinks. Upon approaching, the user is prompted
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Fig. 3. Z-World PK-2275 Industrial Controller

Fig. 4. Various prompts and status messages.

to make a selection (see Figure 4, first panel). Hidden inside the machine are the
Merchant Linux PC and controller.

When a button is pressed on the soda machine, the supervisor program run-
ning on the Merchant Linux PC, which is polling the controller several times
a second, registers that a button has been pressed. It then asks the controller
whether the drink is available or sold out (there is circuitry in the vending ma-
chine to detect that). If the drink is sold out, the user is told so; if not, the user is
told to aim their PDA at the IrDA interface of the vending machine. The PDA
is running the “SodaPop” application; figure 5-left shows the opening screen.
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Communication between the supervisor program and the PDA is established,
and an offer is sent to the PDA.

Fig. 5. SodaPop PDA Application screens

The PDA then prompts the user with the screen shown in Figure 5-right. If
the user clicks on “no”, no purchase is made (and, as a courtesy to a subsequent
user, the PDA sends a “no” to the vending machine so that it will not wait until
it times out).

If the purchase is accepted by the user, the PDA will build a KeyNote Mi-
crocheck and will send it, along with its credential, to the vending machine via
infrared.

Upon receipt, the vending machine will query its local KeyNote compliance
checker with the credential and Microchecks it got, along with the provisioning
agent’s public key, using the fields from the offer as the Keynote Action Attribute
Set.

If everything is approved, the PC sends a command to the micro-controller
to turn the corresponding dispensing motor on, and, in this example, a nice cold
can of Pocari Sweat will be dispensed.
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Abstract. Rivest and Shamir[2] proposed a system for generating micro-
payment ‘coins’ using an engine that finds collisions in the output of a
hash function. Such coins, they argued, would be quick to verify. Further-
more, by virtue of the birthday paradox, the cost of generation a large
number of coins could be kept to an acceptable level through economies
of scale while the cost of generating a small number of forgeries would
be high compared to the return.
In this paper we examine the practicalities of building a MicroMint and
we question some of the security statements made in the original paper.
Keywords: Micro-payments, electronic cash, system engineering.

1 Introduction

The MicroMint payment scheme was first proposed by Rivest and Shamir in
1995[2]. In this scheme ‘coins’ are created by a bank or broker and are distributed
to users. The users can pass these coins to merchants who can quickly verify
that they are valid coins and then provide services or goods in return for the
payment. As with most micro-payment schemes the goal is to make the cost of
validating the coins sufficiently low that it does not outweigh the value of the
coins themselves. The MicroMint system attempts to do this by avoiding the use
of all public key cryptography.

MicroMint coins consist of a tuple of values that, when passed through a
publicly known hash function, all hash to the same value. Creating an individual
coin of this form is costly since the hash function is chosen to be one-way. The
MicroMint scheme relies on the fact that the bank expects to make a great many
coins and can therefore devote a great deal of resources to the exercise.

A MicroMint system can be parameterized by the number of ways for the
necessary collision k and hash function H along with its input size w and its
output size n. (Note that in practice we may have some larger hash function H′

and we construct H = H′ mod 2n). We may also choose to limit the valid coins
to have some specific form in their hash output. We do this so as to increase the
work required to mint coins (by having a large n) while keeping relatively low
the cost of finding hash collisions through sorting. In this case we may divide
the n bits of hash output into a prefix z of length t and a variable part of length
u = n − t. If the hash of all the inputs must start with the prefix z then only
one in every 2t inputs will yield a useful output and we can increase the work
involved to a level that will deter would-be attackers.

P. Syverson (Ed.): FC 2001, LNCS 2339, pp. 41–50, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



42 Nicko van Someren

1.1 Economies of Scale

The proposed design for a MicroMint relies on the Birthday Paradox: if we
take random values independently taken from a set of size n (for example the
birthdays of a bunch of people from the set of 366 birthdays) then when we have
more than about

√
n values we expect to see two values that are the same.

Given a hash function H(x) with an output of n bits, we can input either
random or sequential values of x and collect the values in buckets labeled with
the value H(x). With 2n buckets the first 2-way collision will probably occur
after 2n/2 inputs have been hashed. We can also expect the first k-way collision
occurs after Nk = 2n(k−1)/k inputs and furthermore after time cNk one can
expect ck different k-way collisions.

A MicroMint coin consists of a tuple x1, x2, ..., xk such thatH(x1) = H(x2) =
... = H(xk), which is to say that all the values in the tuple sorted into the same
bucket. We can see from this that once we have the time to hash a few times
more inputs than are needed to make one coin we will be able to make a great
many coins. Thus we can achieve the economies of scale that we would like for
our mint.

1.2 The Security Assumption of MicroMint

It is proposed that in a MicroMint system coins would have a limited lifetime
(maybe a month). Coins would be released at the beginning of the month and
would have to be redeemed with the bank at the end of the month. The mint
itself would be equipped with a keyed hash function of some sort and the key
would be kept secret until the start of the validity period for the coins. Thus
an adversary trying to forge coins would not be able to start before the start
of the validity period. If any reasonably funded adversary can not carry out
significantly more than 2n(k−1)/k hash operation during the validity period then
they will not be able to forge a significant number of coins.

The authors of MicroMint go on to suggest that additional criteria above and
beyond the nature of the prefix z might be chosen by the mint while creating the
coins but that they would keep these criteria secret initially. If they suspect that
there is some forgery taking place then they would release information about an
extra test so that coins could be checked more thoroughly.

1.3 An Oligopoly of Banks

It is worth noting that given the high cost of entry into the MicroMint business,
due to what economists call the high ‘minimum efficient scale’ for the mint, it
is unlikely that any MicroMint protocol will be supported by a large number of
banks. While an open MicroMint protocol would in theory be open to any player
willing to underwrite a currency the practical costs of getting into the business
will mean that in fact we would only expect a few players. In many ways this is
akin to the practicalities of operating a physical currency.
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2 Assumptions

In the following sections we will consider the practical implications of building
a MicroMint system. Before we can do this we need to decide a few parameters.
These include the number and value of the coins, the length of the validity
period, what is a reasonable cost to the bank and what is a reasonable level of
resources for an adversary.

For the purpose of this paper we will assume that the total value of coins
minted in a period needs to be up to one billion dollars. While this may sound
high it is necessary to consider it in the context of a successful micro-payment
scheme in an Internet based economy. After all, if this scheme takes off we might
hope that as much as some tens of percent of the value carried by todays web
credit card transactions will move to micro-payments so a billion dollars is not at
all excessive. In order for the system to be usable for very small value transactions
we will need a very small denomination. For our analysis we will take each coin
to be worth 1/10 cent. This gives a total of 240 coins.

The original paper suggests a validity period of 1 month and we will use this
figure in our discussion. This equates to 60 × 60 × 24 × 30 ≈ 221.3 seconds and
we will round this to 221 seconds for ease of calculation.

It is hard to say what is a reasonable cost for building a MicroMint. The
theoretical upper bound is the interest earned on the value of the MicroMint
cash in circulation over the lifetime of the machine. Clearly the bank will never
be willing to commit this much to the construction since this would not take
into account the risk involved and would leave no room for making a profit.
A more reasonable figure might be obtained by looking at how much existing
banks spend on computer systems for processing payments. Since the whole idea
is that this system must be cheaper to operate than existing payment systems
we can safely assume that the capital cost is no greater than that for existing
systems. To this end we will assume that the mint itself must cost no more than
$10,000,000.

The amount of money an attacker is willing to throw at attacking the system
is bounded by the amount of value that they can obtain by defrauding the system
multiplied by the probability of getting caught. This is the expected return of the
attack and it makes no economic sense to attack the system unless the expected
return is more than the cost. If we assume that the attacker has the channels
available to organized crime for the distribution of the forgeries, and that they
feel they can introduce an extra one hundredth of one percent of value into the
system with a good change of getting away with it, then they may be able to
extract $100,000 in value each month. If we assume that crooks have a rather
short term view of investment and expect a good rate of return then it is unlikely
that the crooks will be willing to spend more than $1,000,000 to set up their
on-line bank robbery.
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3 The Arms Race

Given the assumptions above, the initial prognosis for MicroMint looks just
about OK. The design is based on the idea that honest people can out-gun the
crooks by spending more on hardware than the attacker. We saw from section 1.1
that the number of coins produces is a kth power of the effort spent, where the
coins are made of k-way collisions. It has been suggested by Rivest and others
that a value of k = 4 be used. If the bank is only willing to spend ten times
as much as the crooks on the construction of the hardware then they can make
coins at a rate 104 times faster. If we consider that a party with $10,000,000
can make $1,000,000,000 worth of coins in a month then the attacker with only
$1,000,000 can make 10−4 as many, or $100,000 in the same amount of time.
Although this is enough to break even the key used to generate these coins is
not revealed until the beginning of the month. So the attacker will not have
made the requisite forgeries until the end of the validity period and thus they
will not have time to spend them.

The problem, however, is that technology moves on. Moore’s Law states that
computer hardware gets faster by a factor of 2 every eighteen months. By the
same observation from section 1.1 that gave us the economies of scale, Moore’s
Law is amplified for the production of forged coins and in 18 months time the
forger will be able to make 24 = 16 times as many coins for the same cost.
This means that if the crooks funding the attack think that they can move their
$100,000 worth of forged coins in only half a month then they simply need to
wait five months before they start their design and technology will have moved
on enough to double the speed of production.

The amplification of Moore’s law is a big problem for MicroMint. The bank
must have a value of k that is large enough to ensure that at the start of the
exercise the bank has a reasonable lead of the less well funded attacker. On
the other hand, a large value of k means that the attackers ability to compete
increases at a rate with a much higher exponent that Moore supposed. The only
way for the bank to deal with this threat is to engage in an arms race. The
bank must ensure that their hardware is always a suitable margin faster than
any hardware that the attacker might have. As each year goes by they need
to build a bigger machine because they know that the attacker can also build a
bigger machine. A careful balance needs to be struck to ensure that the bank can
make coins in a realistic time scale, at a reasonable price, but still expect that
the attacker can not do the same. With k = 4 the bank may need to consider
replacing their hardware every 15 month since in that time the attacker will get
ten times faster. Worse, the cost of the hardware is now starting to look like a
running cost rather than capital equipment.

The additional selection criteria for coins can indeed help somewhat in com-
bating the forgery of coins. That said, they only help for as long as the predicate
is kept secret. As we will see in the next section adding extra checks in the coin
production process greatly increases the cost of the coin generation for the mint
so it is unlikely that very many extra criteria can be used in a practical system.
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4 System Complexity

In most computer systems the cost of the system is determined by the complexity
of the problem. With the MicroMint it is, to a large extent, the the other way
around; the complexity of the system is driven by the cost. Our goal is to make
the system as complex as we can afford, so as to make it as hard as possible to
forge. Thus in order to work out the complexity of the system we need to cost
the parts of the system and then divide the total budget by the component cost.

For the time being we will allocate 80% of the budget to the hash engine,
which will be split 50-50 between the cost of the chips and the cost of the support-
ing infrastructure (circuit boards, power supplies, racks, cases and construction).
The rest will be spent on the coin storage and sorting.

4.1 Cost of Hashing

Current high speed ASIC1 parts can hold a few hundred thousand gates, can
run at upwards of 60MHz and cost a few tens of dollars (plus the design and
NRE costs). Such a part could probably hold a small handful of pipelined hash
engines that could each be made to produce a new hash output on each clock
tick. Thus a chip might be able to mint about 228 or 256 million hashes a second
for an average cost (including amortized NREs) of $32, or 223 hashes per second
per dollar. If we assume that 40% of our budget goes to the cost of the chips
then we have about $4,000,000 or $222 to spend. This means that our engine
will compute 223 × 222 × 221 = 266 hashes each month and we need about 217

chips to do this.
In order to end up with 240 coins made from four hashes that collide in a 44

bit output space we can expect to need to compute at least 244 hashes that pass
all of the coin criteria. This means that the tests will need to discard all but one
in 222 hashes. This would suggest a prefix z of 22 bits if this were the only test,
or a much shorter prefix other hidden criteria were used as well.

Note that valid hashes are generated at a rate of 2(44−21) = 223 a second.
This is ‘slow’ enough that we should not have too much of a problem designing
a bus that can handle the rate, although it should be noted that this bus will
ultimately have 256,000 devices connected to it.

¿From the point of view of physical construction, we might look at the build-
ing of “Deep Crack”[1], the machine built to crack DES. We should be able to
place 32 chips onto each side of large circuit boards, thus needing about 211
cards. With chips on both side and space for a decent cooling air flow the cards
would be able to sit about an inch apart so we might be able to fit two cards into
a single “U” of 19 inch rack cabinate. So we need about 1024U of rack space. A
floor to ceiling (8 foot) rack holds 44 U so we will need about 25 racks.

1 Application Specific Integrated Circuit.
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4.2 Cost of Storage

If we compute 244 hashes that pass the initial tests we will then need to store
their values and the preimage value so that they can be sorted. If we allocate
16 bytes for the combination of preimage and hash value (this may be generous
but we can be sure we need more than eight bytes) then we need 248 bytes or
one quarter of a petabyte or storage. In volume dynamic RAM costs a about
one dollar a megabyte so we clearly can not afford to store these values in RAM;
it would cost a quarter of a billion dollars to do so. Modern hard discs cost in
the region of $10 per gigabyte so if we put all our data onto disc we can get
the cost down to about $2.5 million. This is over budget for the storage and
sorting but with the sort of bulk discount we might expect from buying 8,000
hard discs we might be able to get the price down to an acceptable level. A
third option is to put the data onto tape. Unfortunately these days tape media
are not much cheaper than hard discs. A quick search of online catalogues show
digital linear tapes, the only media with acceptably large capacity, to be about
$2.5 a gigabyte, putting our storage costs at about $900,000 once the cost of the
tape drives and loading robots are considered. Of course, switching to a linear
medium means that we can not make random accesses to the data.

4.3 Cost of Sorting

As we all know, sorting is an O(n log(n)) process. In our case n is very big
indeed, about 244, so we’re looking are between 259 and 260 comparisons to be
made in order to sort our data hashes so that we can find the collisions.

Rivest suggests that the data could be sorted using tape sort methods. In such
a scheme the 248 bytes of data, representing the 244 items to be sorted, would
be written to 214 tapes each holding about 16 gigabytes. A set of machines, each
with 32 tape drives (16 for input and 16 for output) would stream data in in
parallel from all the drives and send each datum to one of the output drives
on the basis of four bits of the entry. After each pass all the data on any given
output tape have the same value in the chosen bits and once all the tapes have
been processed in such batchs the tapes are swaped around and the process is
repeated. Since 4 bits of value are sorted for in each pass each tape will need to
undergo 11 passes, and we have about 175,000 tape passes to carry out the sort.
Tape drives can read a tape in about an hour.

Our budget for sorting is about $2,000,000. A powerful PC with 32 high
capacity tape drives will cost about $20,000 one off but might go as low as
$10,000 in the quantity we need, so ignoring the cost of the tapes themselves we
can afford about 200 machines. With 200 such machines we will be spinning the
tapes for about 875 hours, or 5.2 weeks. In practice it will take longer since we
have have to move the tapes around but if we can get a bigger discount on our
tape drives we might be able to get the sorting time within a month.
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4.4 Heat and Power

We have 256,000 custom chips runing at high speed, 6400 high capacity tape
drives rolling flat out, another 200 processors working on the sort, and a set of
tape moving robots moving a tape ever 0.5 seconds. Not only is this a monstrous
construction, it is going to use a huge amount of power.

A 100,000 gate custom CMOS chip, running at 64MHz, using a 0.18µm
process, will consume about 2 watts. 217 of them will consume a little over half a
megawatt. A high performance tape drive, in the worst case (and this is, indeed,
the worst case), consume about 30 watts. 6,400 of them will consume 192,000
watts. Add to this the necessary bus drivers, the sort processors and all the
“glue” circuitry and it looks likely that the whole edifice will consume in the
region of a megawatt while running.

Of course the mint does not really consume a megawatt as it transforms it
from one form to another. To be precise it converts the electrical energy coming,
mosting into heat but with a not insignificant amount of sound. Removing the
megawatt of heat from the room housing the mint will require the further con-
sumption of another megawatt of electricity or, EPA permitting, the dumping
of the heat into a nearby river.

Assuming for the moment that we use air conditioning, and thus can expect
to use upward of 1.5 megawatts of electricity, the cost of around $1.25 million a
year.

4.5 Cost of Distribution

There is one final cost to consider in minting coins with a value of only $0.001
and this is the cost of distribution. These coins take up about 320 bits (for a four
way collision on an 80 bit pre-image). This means that a 1.5MB/s T1 line can
only move $4.80 a second. Using a protocol with only small overheads we need a
couple of 155MB/s OC3 lines simply to send our 240 coins out during the course
of the month. In practice the overheads of the payment protocol will at least
double this and various issues to do with the Internet Protocols will probably
double this again.

5 All Your Eggs in One Basket

It is rare for a large quantity of cash to be kept in one place. Indeed, it is exceed-
ingly rare to keep more than a few million dollars in one place, all protected by
the same security system, since it is often said that “every man has his price” and
entrusting a vast value to one system makes a very enticing target. In fact the
only places that the authors know of in which one billion dollars in barer devices
ever reside under one security system are in national precious metal reserves.

Given this fact, it is a very unfortunate feature of MicroMint that, in order
for the system to be practical, all the value must reside in the same place at
some point in the production process. The problem is that in order to sort the
hash values they all need to be brought together in the same place. While the
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sorting process can be carried out in on encrypted copies of the data (we are
only testing for equality) they would all need to be encrypted under the same
key and that key would need to be known to all the distribution devices.

MicroMint can be split into a number of mints, each minting a fraction of
the coins, but by the nature of the one-way functions being used in the minting
process the only reduction in size at each mint is in the storage. Each mint will
still need to carry out the full set of hash computations even if it one stores and
sorts a subset.

Given these limitations it would seem that a practical MicroMint would have
to be build in, for instance, a Marines base outside Knoxville, TN, rather like
the US government’s gold repository.

6 A More Practical Alternative?

Given the problems with MicroMint, are there alternatives that would do the
job better? We think yes.

MicroMint was designed a number of years ago from the viewpoint that
public key based cash systems were too computationally intensive to be useful
for small value transactions. Times have changed and the cost of processing has
gone down a great deal since 1995. It should also be noted that MicroMint does
not even try to offer some of the benefits of the most costly digital cash schemes
and public key based systems can be designed to offer better speed than Chaum’s
blind cash.

6.1 Rabin Signatures

The main benefit of MicroMint is the speed with which coins can be verified
as authentic, at the cost of taking a great deal of effort to generate in the first
place. To verify a MicroMint coin we need to compute four hashes and carry
out a few comparisons. Depending on the type of hash function we can expect
this to take between several hundred and a few thousand processor cycles on a
modern PC.

If we look at designing a public key based coin system from the same view-
point, that verification cost is paramount, then the Rabin signature scheme
stands out as an obvious choice. Rabin signatures are based on the fact that
taking the square root of a number modulo a composite number is very hard if
you do not know the factorization of the modulus and relatively easy if you do. It
also relies on the fact that checking if a value is indeed the square root of another
value is very simple. In fact to test if a2 = b (mod n) takes just one modulo
multiplication, or given suitable precomputation using a known modulus, just
three standard multiplications and a handful of additions and subtractions.

¿From the point of view of “minting” Rabin signatures, if the factorization
of n is known then taking a signature is only factionally more expensive than
a standard RSA signature.2 Given that off the shelf hardware can be bought
2 The extra cost comes from having to check on average three different forms of the

signature padding before a quadratic root is found.
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for a few thousands of dollars that will not only produce 700 RSA signatures a
second (or 1.8 billion a month) with a 768 bit modulus but also keep the key
with a level of security suitable for banking applications, it seems that minting
a requisite number of coins at a reasonable cost will not be hard.

6.2 Signatures verses MicroMint

While we feel that the idea of using Rabin signatures in place of MicroMint
needs more analysis it is useful to take a quick look at the the two schemes side
by side to see how the implementations compare.

Cost of Computation. One square root needs to be taken per coin. This costs
the same as an RSA signature plus a tiny overhead to check (on average three
times) to find a padding which gives a quadratic residue. If we pick p, q = 3 mod 4
then we can use off the shelf RSA hardware trivially and not have to build a
custom chip. At the time of writing Broadcom have chips that will deliver just
under 2000 768 bit square roots per second and this will be up to 10,000 by the
3rd quarter of 2001. Cost is totally linear with the number of coins minted. For
1012 coins a month we need 193 chips and about 7 PC and the component cost
will be able $30,000 plus some storage.

Cost of Storage. Micromint usually uses about half the valid hashes in the final
valid coins. If the signatures are 96 bytes as opposed to about 64 for MicroMint
then the signature based system uses about 75% as much storage in total. Note
that since the signature scheme supports message recovery there is no need
to store any ancillary information with the coins whereas their might be with
MicroMint. In fact we may be able to generate the coins on the fly since we
don’t have to have them all together to sort. Also note that there are no specific
access requirements at all and that the storage can be distributed with ease.

Power. Given the ability to compute 2000 768 bit modulo square roots per
second, and a need for 1012 of these to be computed each month, we need 193
Broadcom chips (or about 40 of the version out in the Q3 2001) The existing
chip uses about 3 watts; we can fit eight on a full length PCI card and fit 4 PCI
cards in a PC, adding about 100 watts to the 300 watts of a standard PC. We
need 6.03 PCs so we can use seven and as long as we don’t get a failure on the
first day of the month we have a useful standby. The total power consumption is
less than three kilowatts. Note that the seven machines can be on seven different
sites so the cooling is unlikely to be a major issue.

Distribution. This is basically the same as for MicroMint and the signature
based coins. If we use 768 bit coins it is a little worse for signatures but not by
as much as a factor of two. Of course, it can be distributed.
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Double Spend Detection. It should be noted that the double spend detection
is also much easier with the signature based scheme since we have message
recovery so we can keep a unique, sequential serial number inside the coin and
just use a bit field somewhere to tell is a coin a has been spent. For MicroMint we
actually need to know at very least the hash output value of each spent tuple.
This means that MicroMint’s double spend detection will use several tens of
times as much storage and will almost certainly be several orders of magnitude
more expensive to operate.

7 Conclusions

Building a large scale MicroMint, or perhaps we should call it a MegaMint, is
on the verge of practicality. If a bank was willing to devote a huge amount of
resources up front to building a mint then it would not be beyond the limits
of todays technology. That said, it is not clear that it will ever be economical
to do so. The cost of the initial mint construction is only the beginning of the
story. The mint will cost a fortune to run and it will need to be replaced with
larger, more complex mints as technology improves the abilities of the attackers.
The MicroMint is one rare case where Moore’s Law works against the users of
technology rather than for them. Basing the security of the system on winning
an arms race leads inevitably to spiraling costs.

Having considered the practical issues surrounding building MicroMint we
belive that it is not the right way to make micropayments. A coin system based
on cryptographically hard problems, rather than big iron, seems to have many
advantages over MicroMint both in terms of the complexity of the system and
of its long term security. In particular, we feel that public key cryptography can
now be used to mint micropayment coins efficiently, something that perhaps was
not the case when the MicroMint scheme was originally proposed.
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Abstract. The Internet has made it possible to distribute and exchange
various forms of digital media (e.g., music, video, etc.) cheaply. End-
users now have an effective, low cost means to distribute, search and
obtain digital content. Some end-users now even expect the content to
be free, causing the intellectual property to holders find new approaches
to obtain revenues from the use of the content. As new technology is
being developed to make it easier to obtain digital content, a fast growing
industry is forming to control the use of digital content. Here we discuss
the Financial Cryptography 2001 panel on protecting digital rights.

1 Introduction

As the transmission of copyrighted material through the Internet proliferates,
controlling the distribution of digital content has become a difficult balancing
act of protecting the rights of the copyright holders, distributors and end-users.
Companies in the digital rights management industry are now proposing var-
ious digital rights protection technologies to control and monitor the trusted
exchanges of digital content over digital networks. To date there are numerous
technology solutions on the market and many more are expected to be available
soon. Many solutions take very different approach. Some of these technologies
take a proactive approach by granting the recipient rights to access content yet
safeguard the content from individuals without the necessary permissions. Other
technologies enable the monitoring of the content’s usage and transfers. Many
times solution providers mix technologies to obtain a comprehensive solution.

Most digital rights protection solutions attempt to resolve to some extent
content providers, end-users and legal concerns. For the end-user, whether a
consumer or corporation, a solution must produce minimal markup to the end
product’s price and it should not require costly equipment or software to use. The
end-user further desires a solution that is easy to learn and use. The solution must
work well with a multitude of media technologies. The content provider requires
an enabling solution that is robust, scalable, extensible and secure solution. It
must be a solution that works well within the business’s existing infrastructure
and the infrastructures of its corporate partners. The solution must justify its
cost. Finally, the technology must satisfy legal and regulatory requirements. In
the United States, it is essential that it must meet fair use provisions. It must
protect the rights of copyright holders. It may require some form of privacy
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preservation since some solutions transmit user demographic information as part
of their process.

The panel consisted of representatives from several technology providers each
with its own unique approach to digital rights protection. Four of the panelists
have provided additional papers which have been included in these proceedings1.

– Barbara Fox, Microsoft Inc.
– David W. Kravitz, Wave Systems Corp.

Aspects of digital rights management and the use of hardware security devices
– Scott Moskowitz, Blue Spike Inc.

A Solution to the Napster(tm) phenomenon: Why value cannot be created
absent the transfer of subjective data

– Tomas Sander, Intertrust Technologies STAR Lab
Golden times for digital rights management

– Jeremy Wyant, NTRU Cryptosystems
Applicability of public key cryptosystems to digital rights management appli-
cations

The panelists were provided with several questions to discuss from a techni-
cal as well as a business perspective. They were asked: What are the different
approaches to protect digital rights? What is the efficacy of various technologies
under different medias? What is acceptable from a consumer perspective? What
is required of a technical solution which is cost effective yet sufficiently strong to
prevent theft of media? What is needed for the wide acceptance of any technol-
ogy? What is currently being piloted or in production to demonstrate success or
deficiencies of various approaches (i.e., what are the lessons learned to date)?

The panelists discussed the various technical solution that their companies
offered. As we noted, there are diverse approaches which present many opportu-
nities for technology companies. It was particularly interesting the implications
of the various technology solutions to user adoption, scalability for market pen-
etration, cost effectiveness, etc.

The interplay of technology with model is very interesting. For instance,
there exists efforts that require a secure hardware solution. With these solutions
the hardware provides “safety” for a third parties content rather than providing
efficient processing. Similar ideas have been seen for electronic payments. We
have yet to see if consumers will accept such an approach as well as whether the
distribution of any popular content will be limited to this form of protection.

An important issue to still be resolved is the fair use provisions. The balance
between the end-users rights and those of the intellectual property rights holders
will be interesting.

While we did not have the opportunity to see all of the existing approaches,
we were able to see a small portion of the diversity of the solutions. As has
happened with many other industries there are many proprietary technologies
1 The panelist’s papers have not been reviewed by the organizers or the program

committee.
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at the start of the industries acceptance and growth. Standardization has yet
to occur for digital content protection though we should expect to witness some
convergence in the future. The future looks very promising for digital rights
protection technology from a business and scientific perspective.
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1 Conditional Access: Controlling Content while
Attracting Customers and Earning Revenue

Consider a conditional access module, or CAM, which decrypts (or descram-
bles) content using its knowledge of conditional access (CA) keys [6]. The CA-
descrambled content is communicated to a set-top box (STB) to enable display.
The alternative model in which the CAM or smart card acts as a permissioning
device only, which transfers content-descrambling keys to the STB, may have
lesser processing and data-rate requirements. However, successful attack under
this latter model may not necessitate compromise of the CAM itself. The defi-
nition of successful attack varies depending on several factors. Localized forms
of piracy may be harder to monitor, and thus control, but also should be of less
concern to the providers of the legitimate infrastructure. In particular, unau-
thorized replay of rented content which does not result in additional revenue
to the legitimate provider is qualitatively different than, say, taking delivery
on two washing machines when only one was paid for. There is a fundamental
distinction, however, between a consumer who pays the legitimate rental price
once and reaps further play without further payment, and a large-scale pirate
who compromises content and provides the ability for consumers to play con-
tent which does not result in payment to the legitimate provider proportional
to the number of effective consumers of that content. In the case that there is a
considerable difference between the rental price and outright purchase price of
content, that is not to say that every consumer who is willing to pay the initial
rental price and cheat the provider out of further revenue for any additional play
would be willing to pay the full purchase price if cheating were not a reasonable
alternative. Consequently, it is difficult to measure revenue lost to piracy. The
more options that the legitimate provider offers to consumers, such as rent-to-
own content of enduring value and live broadcast of highly-perishable content
such as sporting events, the harder it may be for large-scale pirates to compete
effectively as surrogate providers, although this may come at the expense of ad-
ditional complexity in implementation or user interface. If high-valued content is
(legitimately) offered to consumers only through DRM-controlled systems, con-
sumers may be willing to tolerate a certain level of inconvenience if justified by
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the perceived value. The computation of expected profit accruing to large-scale
pirates should take into account the risk of capture and prosecution.

The large-scale pirate may be willing to undergo very considerable expense
in order to compromise a CAM, if this can be parlayed into a business ven-
ture which does not entail the compromise of each individual consumer’s CAM.
While using distinct keys for each short burst of content can affect the difficulty
of cryptanalysis, compromise of a working CAM will yield all keys until revoca-
tion of the CAM. Furthermore, non-invasive measures such as differential power
analysis [4] may recover a long-term key used by the CAM to recover the short-
term content keys. Security measures which rely on collusion-resistance [1] may
be circumnavigated by the theft or anonymous purchase of multiple ”copies”
of security components such as CAMs and STBs. Probing [5] or other invasive
techniques, which may result in the destruction of many CAMs before success-
ful reverse engineering or key compromise, can also benefit from the availability
of multiple units. A service-provider administered distribution and registration
operation, such as employed in home-installed cable, is less convenient but offers
a margin of security.

If a particular STB unit is compliant, it can be used to reject a cloned (or
counterfeit) copy of a CAM by having the infrastructure limit the number of STB
units with which a particular CAM unit is allowed to interact. If each legitimate
CAM is uniquely keyed for this purpose in the factory, when a compliant STB
is registering with the service provider, the service provider can make a decision
whether the association or ”pairing” of that STB with a particular CAM ID
is permissible. The CAM ID may correspond to a certified public key, where
the associated private key is held by that CAM. This CAM public key can be
used in a challenge-response protocol with the STB to detect and reject the
substitution of the CAM by one with which the STB was not paired. The large-
scale pirate may instruct customers to plug their legitimately paired CAM into
the pirate-provided cloned CAM. The intent here would be for the legitimately
paired CAM to handle the challenge-responses, and the pirate-provided CAM to
use its knowledge of the conditional access keys to descramble the content. This
is particularly applicable in the case of content legitimately distributed on hard
media, where all copies of a given title are encrypted the same way to minimize
pressing costs. The challenge-responses should be interwoven into the content in
such a way that the pirate’s customers ”pay” enough so that use of the pirate’s
services is not considered worthwhile [2]. One form of ”payment” may be to
induce shutdowns to avoid accumulation of penalty points, in the case where
the STB does not use non-volatile memory to run the protocol. Payment may
also take the form of a significant portion of content being delivered garbled
to the display device in order to reduce the chance of getting caught by the
legitimate service provider. A couple of cautionary notes apply here: Use of a
paid-up subscription key to descramble pay-per-view content, thus resulting in
garbled plaintext, may not be a penalty if the pirate-provided CAM feeds the
properly descrambled content into another port, such as one intended for input
of a digital camcorder signal which is not under conditional access control since
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it is intended to handle user-generated content. Secondly, penalties which are too
severe (such as the legitimate CAM or service provider mandating an extensive
period of suspension of service by refusing to process signals as required by the
compliant STB, if the legitimate CAM suspects cheating), thus turning away
potential subscribers of the legitimate service rather than bringing them back
into the fold, or which have a non-negligible probability of false-alarms, can
render the system untenable.

In an attempt to restrict the proliferation of non-compliant units of STBs,
the service provider can aggressively enforce licensing of STB technology, such
as proprietary tuners or disc readers.

Mandating periodic communications between the service provider backend
system and the CAM in order to keep compliant CAMs alive provides an audit
capability. Another way to tie the CAMs to the backend is to have the CAMs
learn new keys through communication with the backend. Such point-to-point
acquisition of keys, unlike tuning in to satellite broadcast, can be monitored
and limited by the backend. This means that devices, such as modified CAM
clones sold to customers by a pirate, cannot be loaded with all the content
keys initially because they are not known by the pirate, and cannot call in to
the backend without being detected because of the high multiplicity of calls
associated with the same CAM ID. The implication is that customers who use
pirate devices will have to maintain a long-term relationship with the pirate in
order to avail themselves of content encrypted under newer keys. This increases
the complexity, cost, and risk of the pirate’s service offering.

2 Piracy for Profit

Measures such as pairing STBs to CAM IDs, enforced licensing of proprietary
STB technology, auditability of CAMs by the service provider backend, and a ca-
pability for CAM renewal by distributing upgraded units which can be installed
by consumers via an accessible slot in the STB, can make it substantially more
difficult for pirates to leverage off the legitimate infrastructure in establishing
their own customer base. Distribution of plaintext content by the pirate can be
unwieldy or infeasible, and may run counter to profitability in that this can eas-
ily spawn second-hand piracy. A pirate who is interested in operating for profit
would like to protect his investment in successfully attacking CAMs or otherwise
gaining access to content keys. He would like to protect this investment through
tamper-resistant hardware analogously to the perspective held by the legitimate
service provider. Other issues which a pirate may face include the difficulty in
anticipating the legitimate next-generation security architecture which may force
the pirate to periodically re-distribute hardware to customers, and the degree of
confidence the pirate has in his ability to reverse-engineer the legitimate CAMs
(potentially missing latent design features) so that this knowledge can be used to
modify legitimate CAMs or produce clones which behave appropriately except
to have certain features turned off, such as logging of content play, calling in to
the legitimate backend, and automatic shutdown. Latent design features may be
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activated to disable pirate devices while maintaining the efficacy of compliant
devices [7]. In some instances, the pirate may also have to support legacy content
in order to remain competitive with the legitimate service provider.

3 Interface Protection: Combating Local Piracy

As a detection mechanism for cloned or counterfeit STBs, a pairing between the
STB and CAM can be initiated through communication with the service provider
and used to lend assurance to a compliant CAM that it is communicating (valu-
able usable-form content) to only an approved STB unit or used to revoke an
STB unit by notifying the CAM that it should suspend communication to that
unit. This can be accomplished by pairing the CAM ID with an STB ID, where
the STB ID corresponds to a certified public key (with the associated private
key being held by that STB). The STB public key is used by the CAM in such
a way that leads to either explicit detection by the CAM of lack of knowledge of
the private key by the STB, or implicit failure of the STB to receive usable-form
content because it is encrypted under a locally derived interface protection key
protected under the (long-term) STB key. Furthermore, compliant STBs can be
configured so as to require periodic refreshes of local interface protection keys in
order to thwart free replay of content, where transmission of the content under
the refreshed interface protection key signifies a logged event.

4 Logging and Playback

One of the functions of a digital rights management (DRM) system, and of
a CAM, in particular, is to handle the logging of content access. The CAM
and STB may remain oblivious of the actual billing policy, and the challenge-
response regime, if any, used between the CAM and STB to effect verification of
CAM compliance may be designed to operate without requiring such knowledge.
Example metrics of logging are time and footage (for static content), and bullets
(for games). The client-side system (consisting of CAM and STB, for example)
may upload logs for out-of-band payment processing, or may decrement locally
held funds. The services of a payment clearinghouse may be utilized. Locally
held (client-side) payment records may indicate current access privileges status
and may affect pricing of future purchases or rentals. A possible tool to use in an
attempt to handle the wide-scale distribution of illicit plaintext, is to make the
display of content dependent on the CAM’s authorization to a compliant monitor
(with which it is paired) that watermarked content bears a local license [3]. Note
that there is an analogy between securing a (static-) content player (such as an
STB, or application running on a PC) via a tamper-resistant transaction checker
(such as a CAM) and securing a game executable via a peripheral device, or
dongle. Although an application running in a PC or one running in a STB can
each be ”personalized” with unique keying material, adversarial extraction of
this data from a STB may require an action such as reading out flash (by the



58 David W. Kravitz

customer), while exploitation of this data within a PC application may be able
to be accomplished through the loading of rogue software distributed by a pirate.

5 Consolidated Hardware Deployment

There is a viable alternative to each DRM application provider distributing de-
vices initialized with unique secrets (keys) and containing adequate non-volatile
memory for state data:

”Point” solutions can be replaced by ”shared” secure hardware devices ser-
viced by a backend infrastructure which permissions and tracks the installation
of multiple applications, thus simulating the multiple dongle scenario. This can
be done in such a way as to preserve user privacy and handle revocation, while
ensuring that the critical code of individualized copies of applications executes
within compliant devices. This backend infrastructure is distinct from that set
up and used by each individual service provider to allow communication with
users of the applications. The goal is for each application to inherit the security
of hardware while maintaining the simplicity in distribution and ease of use of
software.

Wave Systems (http://www.wave.com) has been extensively involved in this
area.
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1 Introduction

The efficacy of various copyright management systems will depend largely on
keeping the “security” out of view from consumers while enabling clear respon-
sibility to be attributed to the content being traded. Consumers have clearly
rejected access restriction and registration protocols as currently deployed. The
general failure of such systems is best represented by the widespread acceptance
of Napster and the difficulty with implementations of digital rights management
(“DRM”) systems on consumer PCs. Further, ignoring the historical notion of
“fair use” and the “first sale doctrine” serves to obscure the value attributed to
content. Success in commercializing the exchange of media content must focus
on value in the media; the file format must be relegated to convenience.

The presence of a content identification watermark is the hook to facilitate
a number of potential markets surrounding the use of music, and other media,
by consumers. Some of these uses include: monitoring of broadcast playback
by performing rights organizations (“PROs”), premium services for peer-to-peer
music distribution networks (a commercial Napster), and consumer content iden-
tification services (like Gracenote/CDDB for individual tracks). The cost on a
computational and resource basis is lower than competing identification systems
using so-called signal fingerprinting. Furthermore, the cost is borne by each client
in a distributed manner, avoiding processing and bandwidth bottlenecks, similar
to the way that Napster distributes storage.

In this document, we will lay out how several of the decoding systems work,
and why watermarks are a necessary feature of any workable market for the
commercial exchange of content.

2 Broadcast Monitoring

At present, a variety of technologies are used to monitor the playback of sound
recordings on broadcast outlets. Digital watermarking is a better alternative to
all of the deployed technologies because it couples automated detection with ex-
tremely high reliability. A single PC-based monitoring station can continuously
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monitor up to 16 channels of audio broadcasts 24 hours a day with no human
interaction. The results of the monitoring are assembled at a central server and
made available to interested licensees, such as the PROs, for a fee equivalent
to the price they currently pay for monitoring data. Unlike currently deployed
systems, there is an extremely low statistical chance of misdetection. Addition-
ally, the system can distinguish between otherwise identical versions of a song
which are watermarked for different distribution channels, further improving the
quality of the reported data.

Deployment of such a system requires two things: a monitoring infrastructure
and the watermarks to be present in the content. Leading monitoring companies
have developed and deployed extensive infrastructures that have been designed
to identify certain encoded audio and video signals as they are distributed. En-
coding the music or video is planned by all major entertainment companies.

3 Peer-to-Peer File Sharing

The immense popularity of Napster, in combination with recent legal rulings,
presents a challenge: how to commercialize a file-sharing network. Watermark-
based content identification is the solution. Each track is identified by the client’s
computer using a watermark detector. The identity of the track is then used to
filter the server search engine, so that each subscription level only provides access
to the allowed content. Here is how it works in action:

3.1 Encoding

Encoding happens at the mastering level of each sound recording, as currently
contemplated by the major label music companies. Each song is assigned a
unique ID from the identifier database, and that ID is encoded in the sound
recording after all other mastering processes are completed, but prior to the
song being prepared for a specific distribution channel. To enhance impercep-
tible encoding of those few audio recordings that require special processing,
human-assisted watermark key generation is readily available.

3.2 Decoding

Decoding happens each time a new song is made available on a Napster user’s
computer. A highly efficient background process decodes each sound recording,
and queries Napster’s main server as to the status of the selected track. The
server would respond that the sound recording falls into one of the following
categories:

Uncontrolled: The sound recording either does not contain a watermark, or
the copyright owner has chosen to make the song freely available to all users.
In this example, the sound recording will be freely available to pass through
the Napster server.
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Premium: The sound recording is part of a subscription package and is made
available only to the premium subscriber of that subscription package.

Restricted: The sound recording is not authorized to be shared on the main
server and will not be available for file sharing purposes.

4 A Real World Example

Alice is a Napster user. She has a hard drive directory of audio files which her
Napster application monitors. She rips a new CD into that folder and starts
the Napster application. The application reads the watermark on each track to
identify those tracks. The new tracks, like all on her computer, are available for
her own, unlimited, use.

When Alice connects to the Napster server, her computer broadcasts the
identity of all of the sound recordings in her shared folder. These are a mix of
uncontrolled, premium, and restricted content, as determined by the server at
that time. For the new tracks that were recently added to her folder, the server
identifies that one song is premium, and the others are uncontrolled.

Bob is a Napster user, and is looking for music. He is a premium subscriber.
The Napster server makes the uncontrolled and premium music on Alice’s com-
puter available to Bob.

Carl is another Napster user, but not yet a subscriber. He sees only the
uncontrolled music when he logs on to the Napster server.

This system provides the minimum impact on Napster users, while maintain-
ing the safeguards necessary for the sharing of copyrighted material. Each user is
not prevented from using restricted songs on their own computer, since in most
cases they will have purchased them legally, for instance on CD. Those songs
are simply not available to others against the wishes of the copyright owner. No
other approach to this rampant problem of unfettered file sharing is technically
reasonable. When combined with technologies such as a Blue Spike Scrambler,
which encrypts data in such a manner as to retain perceptibility but distort the
audio track in a tiered fashion (a predetermined key combined with a transfer
function), copyright owners can estimate the highest optimized mix of quality
thresholds demanded by consumers. Users can purchase individualized keys (es-
sentially tied to their public key for purchase options) based on observable music
and reasonably open access which improve the quality of the music. A reduction
in server overhead and cost, as well as maintenance of recognizable but secure
audio files, combined with digital watermarking, represent the state of the art
in addressing file sharing. This also allows for multiple subscription levels based
on content types and quality settings. The need to store multiple versions, both
compressed and uncompressed, in an encrypted state is likewise reduced. Com-
mercially, owners or aggregators of content will be able to estimate payment and
bandwidth resources in real time.

In the event that the sound recordings are not available with watermarking,
application of signal recognition (fingerprinting) offers additional coverage. A
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unique abstract of the selected sound recording is taken and its signal charac-
teristics are compared to an associated database. This comparison will identify
the name of the performance if the sound recording is included in the database.
Simple hashes or checksums of the audio file are ineffective given the range of
reasonable alterations conceivable. Predetermination of the types or amount of
signal manipulations expected on the audio file can be used to create a better
“signal abstract” (which may be stored publicly or at a certification authority
to point out authorized versions of the recording) than currently available signal
fingerprinting applications.

The signal recognition application is primarily useful for legacy, unwater-
marked, material. This specifically limits the scope of the fingerprint database,
which is crucial to maintaining the feasibility of fingerprinting. At present, no
company has demonstrated fingerprint technology which can scale to cover the
daily increase in available musical content.

5 Consumer Song Identification

Gracenote (formerly CDDB) offers a hugely successful system to identify physical
CD’s based on their Table of Contents. The hole in the system is that it is
useless for content that arrives as an individual digital track. An MP3 found on
a peer-to-peer system can arrive without any linkage to the distributor or artist.
Watermarking can fix this, allowing an anonymous track to be reassociated with
its creator, and facilitating sales by all of the members of the value chain.

An inexpensive watermark detector would be added as a feature or plug-in
to all popular music players, just as the present Gracenote software is included.
Any incoming track could be decoded, and a resulting query could be made to a
server which not only identifies the track, but places it in a sales context for the
up-sell of all manner of associated items, from other tracks by the same artist,
to concert tickets and merchandise.

Best of all, the consumer’s identification act also provides critical data on
the use and popularity of each track. Here the watermark is crucial, because
it can distinguish between identical tracks obtained from different sources, thus
informing the viability and market potential of different modes of distribution.
Finally, if the distribution channel is correctly identified, the consumer can be
up-sold the appropriate items. For example, if they recorded the song from an
Internet broadcast, sell them the CD. If they already have the CD, sell them
a different CD, concert tickets, or a t-shirt. And in all cases, create a two-way
relationship which benefits both parties.

6 Conclusion

Consumers have created and embraced particular usage models for music, which
include CD copying, file-swapping, and format indifference. They expect to be
able to play music on any of a number of device platforms, from stereos to
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computers to cell phones. Any system of music distribution which ignores or
significantly impedes these models will meet with limited success.

More pointedly, the economics of traditional notions of DRM are questionable
at best. The cost of recognition, promoting or otherwise creating demand for
information content is separate from responsibility once that information content
has been transacted. Access restriction threatens the viability of the historic
reality that a few copyrights account for a lion’s share of revenues. In 1999, for
instance, only 0.03% of compact discs accounted for over a quarter of all revenues
(“The Heavenly Jukebox”, Atlantic Monthly, September 2000). Similar market
realities apply to all forms of entertainment, limiting any supposition that we
can predetermine the success of any given content release.

Arguments that “superdistribution” can be supported also lack any real
world examples; in fact, financial success generally demonstrates models seeking
monopolistic or oligopolistic control of profitable intellectual property. As with
physical media distribution emphasis is better placed on enabling differentiations
between authorized and pirated versions of a given media file copy. Concatenat-
ing a digital signature to a media file, a key-based digital watermark, is the most
appropriate means to enable markets for the open, accessible exchange of media
content. Ultimately, key-based digital watermarks enable a balance to be struck
between privacy and piracy.

The key to successful commerce using these usage models is appropriate
identification and incentivization. Watermarking is the most appropriate tool to
enable seamless identification. Essentially enabling receipts for information com-
merce. It is the conduit through which the business of music will be conducted,
now and in the future.
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Abstract. Music, books and video can be distributed very cost effec-
tively over the Internet to end consumers. As bandwidth capacity is
growing and getting cheaper, the economics is so clearly on the side of
digital distribution that distribution of digital goods on the Internet will
surely happen. Digital Rights Management (DRM) technology makes
it possible to manage all the intellectual property aspects of electronic
distribution and also the exchange of value for receiving digital goods.
Thus it is a key component of any electronic marketplace for information
goods. In this paper I will point to some of the reasons that digital dis-
tribution (and thereby DRM) will be successful in a mass market; point
to some common misconceptions about DRM; argue that we have most
of the core technology for an attractive, yet still reasonably secure, DRM
system in place; and discuss how security and privacy features can and
should be implemented.

1 Business Factors for the Success of DRM

1.1 Attractive Business Models

One of the most appealing features of digital distribution is that it enables
business models for the world of information goods that are potentially very
attractive to consumers. The best example is subscription-based access to music
catalogs. Experience shows that consumers embrace flat rate services and often
prefer them to metered services (cf.[2]). Realizing flat-fee access to a complete
music catalog in the physical world would be rather difficult. Mailing physical
CDs (or having consumers pick them up in stores) seems to be cumbersome and
not cost-effective. Record companies have partnered with technology companies
to offer these novel services very soon. When these subscription-based services
are in place and widely promoted by the record industry, this will probably be
the first mass deployment of legitimate distribution of digital goods - and thereby
also of DRM technology that provides the infrastructure to make it all work.

1.2 Commitment of the Content Industry

The commitment of the major players in the content industry to make their
premium content available on the Internet is one of the most important success
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factors for digital distribution. Independently produced music or books are alone
unlikely to lead by themselves to a mass market. We have this commitment right
now at least in the music industry whereas publishing and video are still in the
early stages.

Economic issues caused the commitment of the music industry to take longer
than required by the technology. No wonder. Although subscription-based busi-
ness models promise high revenues, they are radically different from the highly
profitable ones the labels engaged in for decades, such as selling individual CDs
(and previously LPs) - and it utilizes the unknown territory of the Internet with
its piracy worries. Ironically the success of “piracy based” technology companies
such as Napster helped to force a rapid reappraisal. Firstly, Napster demon-
strated that there is a consumer demand for digital goods, once it is offered to
them in the form they liked. Secondly, Napster provided a black-market model
for digital goods, which threatens to eat into the content companies’ revenues.
Although Napster and MP3.com and their likes were tamed in court (and eventu-
ally bought out by the content industry), it became clear that the best strategy
to preempt future black markets is to offer simply a better product. We will
argue later in this article that legitimate services will actually be able to offer
much better services to consumers than pirate services. Thirdly, there is a danger
that content companies that jointly refuse to do business on the Internet could
be subject to antitrust accusations. For all these reasons the music industry has
started to embrace the new medium and other content industries are likely to
follow them soon.

1.3 The Right Price Point

To attract many consumers it is additionally crucial to find the right price point
that ensures enough revenue for the content industry while simultaneously be-
ing compelling for consumers. To date, online music products, that were offered,
have been relatively high priced (e.g., $2 per song) and have not been overly
successful. That these prices have been perceived to be too high is at least par-
tially due to the fact that buying bits has not been perceived to be as valuable
as buying disks. Once digital purchases are perceived to be as “real” and useful
as physical ones, the ability to buy individual tracks online could actually serve
the needs of consumers and may be a valuable addition to all-you-can-eat sub-
scription models. Consumers had for example complained that they needed to
buy a whole CD with 12 songs although they were only interested in 2 of them.
Bundling more and less attractive songs on a CD has been a classical strategy
of music marketing and pricing. Offering unbundled content is another indicator
that the record industry is seriously considering radical changes to their business
models. Many industry observers believe that prices will come down as the music
industry gains experience, trust and revenues from the new distribution medium.
The added efficiencies of a digital market leave room for that. In another market,
announcements by book publishers offering electronic versions of books cheaper
than physical copies should promote the adoption of digital books. Prices be-
tween $5 - $15 per month for subscription services that have been discussed in
the music space promise a successful pricing strategy.
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2 Technological Factors for the Success of DRM

2.1 Dependable Digital Rights and Portability

One important requirement for consumer acceptance is to make digital rights
dependable and rock-solid. The term “digital rights” denotes the rights a con-
sumer has to use and access specific content. This includes subscription rights,
rights to play or view individual pieces of content, rights to access content from
various devices, rights to redistribute content, etc. Why should a person pay a
few dollars for a bunch of bits, instead of a physical CD? The key is that buying
digital goods and the associated rights can be implemented so that consumers
enjoy access to the content at least as reliable and convenient as, what they have
in the physical world. We don’t really want a clunky CD, we really want what
a CD allows us to do, - and more. This includes being able to play our digital
music on the various devices we own. Thus portability of digital rights among
various platforms is important, such as PCs and consumer electronic devices, and
in the near future also wireless phones. Equally important are reliable backup
mechanisms for digital rights, as this addresses consumer fears about losing their
rights due to hardware failures or by buying a new computer.

A key technical tool for these goals of portability and recoverability of digital
rights is a “rights locker” architecture. Lockers serve as a central depository for
the digital rights a consumer has purchased. Rights, such as individual content
rights as well as subscription rights, are uploaded when a consumer purchases
them via any of multiple channels, such as web retailers and music stores. Those
centrally stored rights can be accessed and used by multiple devices. Lockers are
likely to be one of the key enablers for a seamless, interoperable world for the
consumption of content, possibly even across the platforms of various technology
providers. The ultimate challenge is to bind digital rights to a person, and not
to a (set of) device(s). Locker architectures are likely to facilitate desirable goals
for end users such as anytime, anywhere access to their content, via car, mobile
devices, cell phones, PCs or from a hotel room on another continent. Anytime,
anywhere access to all “my” content is impossible to realize in the physical world
and might well be another killer app of digital distribution. To implement this
vision the DRM client should be portable to multiple devices.

2.2 Ease of Use

Ease of use is another crucial success factor for any mass market product. Un-
fortunately usability has always been one of the major challenges in computer
security. DRM is no exception. Users typically turn off security features because
they are too cumbersome or restrictive. In a DRM environment security mea-
sures may be perceived to be even more annoying by honest users as they do
not add any benefits for them.

Ease of use has been a problem of various first-generation DRM products.
Second-generation products have user interfaces on a drag-and-drop level and
intuitive mechanisms for presenting offers of digital goods, in short mechanisms
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without a steep learning curve. Further user authentication mechanisms are re-
quired, e.g. to control access to rights stored in a locker. These authentication
mechanisms need to be simple and cheap, but still reasonably secure. This is
in fact doable. As an example, conventional password identification mechanisms
may be enough in practice to control access to rights stored in a digital rights
locker. The most significant threat to the overall system security is that users
freely share their password with many others. A simple countermeasure is to link
access to digital rights to the ability to spend money, e.g. by enabling “one-click
shopping” for more digital rights (the locker service will likely have the con-
sumer’s credit data anyway for natural business reasons). This will make users
think twice before they share their password, but doesn’t inconvenience honest
users.

For example, a key component of InterTrust’s strategy to address usability
issues is to move security measures out of the (honest) user’s face into the under-
lying infrastructure. Instead of having complicated and burdensome procedures
that need to be followed to OK the transfer of content to other devices, the
underlying infrastructure utilizes public-key certificates to determine automati-
cally and transparently whether a device is “good” for this operation. Sound risk
management is still possible at this layer by observing and monitoring whether
certain suspicious activities occur.

Furthermore users do not like to be unreasonably restricted in what they
can do. For example, it may be useful to allow users to burn CDs from their
digital music, possibly for an additional charge. This might allow average users
(possibly illegally) to redistribute physical CDs on a small scale. However this
threat needs to be balanced against the added benefit honest users enjoy by
being able to listen to their music in a car CD player and other legacy devices
that they already own, and which are not yet electronically and DRM-enabled.

Building an interoperable platform is the key to accomplish ease of use and
convenience.

3 DRM and Security

DRM has been traditionally seen as a technology to prevent consumers from
unlicensed copying and to enable metered consumption business models, such as
pay-per-play. This is far too narrow a view. The goal of DRM technology is to
enable an electronic marketplace and to maximize the utility to the total com-
munity. This requires that many consumers join such a system, i.e. that they get
something they are willing to pay for. DRM is not a restrictive but an enabling
technology. Reducing piracy is neither valuable in itself nor commercially an ul-
timate goal. It is only one of the many measures needed to enable an effective
electronic marketplace. Of course, if everything is out there for a free grab there
is no point in trying to sell anything. On the other hand, tolerating a certain
degree of piracy in a mass market is likely to be much more lucrative than a
“piracy free” market that is so secure that it is unattractive or too expensive to
join. Requiring consumers to purchase extra hardware may not be acceptable at
this time. But security will remain an important feature of DRM technology.
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From a risk-management perspective security measures should help to keep
a product commercially viable, so losses are manageable and each participant
makes a profit. What this means might differ from business model to business
model. To support a pay-per-play model, for example, it seems important to
prevent a consumer from easily capturing music from one play for “eternal”
use. To support a download-and-purchase model this threat could be much less
important, but illegal redistribution might be more of a problem. The role of
security in the success of a DRM system is often misunderstood, in particular
by experts in security and cryptography and by the content industry. This is
understandable as (many) security experts tend to focus on the technical aspects
alone. Content companies have traditionally fought mightily against piracy; it’s
their mindset. However, the goal of the share holders of a content company is not
to fight piracy, but to make money from the company’s creative assets. There is
an attitude change in the industry, shifting from requiring 100 % secure solutions
for serious deployment to looking for workable solutions. They are recognizing
that the DRM system with the greatest consumer acceptance will eventually get
the lion share of the market.

A historical analogue is that while piracy in the software market has been
publicly fought by the software industry, on the other hand it has often been
considered a valuable tool to build market share. The content distribution world
seems different. However, one could argue that the pirate service Napster made
a splash by creating a sudden demand for digitally delivered music. They hooked
millions of new users introducing them to this new technology and benefitting
the overall market. Note that typically the adoption of new technologies into
the consumer market takes about 10 years (e.g., ATM machines, fax machines,
cf. [2])

3.1 Security = Unbreakability ?

Soundness of the security model of a system certainly does not mean unbreaka-
bility. A good example is the pay TV industry, which has been constantly under
attack. Most of its protection schemes were (quickly) broken. Still pay TV is a
big, profitable business. Another example is the DeCSS case. DVD encryption
was weak and broken. So how do we evaluate the security of DVDs? A cryp-
tographer might say that it was “broken” and didn’t work. However no major
cases of piracy via DeCSS have been reported for DVDs, and major studios con-
tinue to release new DVDs. Thus a business person might well say that DVD
protection worked “sufficiently well”. The conclusion is that the soundness of a
security model from a business perspective relies on many more factors than just
its technical unbreakability.

3.2 Incentives + Security Measures = Commercially Viable System

What we are really interested in is the users’ willingness to play by the rules.
Security measures help to raise the bar preventing users from circumventing the
system. They make it more difficult and time-consuming to get around the sys-
tem rules. But the function determining users’ willingness to play by the rules
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depends on many more variables than security alone. Attractive pricing, busi-
ness models, services and ease of use are decisive factors to keep users voluntarily
within the system, i.e. they also raise the bar for any intent to circumvent the
system. Furthermore, a legitimate service can deliver incentives that a pirate
service is unlikely ever to be able to deliver. To give an example: a music dis-
tribution service may strike a deal with a wireless provider allowing subscribers
to download music to their mobile phone under very favorable terms. A pirate
service is unlikely to be able to strike such a deal. Access to music with high
quality-of-service guarantees requires a sophisticated infrastructure that pirates
can not match.

Encouraging ongoing usage (and thereby payment) of a legitimate service
like a subscription service by creating user incentives seems one of the best
“security measures” possible. A. Odlyzko weights social and business factors
and encouragement of usage as even more important than security measures
and legal protection for the successful development of an ecommerce market for
digital goods [3].

3.3 Strong Legal Protection Is Likely to Deter Large-Scale
Illegitimate Distribution

The early court rulings around Napster and MP3.com seem to show that there
is no way to run a large-scale legitimate business using copyrighted content on
the Internet without the consent of copyright holders. Large-scale commercial
pirate services (that do not claim legitimacy but try to make money from their
services) will have no smooth sailing either, as it is usually easy for law enforce-
ment to follow and shut down the money flow on the Internet. (This is certainly
true for credit-card payments, the preferred payment method on the Internet,
but even anonymous electronic cash wouldn’t solve the problems for the pirates
as only the payer remains anonymous, while the payee remains known to the
bank.) This leaves us in essence with non-commercial entities practicing unli-
censed copying and redistribution. Decentralized peer-to-peer systems such as
Gnutella or Freenet have technical problems with scalability, search capabilities,
true decentralization, bandwidth eaten up by the communication for searching
(cf., e.g., [4]) and more generally with quality of service. It is currently an open
problem whether a fully distributed P2P service can be built - although the
answer is probably yes. However even then it is hard to hide the identity of
illegitimate music servers: the same search technology that allows P2P network
participants to find content can be and has been converted into tracking tech-
nology that can be used by copyright holders to identify (the IP addresses of)
users serving unlicensed content. In the end the content industry would need to
threaten and sue end consumers or ISPs hosting illegitimate material, instead
of suing companies running central servers. One may expect this to happen, if
illegitimate distribution in such systems is an economically significant problem
for the industry. Although these legal actions alone are unlikely to give a com-
plete solution, they will be another factor driving consumers towards legitimate
services.
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It should further be noted that “piracy”, the unlicensed distribution of con-
tent à la early Napster and Gnutella is completely independent of the question
of whether or not DRM systems are secure. The CD music master is cheaply
available in an unsecure format anyway and can be uploaded to the Internet by
anybody. Although secure CD formats have been considered by the industry,
the CD is not going to go away any time soon. But even if it did, and even if
DRM systems were fully secure, still the analog music output can be captured
and be redigitized at a decent quality. Thus the problem of illegal distribution
of captured content is here to stay. However, there is currently no reason to
assume that a combination of technical, legal and business measures will not
suffice to make the majority of consumers choose a good legitimate service over
black-market services. The majority of (honest) consumers will benefit from the
threat of black markets in an indirect way. To compete with black-market mod-
els legitimate services will have to deliver the best possible quality of service at
reasonably low prices.

Protection purists might not be satisfied with this and argue for encrypted
CDs, secure speakers and watermarking, to deal with the redistribution problem.
But they may be losing sight of the market and technical realities. Firstly, se-
cure speakers may be a tough sell, and consumer electronics manufacturers will
have little incentive to build and promote these devices. Secondly, watermarking
technology is currently insecure and many researchers are pessimistic about the
prospect that this will change. But even if watermarking and fingerprinting were
safe, would audiophile consumers pay for high quality codecs of, say, Wagnerian
operas, where Isolde’s arias were depurified by a watermark? We currently don’t
know. This points again to the potential danger of introducing possibly unpopu-
lar security measures. “The surgery was successful, but the patient is dead.” The
DRM system might be secured, but its market could be killed. Security measures
always need to be carefully balanced against their potentially negative effects.
Much more real-world experience is needed before the strength of, the need for,
and consumer acceptance of these technologies can be reliably predicted.

3.4 On the Security of InterTrust’s System

In light of this discussion InterTrust makes it a top priority to provide the best
possible security measures for its DRM system, while simultaneously avoiding
inconvenience to the user. (InterTrust’s DRM system is called Rights/System.)

For this reason InterTrust favors solutions that involve end-to-end encryption
wherever possible. The content is essentially encrypted under the public key of
the receiver. In the case of leakage of an individual key only content encrypted
under this single key is compromised, a relatively small risk. InterTrust provides
an infrastructure that manages these public keys. Content (and rights) down-
loads that have been individualized to the receiver’s public keys are further very
helpful in building a sound risk management infrastructure at the back end, as
it allows monitoring for suspicious activities. For example, if one of the public
keys receives too much content without ever initiating a payment, this may raise
a red flag. Locker architectures allow for a centralized management of digital
rights. Besides adding interesting functionality to a DRM system they are also
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a valuable addition from a security perspective. They complement the security
mechanisms taken at the client side, which is certainly harder to secure. Software
tamper resistance measures help to further raise the bar for consumers trying to
circumvent such a system.

A further key idea for sound risk management is the concept of renewability
(in contrast to unbreakability) of security measures. Renewability allows system
operators to frustrate the efforts of pirates greatly, by forcing them to constantly
to break into updated systems. This forces not only an arms race on the hackers,
but also on their consumers, who have a great interest in a seamless continuation
of their (pirate) service. Well-calculated disruption of pirated service had turned
out to be a very effective measure in the pay TV industry, making many end
consumers turn their back on pirate services, and many commercial pay TV
hackers eventually gave up. If distributing hacks of effective security measures is
furthermore illegal under the DMCA, this adds a legal leg for any such system
to stand on, in addition to its technical measures.

It is essential that a DRM system should not facilitate piracy. This alone
is a good reason for the use of point-to-point encryption. Otherwise, consider
the case of a global key system, in which the global key is compromised and
distributed in hacker software. Then downloaded content, encrypted under this
global key by users running the hacker software, could masquerade as legitimate
P2P downloads of “protected” files. This makes it harder to identify piracy than
in the case where no encryption was used at all. Cleartext MP3 files of pirated
material that are posted on the Internet can at least be easily identified as such.

Security measures shouldn’t be draconian and don’t have to be unbreakable.
To be effective they should not be designed so that they have single points of
failures, allowing for complete, irreparable breaks, which would make it too easy
and convenient for consumers to use pirated software or hardware. Instead they
should limit the risks due to key compromises and equally important, they should
be renewable. In summary, appropriate security for DRM systems seems to be
achievable.

3.5 Cryptographic Techniques

Most of the research in the crypto community related to content protection
has been focused on variants of the “global-key” model, such as traitor tracing
and broadcast encryption. I call these “global-key” variants because every user
possesses a key (included in a tamper-resistant environment) that allows the
decryption of all content that has been encrypted until this time. Keys found in
pirate devices can be traced back to the leaker (at least they could in an ideal
world where we had good user authentication, which we don’t) and disabled
for decryption of future content. On the downside a compromised key in those
systems decrypts all past content, and therefore has a huge risk potential. For
distribution of content on physical media like DVDs, the broadcast model seems
to be the only feasible one. However this is no longer true in an Internet distri-
bution world, where one can support point-to-point encryption between content
servers and consumers very much as done today with SSL. The content (key) is
essentially encrypted under the public key of the receiver. End-user devices can
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also talk to each other using their public keys, enabling offline superdistribution.
Disabling bad keys can be done quite efficiently, by employing short-lived cer-
tificates. Note that point-to-point encryption achieves the goals of tracing and
revocation of keys even more easily than traitor tracing and broadcast encryp-
tion methods, without inheriting some of the risks of those global-key methods
and their limitations due to practically limited collusion bounds. E.g., the at-
tack mentioned above, in which content downloads in a “protected”, but hacked,
format masquerade as legitimate downloads or file sharing, is no longer easily
to mount. The price to pay is that the infrastructure for these keys needs to be
managed. However this seems feasible given the current state of technology, com-
puting power in small devices, and connectivity. The certificate infrastructure
that InterTrust provides is also very useful to solve the dual problem to provid-
ing security at the client side, namely making sure that a packaging application
packages only content it is authorized to package. A garage band may package
its own music but not the new Madonna CD. The certificates of misbehaving
packagers can be revoked, limiting the damage they can cause.

Point-to-point encryption offers a much finer granularity for risk management
purposes than global key methods.

4 Privacy and DRM

DRM systems have been denounced as the end of privacy for consumption of
digital goods. Technically, a DRM client can be configured to collect usage data
each time a consumer accesses content and send it off to a central server - a
potential privacy nightmare for many. On the other hand, one could argue that
DRM enables a “fair” exchange of monetary value for goods. This reduces the
economic necessity to use targeted marketing and related business models for
revenue generation. Those business models typically tend to involve immense
data collection and potential privacy invasion.

DRM could also be a technology fundamentally important for maintaining
privacy. There is no technological need for extensive data collection beyond the
need to collect certain data to be used only for the purpose of risk management,
by some party that is trusted for this task. The role of such a party is conceptually
not much different from the risk management division of a credit card company,
which most of us live with quite comfortably, assuming the information will not
be shared with others.

DRM technology can be designed to be privacy-neutral. How privacy and
DRM will play out in the end will be decided by market forces and potentially
by applicable privacy-protecting laws, not by technology. The industry is likely
to follow the “Know your customer” mantra and will wish to collect data that
promise to be commercially valuable. Privacy activists and consumers may have
other interests and will raise them. This tension is natural, and public debate
plus competition in the market will likely lead to generally acceptable solutions.

How can privacy be built into a DRM system so that it works? Unfortunately
the many beautiful cryptographic protocols that have been developed do not
help much. That these protocols tend to be computationally inefficient is one,
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but not the most important, reason for their market failure. The true reason
is that the parties running cryptographic protocols, which protect the privacy
of the inputs, have to agree up front to be willing to give up on collecting the
information that is hidden by these protocols. A powerful party Bob wanting to
learn information about Alice will simply never agree in the first place to run a
crypto protocol that protects Alice’s information from Bob. Why should he? But
once Bob agrees, not wanting to learn or misuse information about Alice, there
are practically much better solutions available than implementing complicated
cryptographic protocols. In particular, real-life privacy implications often require
that Bob learns information for some legitimate purpose anyway, such as billing,
risk management, statistics or customization. But Bob should not use it for other
purposes such as targeted marketing or share it with other parties that do not
have a need to know. In practice Bob will simply limit collection and usage of
info and possibly even agree to anonymize, pseudonymize or erase personalized
information after a certain time. That’s why it’s important for privacy protection
to have business models in place that allow Bob to not collect, or not misuse,
all this information.

A good guideline for a practically useful approach to privacy protection are
the fair information principles [1]. The cornerstones of these principles are giving
notice to consumers about data collection practices, giving consumers reasonable
choices about which data are collected about them, giving consumers access to
the information collected about them, and providing adequate security for col-
lected data. These principles underlie most privacy-friendly proposals, legislation
and privacy policies of web sites.

There is a big community demanding three things for digital distribution:
information should be free; creators should be paid; privacy should be provided.
In my view this is inconsistent. You can have any two of them, but not all three
together.

Technologically simple solutions, with a combination of laws, self regulation
and trusted third parties (that may have a business interest not to disappoint
the trust placed in them), will be the cornerstone of real life privacy protecting
solutions in DRM and many other ecommerce applications.

How can we get there? Although consumers tend to claim in research studies
that they are concerned about privacy, I am not aware of any successful privacy-
protecting solution on the Internet using sophisticated cryptographic techniques.
By “successful” I mean commercially successful or at least successful in the sense
that a lot of consumers use it (examples are electronic cash, email encryption,
anonymous web browsing). I am not aware either of an example where consumers
have been willing to pay for privacy on the Internet. On the other hand an
example of a successful “privacy-protecting” solution on the Internet is a service
such as Hotmail. Here again, privacy is based on simple pseudonymization plus
a trusted third party, not on cryptography. Another example is Yahoo which
learns a lot of information about its users from their many single-sign-on- services
(stock portfolios, calendars, email, personal ads etc.) but uses it essentially only
in depersonalized ways. Most consumers seem happy with that approach.

Those who feel privacy protection is important (like the author) should nei-
ther blame nor overestimate the role technology can play here. Both approaches
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will lead to an eventual failure of privacy. Rather we should make sure we influ-
ence the market and legislation in appropriate ways. InterTrust’s privacy strategy
focuses on providing practically useful technological means that flexibly accom-
modate whatever privacy practices the market chooses.

Another hot-button issue for DRM are the benefits that consumers have
traditionally enjoyed under copyright law such as “fair use” and the “first-sale
doctrine”, access to library archives, etc. The technical difficulty here is that, at
least in the US, (unlike in Europe) fair use is a very fuzzy notion that seems to
defy a clear technical definition useful for implementations. A further complica-
tion comes from the fact that fair use depends on the business model deployed.
What does fair use mean, e.g., for a 10 cent pay-per-play model? I expect that
many goals can nevertheless be technologically achieved. For example public li-
braries may be automatically granted certain access and usage rights. This is
another point where society, not technology, should decide how it wants to han-
dle its intellectual property assets in an electronic world. Technology will follow
accordingly.

5 Conclusion

Most of the technology needed for a functioning marketplace for digital goods
is already there or will be available shortly. Some major content providers are
ready to go ahead. The next step is to use the data from the upcoming large
scale deployments to refine, adapt, and improve the way we distribute creative
assets on the Internet so as to benefit creators, consumers and ultimately society
as a whole.
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Abstract. Applications that incorporate Digital Rights Management
(DRM) capabilities are enabled to specify, implement and manage the
rights and permissions associated with the use of intangible goods. Many
different inter-related technologies can be incorporated into DRM en-
abled applications including technology that incorporates public key
cryptography. The success of DRM enabled applications will depend on
how well the solutions satisfy requirements of the different stakeholders
involved with the production, distribution and use of intangible goods.
A key success factor is the ability of an application to provide superior
ease of use from the end user’s perspective. The success also depends on
how well the application can adapt to new technology and emerging dis-
tribution and business models. This paper describes DRM applications,
the requirements of the different stakeholders in this environment and
critical attributes of public key cryptosystems that must be considered
to ensure effective solutions.

1 Introduction

It is important to understand the requirements of stakeholders in any system
that proposes to use DRM technology to protect and manage intangible goods
(referred to as content for the remainder of this paper). Selection of appropriate
technology is critical if these applications are to be widely accepted and deployed.
The success of these applications can be a catalyst to drive entirely new business
models involving the distribution of a vast quantity of legacy content and a wide
array of emerging digital content that includes books, music, video, games and
any content that has some level of sensitivity whether due to copyrights on the
content or the nature of the content.

Public key cryptosystems (PKCS) combined with other technology can pro-
vide a strong foundation for effective DRM applications. It is important to rec-
ognize that there are several other key technologies that typically play a part
in complete DRM applications including rights languages, object identification
schemes, watermarking, fingerprinting and symmetric cryptography. However
PKCS based systems can provide essential security services including entity au-
thentication, key exchange, encryption and digital signature. Digital signature
can be used for a wide array of services including ensuring data integrity, bind-
ing of rules to content, receipts and proof of purchase. Selection of appropriate
PKCS algorithms is critical to ensure solutions that are acceptable to both con-
tent users and providers.
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2 DRM Application Stakeholder Requirements

The following subsections are not an exhaustive list of stakeholder requirements
but identify key requirements and especially those where PKCS components may
provide an optimal solution.

2.1 Content Owner Requirements

Requirements for content owners are very dependent on the value and type of
content. The solution must also in large part meet the requirements of all other
stakeholders in order to be viable. Key requirements for content owners include:

– Content protection
– End user authentication
– End user device or application authentication
– Ability to bind content to rights and optionally to a user or a user’s devices.
– End to end trusted services

Ideally content should be protected end to end, from a secure storage point
to the point at which it is rendered by the end user. In addition this protection
should be persistent, i.e., when content is on storage media, in transit and on the
rendering device. In many scenarios intermediate distribution agents or affiliates
may be required to provide secure resources for the ”last mile” protection to
the end user. The content owner may require end user authentication for the
purposes of payment authorization or identification of a user as a subscriber to
a specific service. End user device or application authentication may be required
to ensure that content is protected end to end. Customized encryption on a per
user or per device basis may also be required. In order to achieve end-to-end
trusted services it may be appropriate, depending on the specific architecture,
to authenticate other control data and software and hardware components.

2.2 End User Requirements

Key requirements for end users include:

– Ease of installation, configuration and de-installation
– Overall system responsiveness (includes client, server and any intermediate
elements)

– Simplicity of use
– Reliability
– Minimal use of resources (storage, CPU, battery)
– Portability of content across a full range of rendering applications and devices
– Access to a full range of content from all providers
– Preservation of content quality.
– Ease of content sharing within authorized domains.

Ease of use is arguably the most critical requirement that a DRM application
must meet. If an application is simple to install and use and can deliver content
effectively it is a good candidate for market acceptance. If the application can
meet the security requirements of content providers yet do so in a way that is
transparent to the end user, then there is an improved likelihood that it will be
accepted by a broad range of content providers.
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2.3 Client Application and Device Providers

Key requirements for providers of client side applications and devices include:

– Ability to meet customer expectations
– Ability to meet content owner requirements
– Minimal consumption of resources, especially battery consumption, on con-
strained devices

– Total cost of goods, e.g. minimizes or eliminates requirements for special co-
processors

– Provides a platform with flexibility for future applications
– Flexible infrastructure to support a wide range of devices and content

An increasing array of wired and wireless client side devices are becoming
available that can render content. Ease of use and performance are critical fea-
tures that must be incorporated into these products. It is critical that DRM
solutions provide effective security that is transparent to the user, provides flexi-
bility for future applications and minimizes resource consumption. In the device
space the solutions must also be cost effective given the competitive nature of
this business.

2.4 Infrastructure Providers

Key requirements for content distribution infrastructure providers include:

– Ability to meet content owner requirements
– Interoperability with the broadest range of current and anticipated client
side applications and devices.

– Ability to cost effectively scale up to meet peak demands.
– Ability to provide support for client side digital signature and validation for
receipting, proof of purchase and other applications.

– Flexibility to support multiple protocols and changing business models and
relationships.

– Ability to offer customized encryption services on a per user or per device
basis.

Few DRM applications have been truly tested under heavy loads. It is imper-
ative that infrastructure providers characterize these loads and anticipate sup-
port for more robust security protocols and secure interoperability with a more
demanding range of wired and wireless end user devices and other application
servers. New services that include transaction and field level authentication and
encryption operations will increase the load on infrastructure servers. The ability
of infrastructure providers to be able to adapt to new security paradigms will,
in part, determine their ability to offer new trusted services to their customers.
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3 Applicability of Public Key Cryptosystems

Public key cryptosystems have ideal attributes to meet key requirements of stake-
holders in DRM applications. However selection of appropriate algorithms should
be made considering a range of factors including the ability to:

– meet server side scalability requirements supporting mutual authentication
protocols, transaction level security and field level security.

– be ported to a full range of current and anticipated end user platforms and
infrastructure components (e.g. identity tokens and constrained consumer
electronic devices and appliances)

– be cost effectively implemented on a broad range of end user platforms
– support DRM applications and provide the flexibility to meet security re-
quirements of other end user platform applications (current or planned)

– meet end user ease of use requirements yet provide the option for support
of complete security protocols (e.g. client side authentication) and tailorable
transaction and field level security.

– meet full security requirements under the constraints and limitations im-
posed by the device and communications infrastructure.

RSA, ECC, and NTRU PKCS based solutions each have differing perfor-
mance and size characteristics depending on the specific server and client plat-
forms, security protocols, other DRM complementary technology and infrastruc-
ture components. Selection of an appropriate algorithm depends on a critical
evaluation of the complete system under peak loads while anticipating future
growth and flexibility to support new applications and services. Bandwidth will
continue to grow as will client side processing and resource availability. How-
ever, client side applications on low powered processors will continue to grow in
size and resource consumption. It is critically important to provide fully secure
implementations with minimal resource consumption thus maximizing resource
availability for revenue generating applications.

4 Acceptance of DRM Applications

More and more content is being made available electronically via an increasingly
diverse set of consuming end clients, distribution methods and business models.
Some business models requiring minimal DRM, like fees on media or honor sys-
tem type solutions, may gain acceptance but there will always be a significant
and ever expanding volume of valuable and/or sensitive content that will require
DRM. Public key cryptographic technology can play a critical role in ensuring
that DRM applications meet the essential requirements of all stakeholders. If
architected properly, DRM applications can provide content distribution mech-
anisms that are flexible, scalable and secure. Appropriate selection of public key
algorithms will in large part determine the success of these applications and their
ability to evolve to meet current and future business requirements.
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1 Introduction

The Internet is changing the way companies do business. News agencies such
as the New York Times and CNN publish volumes of online articles daily. The
ACM Digital Library sells online access to thousands of journal articles and
conference proceedings; and the U.S. Patent Office sells copies of patents online.
Sony and Seagram have recently announced that they will distribute music from
their websites on a subscription basis. And software companies are beginning to
rent and sell software over the Internet.

The Internet is clearly becoming one of the preferred methods for all forms of
electronic content distribution: documents, music, images, videos, and software.
Unfortunately, without some form of copy-protection, content distributed online
could be bought once and then illegally redistributed ad infinitum. Under cer-
tain business models, such unrestricted redistribution could pose a threat to the
financial stability of companies that depend on Internet content sales for their
survival.

The protection against and prevention of illegal copying and redistribution of
electronic content is called copy-protection. In general, copy-protection schemes
are not perfect. That is, in general, no copy-protection mechanism will prevent
a determined attacker with unlimited resources from making and distributing
illegal copies of copy-protected data. A fundamental goal (and the goal we wish
to discuss in this article) is to design copy-protection schemes that minimize the
illegal copying and redistribution of copy-protected content.

The copy-protection problem is compounded when one tries to protect a
large collection of titles using a single copy-protection technique. For example,
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the Privilege Management Infrastructure (PMI) described in [AZ00] is suscep-
tible to a generic attack — an attack that, once found, could be used to un-
copy-protect everything distributed through that PMI. The presence of generic
attacks on copy-protection mechanisms can be devastating. Consider, for exam-
ple, a company that rents ten thousand different software packages online. If a
cracker can figure out a generic attack against the copy-protection scheme used,
then the cracker could, with very little effort, automate the removal of the soft-
ware protection mechanism from all ten thousand packages and distribute those
packages (or the automated tools that performs the generic attack) from his or
her pirate website.

This article considers a strategy one could use when copy-protecting a large
collection of electronic content. That is, this article considers techniques that are
resistant to the generic attack described above. The proposed solution is one of
risk management. It is a heuristic solution that involves increasing an attacker’s
work-factor while maintaining an acceptable cost for the content distributor.

The remainder of this article is organized as follows. This article opens with
a discussion of terminology (Section 2) and a summary of the Adams and Zuc-
cherato PMI proposal [AZ00] (Section 3). The notion of a generic attack is then
further developed in Section 4.

Section 5 introduces a PMI variant for protecting dynamic content (such as
software) and Section 6 shows how to modify the dynamic content PMI variant
so that it is less susceptible to a generic attack (with certain caveats that will
be discussed later). The discussion in Section 6 centers around the notion of risk
management. The article closes in Section 7 with a summary of results.

2 Terminology

The term content refers to any form of digital information that has value (to some
here unspecified entity). Typical forms of content include electronic documents,
music, images, videos, and executable code.

A set of digital information is dynamic content if that content executes and
if it is the execution of that content that has value. More generally, dynamic
content is content whose output or appearance varies depending on input. A
CAD program or a computer game are examples of dynamic content. A set of
digital information is static content if that information has value when some
(typically external) application executes on it and if each execution produces
the same output. Examples of static content include images, music, and videos.
For dynamic content, one tries to copy-protect the functionality of that content;
for static content, one tries to copy-protect the data itself.

The term title refers to a specific piece of electronic content. The game
“game.exe” (and associated data files), the image “picture.jpg,” and the song
“music.mp3” are all titles. Note that any given title may contain both static and
dynamic portions.

The term copy-protection refers to any technique, protocol, or scheme de-
signed to protect electronic content from illegal copying and redistribution. Any

game.exe
picture.jpg
music.mp3
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digital content that has had a copy-protection technique applied to it is consid-
ered copy-protected.

Copy-protection techniques may be technical in nature (e.g., use proprietary
hardware or cryptography to prevent unauthorized copying), non-technical in
nature (e.g., penalize violators with heavy fines and jail time), or both.

3 Privilege Management Infrastructure (PMI)

In [AZ00] Adams and Zuccherato propose a Privilege Management Infrastructure
(PMI) designed to prevent attackers from illegally copying and redistributing
protected electronic content. The technique proposed in [AZ00] is similar to an
approach mentioned (though later discounted) in [DLN96, 491].

The PMI for Internet content distribution works as follows. Suppose a com-
pany wishes to sell PDF documents online. That company wants users that
purchase those documents to be able to view them but also wants users that do
not purchase those documents to not be able to view them. That is, if a user
purchases a document and then gives that document to a friend, that friend
should not be able to view that document.

PMIs are structured after Public Key Infrastructures (PKIs) and consist of
a root attribute authority. See Figures 1 and 2. The attribute authority signs
attribute certificates. Attribute certificates bind customer identities with certain
content access rights or privileges. In the tradition of [WC87], a user’s access
privilege list for a given title is called his or her right-to-execute (RTE). The
RTE may specify unlimited usage (such as in the purchase of a title) or limited-
time usage (such as in the rental of a title). The attribute certificate may also
contain additional information about the purchased title.

The PMI also consists of a PMI-enabled PDF viewer. Embedded in the PDF
viewer is the public key of the root attribute authority. The PDF viewer uses
this public key to verify the authenticity of a user’s attribute certificate. The
PDF viewer also has a copy of a root certificate authority’s public key (to verify
the identity of the user) and an embedded master symmetric encryption key.

Attribute Authority PDF Viewer User

AA private key AA public key
Master symmetric key Master symmetric key

Customer symmetric key Customer symmetric key
Title symmetric key Title symmetric key

Fig. 1. PMI-related keys known to the Attribute Authority (content distributor),
the PDF Viewer, and the user. A purchased title is encrypted under its title
symmetric key. The italicized keys are not stored in the PDF Viewer but are
known to the Viewer when it decrypts a title
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Attribute Certificate Contents
User identity information (PKI certificate)
User right-to-execute (RTE)
Doubly-encrypted title symmetric key

Fig. 2. Attribute certificate contents. The title symmetric key is encrypted first
under the master symmetric key and then under the user symmetric key

The protocol for purchasing a PDF document is as follows. The purchaser
and the content provider first establish a private, authenticated communications
channel. The purchaser then purchases a title (using some standard e-commerce
system) and provides the content provider with a customer symmetric key. The
content provider encrypts the title with the title symmetric key and then en-
crypts the title symmetric key first with the master symmetric key and then with
the customer symmetric key.1 The content provider (as an attribute authority)
creates an attribute certificate for the customer containing the customer’s iden-
tity, the doubly-encrypted title symmetric key, and the customer’s RTE.

The content provider then sends the user the encrypted title and the attribute
certificate. The user authenticates with the PDF viewer and presents the PDF
viewer with the attribute certificate and customer symmetric key. After verifying
the user’s identity, the signature on the attribute certificate, and the privileges
specified in the RTE, the PDF viewer decrypts and displays the purchased PDF
document.

As with PKIs, PMIs are designed to allow delegation. That is, the root at-
tribute authority can delegate certain rights to other companies or organizations.
In the PDF example above, the creator of the PDF viewer would be the root
attribute authority and could delegate attribute certificate creation rights to
various online magazine publishers.

3.1 PMI Observations

Because later sections of this article build on the PMI, it is important to first
consider some of the PMI’s limitations and features:

PMIs Versus PKIs. Although PMIs are modeled after PKIs, it is important
to note that the trust relationship in PMIs is fundamentally different than the
trust relationship in PKIs. In a PKI, when a user or application fails to verify
a certificate authorities signature on a certificate, it is usually the user that
suffers. In the global content PMI, however, when the PDF viewer fails to verify
an attribute authorities signature on a certificate, it is the content provider that
suffers. This means that if the PMI PDF viewer is under a user’s control and if
1 The encryption of the title with the title symmetric key and the encryption of the

title symmetric key with the master symmetric key could both be performed in a
precomputation phase.
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the user forces the PDF viewer to ignore the signature on attribute certificates,
the user could trick the PDF viewer into displaying documents he or she should
not be allowed to view.

Execution Environment. A more general observation is that an attacker with
control over the execution environment of a copy-protection scheme will, with
enough effort, be able to circumvent that scheme. This observation serves as
the basis for our discussions beginning in Section 4 as well as for several secure
coprocessor-based copy-protection schemes.

Malicious Distributors. The PMI is vulnerable to a protocol-level attack. In
particular, allowing delegation opens the PMI to attacks from malicious distribu-
tors. Consider, for example, a malicious distributor of PDF documents. Because
the PDF viewer has one embedded master symmetric key (i.e., the embedded
key does not vary depending on the distributor), a malicious distributor could
create valid attribute certificates for a competitor’s documents. Although such
a distributor might quickly be caught, the potential for “illegitimate” attribute
certificates may be a problem in some scenarios.

Identities and Anonymity. Attribute certificates bind user identities (typi-
cally PKI certificates) with access rights. A user must have knowledge of the as-
sociated private key in order to authenticate with the PMI-enabled PDF viewer.
The PMI therefore enforces copy-protection through the “threat of discovery.”
In particular, one way for a user to illegally distribute protected PDF documents
is to distribute his or her attribute certificates along with his or her PKI pri-
vate key. However, in an ideal world (where certificate authorities validate users’
identities before issuing certificates), users will be ill-advised to distribute their
identities and private keys.

The use of identities to enforce copy-protection, however, makes anonymity
difficult. The PMI may therefore be unsuitable for distributing fringe content or
other forms of content with which users may not want their identities associated.

Doubly-Encrypted Content Key. Encrypting the content symmetric keys
first by the PDF viewer’s master symmetric key and then by the customer-
chosen symmetric key does not appear to significantly increase the security of
the PMI against theft of content by legitimate users. In particular, the customer
symmetric key is superficial; because a user (or attacker) chooses the customer
symmetric key, that user could easily strip off the outer encryption of the con-
tent symmetric key. The double encryption does, however, appear to aid in the
protection of titles against theft by third parties that have learned the master
key but do not know any customer symmetric keys.
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4 The Generic Attack

As pointed out in the introduction, generic attacks on copy-protection schemes
can be devastating. A generic attack is an attack on a copy-protection mechanism
that, once discovered, can circumvent the copy-protection of any title protected
by that copy-protection scheme. Consider the PDF PMI described in Section 3.
A potential generic attack on the PDF PMI might simply consist of an attacker
reverse engineering the legitimate PMI-enabled PDF viewer in order to extract
the master key. The attacker could then write a PDF PMI extraction program
that, given a protected PDF document and a legitimate attribute certificate,
decrypts and saves an unprotected version of the PDF document.

If the cracker posts this generic crack to some website (e.g., [Roo00]), then
anyone (including normal, non-cracker users) could unprotect and redistribute
any title purchased through the PDF PMI. Although [AZ00] observes that a
sophisticated user could circumvent the PMI copy-protection scheme, the as-
sumption in [AZ00] is that the sophisticated user would do so only for his or her
own purposes; [AZ00] does not address the presence and significance of a generic
attack.

5 A Dynamic Content PMI

We now focus on copy-protecting dynamic content and, in particular, software.
In this section we describe a dynamic content PMI in which protected titles
themselves authenticate users and check for appropriate attribute certificates
(in contrast to the PMI-enabled PDF viewer of Section 3). As with the original
PMI in Section 3, part of the security of the dynamic content PMI rests in an
attacker’s inability to reverse engineer and tamper with executable code.

In Section 6 we discuss how to convert the dynamic content PMI into an
approach resistant to the generic attack.

Preliminaries. Let P refer to a dynamic content publisher and attribute au-
thority. Let A refer to a legitimate user that wishes to purchase a title and
let T refer to the software title the user wishes to purchase. Let L refer to an
executable module that wraps and decrypts T . Let KT refer to the the title’s
symmetric key, let KA refer to A’s symmetric key, and let KL refer to the key
embedded in the loader L.

Let IA representA’s identity with respect to some PKI and let RA,T represent
A’s access privileges (RTE) with respect to title T . In addition to decrypting
and running the content T , the loader L is responsible for authenticating the
user and checking the user’s attribute certificate for the appropriate RTE.

The Purchase Protocol. The dynamic content PMI distribution algorithm
proceeds as follows. In the precomputation stage, P selects a randomly dis-
tributed key KT and then encrypts the content T using the title key KT . The
encrypted title is then bundled with a loader L to create an executable T ′.
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After performing the necessary e-commerce transactions to purchase a title
T , A and P establish a private, mutually authenticated channel. A then sends
P his or her identity information IA and symmetric key KA.

P doubly-encrypts the title keyKT first with the loader keyKL and then with
the user key KA. P then creates and signs an attribute certificate X composed
of IA, RA,T , and the doubly-encrypted key KT . P sends this attribute certificate
to A.

Playing the Purchased Title. To play the purchased title, the user runs T ′

with inputX andKA. After T ′ verifies P ’s signature onX , the user authenticates
with T ′ using his or her private key. T ′ then decrypts and runs the original title
T with the permissions specified in the RTE RA,T .

Incorporating the Loader L with the Title T . The above description
assumes that the software distributor P retrofits titles T with loaders L in order
to produce protected titles T ′. Such retrofitting is primarily applicable when P
is a third party distributor not involved with the development of T . A better
solution, however, would be to intersperse access checks and other protection
mechanisms throughout T .

Attacks on Self-Decrypting Executables. As with any cryptographic
system, one should not confuse privacy (and encryption) with authenticity. A
user of the dynamic content PMI should therefore be cautioned that unless he
or she receives a “protected” software title T ′ through a mutually authenticated
channel (as described in The Purchase Protocol above), the executable T ′ may
contain trojan, virus, or other malicious code and should not be trusted. This
problem is common to all self-decrypting executables.

Platform Dependence. One of the advantages of the original global content
PMI [AZ00] is that it was designed to allow customers to access purchased con-
tent on any appropriate device. It is therefore prudent to note that, because
both the dynamic content itself and the loader may be platform dependent, the
dynamic content PMI may be platform dependent. This observations remains
true even when the dynamic content PMI is used to protect static content (Sec-
tion 5.1) unless the loader is written in a platform independent manner.

5.1 The Dynamic Content PMI with Static Content

This section shows how to adapt the dynamic content PMI for use with static
content. There are several caveats to this approach. For example, this approach
will increase the bandwidth requirements for static content distribution. Chang-
ing static content into executable content could also create another channel for
the distribution of viral or malicious code. Additional caveats will be discussed
in Section 6.3.

The general technique is to bundle the static content with a viewer V in
much the same way that an executable T is bundled with a loader L in the above
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dynamic content protocol. For example, to copy-protect digital images, a content
provider could wrap each image in a Java applet that checks for an appropriate
attribute certificate before decrypting and rendering a picture. This technique
is very similar to a technique proposed by Petitcolas, Anderson, and Kuhn to
defeat web-crawling watermark detectors [PAK99, 1071]. Although there are
obvious flaws with this approach, static content distributed this way is no more
susceptible to illegal redistribution than unprotected static content.

Section 6.3 raises additional concerns with using the dynamic content PMI
to protect static content (and presents additional motivation for distinguishing
between the protection of static content and dynamic content).

6 Risk Management and Per-Title Copy-Protection

The copy-protection problem in an insecure environment exemplifies the fact
that there are seldom absolutes in computer security: The question is not whether
the dynamic content PMI in Section 5 is secure — the question is how secure the
dynamic content PMI is and how much work must an attacker exert to break it.

While one could certainly modify the dynamic content PMI for use with se-
cure coprocessors (such that only trusted coprocessors could decrypt and execute
critical portions of the protected title), we shall restrict ourselves to software-
only copy-protection.2

6.1 Risk Management

As with the standard PMI (Section 3), the dynamic content PMI in Section 5
is susceptible to a generic attack. To paraphrase Section 4, a generic attack
against a copy-protection scheme is extremely devastating because an attacker
could use the attack to break any title protected by the copy-protection scheme.
For example, suppose an attacker creates a generic attack tool that, given a
protected title T ′ and an attribute certificate X , creates an executable title T ′′

functionally equivalent to the original, un-protected title T . The attacker could
then use the generic attack tool to un-protect any title distributed through the
dynamic content PMI.

Obviously, the content distributor would prefer for none of the titles it dis-
tributes to be attacked. However, as noted above, the question is not whether
an attacker could circumvent the copy-protection mechanism, but how much
work an attacker would have to exert in order to do so. In order to justify that
work, the attack must be highly profitable for the attacker. This leads to the

2 As secure coprocessors become more prevalent, a secure coprocessor PMI may be-
come a more viable solution (in addition to other secure coprocessor-based schemes;
e.g., [PSS82,WC87,HP87,YT95,GO96]). However, if the coprocessors used in a copy
protection scheme are vulnerable to tampering attacks or side-channel analysis, then
the secure coprocessors become insecure processors and the strategy discussed in this
section can be used to increase the security of the protection mechanism.
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notion of a work-factor, or the ratio of the effort an attacker must exert in rela-
tion to the resulting profit or yield. The higher the work-factor, the better the
copy-protection mechanism.

For example, a professional pirate might be justified in spending a solid month
to create a generic attack that could be used to un-copy-protect a thousand
titles valued at a hundred U.S. dollars each. The work-factor in this scenario is
very low. The same pirate would be hard-pressed to justify spending the same
amount of time to break a copy-protection mechanism that is only used with one
(or perhaps even a few) similarly priced titles because the work-factor would be
much greater.

To compliment the desire to maximize an attacker’s work-factor, the pro-
posed solution must be efficient for the content distributor. This means that the
content distributor should not have to exert a large amount of extra work in
order to increase an attacker’s work-factor. The appropriate balance between
the advantage gained by increasing an attacker’s work-factor with the amount
of extra work a content distributor must perform will depend on the content
distributor’s business model and the value of the protected content.

The solution proposed in this paper is one of per-title copy-protection —
protecting each title in a slightly different way. This could have three results:
(1) the attacker would have to exert much more time and effort to break all
the titles distributed by the content provider, (2) the attacker would become
discouraged during the process of breaking individual titles and give up, or (3)
the attacker would realize the futility in attacking the system. Obviously (2) and
(3) are the preferred results. But even if a protection mechanism only succeeds
in (1), that protection mechanism is still useful — it successfully increased the
copy-protection afforded each title.

6.2 Per-Title Copy-Protection

Before proposing a method for per-title copy-protection, let us consider the ways
an attacker might break the copy-protection of a dynamic content PMI-protected
title T ′. The attacker could exhaustively search the symmetric key KT or KL,
the attacker could find an attack against the algorithm used to encrypt the title,
or the attacker could obtain the content distributor’s attribute authority private
key. Most likely, however, the attacker would break the copy-protection mech-
anism through reverse engineering T ′. For example, the attacker could defeat
the copy-protection mechanism by changing T ′ so that it no longer attempts
to verify the attribute authority’s signature on a user’s attribute certificate. An
attacker could also defeat the protection mechanism by reverse engineering T ′

in order to obtain KL.
The point of the above paragraph is not to present a complete taxonomy

of attacks against protected titles, but rather to illustrate that most practical
attacks will involve the attacker stepping through, understanding, and/or mod-
ifying the execution of T ′.

The solution proposed here consists of randomized, per-title obfuscation and
software tamper resistance [CTL97,MMO97]. According to [CTL97], “code ob-
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fuscation is currently the most viable method for preventing reverse engineering.”
By applying potent and highly resilient obfuscation techniques (see [CTL97]) to
each title, the content provider would force an attacker to exert work when
breaking each title. This results in an increase in the attacker’s work-factor and,
consequently, an increase in the security of the copy-protection scheme. A similar
approach can be found in [MC98].

In addition to obfuscation, a content distributor could employ other per-title
access checks or protection mechanisms. Randomized code obfuscation has an
advantage over these additional protection mechanism because code obfuscation
is automateable and therefore efficient for content distributors to apply. If the
value of the protected title is high, however, the content distributor may be justi-
fied in implementing additional, title-specific access checks throughout different
components of the title.

Unfortunately, the resulting per-title scheme may still be vulnerable to at-
tacks on a per-title basis. Furthermore, because of potential commonality be-
tween protected titles (especially with respect to the transition between the
PMI access checks and the execution of the title itself), the per-title protection
mechanism above does not preclude the existence of more sophisticated generic
attacks. However, if the obfuscation techniques used are highly resilient, creating
such a generic attack may be exceedingly difficult and would be of independent
interest.

6.3 The Dynamic Content PMI with Static Content (Revisited)

Although the dynamic content PMI is, by definition, designed to protect dynamic
content (such as software), Section 5.1 showed that the dynamic content PMI
could also be used to protect static content (such as documents, images, and
videos). There are, however, some fundamental differences between static and
dynamic content that make the per-title dynamic content PMI more suitable for
dynamic content than static content.

The biggest problems with using the dynamic content PMI (and similar)
techniques to protect static content is that the PMI protection mechanism has
no control over what happens to static content after the content is displayed to
the end user. This leads to an exploitable disassociation between the protection
mechanism (the loader) and the protected content — an attacker might attack
the dynamic content PMI (for static content) by stealing the content after the
loader verifies the user’s attribute certificate and presents the title (rather than
by attacking the loader itself). This disassociation remains even if the protection
mechanism checks for permission periodically throughout the play or rendering
of the static content.

To further develop this notion, first observe that because static content must
eventually be displayed to the end user in order to have value, an attacker able to
intercept that display channel will be able to copy that data (at a potential loss
in quality). Second and more importantly because static content does not vary
between views, an attacker able to steal a copy of one view of a static title will
have obtained all the value of that title. This is compared to stealing a “trace”
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of a single execution of some dynamic content such as a game — after the game
is played, the trace has very little value.

The proposed dynamic content solution attempts to “glue” together (on a
per-title basis) the functionality (value) of dynamic content with the protection
mechanism. Additional security (perhaps at additional developer expense) could
be obtained by permeating a variety of protection mechanisms throughout each
component (and hence the execution) of a title.

7 Conclusions

This article addresses a problem with copy-protecting a collection of electronic
content. Software-based copy-protection of electronic content in an attacker-
controlled environment is adequate at best. An attacker can capture static con-
tent (e.g., images, music, and videos) as the content passes between some decod-
ing device and an end user. And an attacker can disassemble dynamic content
(e.g., software) and remove the content’s copy-protection mechanism. Assuming
that all software-based copy-protection mechanism are breakable given enough
effort, this article presents a strategy to reduce a content provider’s risk of con-
tent piracy.

This article begins with a discussion of Adams and Zuccherato’s Privilege
Management Infrastructure (PMI) [AZ00] (Section 3). Several attacks against
the PMI are discussed and, in particular, Section 4 presents a generic attack
against the PMI. A generic attack is an attack against a copy-protection sys-
tem that, once found, can be used to break the copy-protection of all content
protected through that system.

Sections 5 and 6 show how to modify the PMI so that it is less vulnerable to
a generic attack. Although developed in the context of Adams and Zuccherato’s
PMI, the general principle of per-title copy-protection presented in Section 6 can
be used in conjunction with other copy-protection schemes.

Although the solution presented here may be disheartening to those who
prefer provably secure protocols, this article argues that because content copy-
protection in attacker-controlled environments (e.g., without secure hardware)
may be an unsolvable problem, any cost-effective (e.g., efficient to apply; not
inordinately complex) increase in security is advantageous. This is analogous
to the state of the art in watermarking (as described in [CT98]) where the
philosophy is to provide as many layers of protection as possible in order to
prevent all but the most dedicated attacker.
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Abstract. The technological challenges of securing networks are great,
as recently witnessed in widespread denial of service and virus attacks.
The human reaction to these attacks may be either a loss of trust or
a willingness to tolerate increasing risk having weathered one assault.
Examining human and computer interaction with a focus on evalua-
tions, the human response to loss of trust is a key part of the search
for more secure networks. The success of current efforts to design ap-
propriate security mechanisms depends as much on an understanding of
human extensions of trust to computers as it does on an understanding
of underlying mathematics. However, the former has not been sufficiently
examined.
In this work we survey the findings in social psychology and philosophy
with respect to trust. We introduce three hypotheses that remain unan-
swered with respect to the manner in which humans react to computers.
We discuss potential design revisions in light of findings from other disci-
plines. Then we conclude by noting that research which empowers users
to be their own security manager may be based on a fundamentally flawed
view of human- computer interaction. We close by encouraging designers
of computer security systems to examine the humans, which these sys-
tems are intended to empower, and recommend that any security system
be built on the basis of understanding of human trust provided by the
social sciences.

1 Introduction

Although there has been progress in the quest to build more secure and trust-
worthy systems, regular news of intrusions, breaches, and rogue attacks serve
as reminders that there is a great deal more to be done. Experts focus on the
considerable technological challenges of securing networks, designing strategies,
building mechanisms, and devising policies. Although these efforts are essential,
the study of trust and security would be even better served if designs more sys-
tematically addressed the sometimes irrational people and institutions who are
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critical components of networked information systems. Accordingly, efforts at
securing these systems should involve not only attention to machines, networks,
protocols, and policies, but also a systematic understanding of how the social
agents (individuals and institutions) participate in and contribute to the security
and trust of networks.

This is not to imply that technical work in security ignores the role of people
and institutions in networks and network security. Rather, good network security
requires a more systematic account of the ways people feature into network
security in addition to the technical perspectives previously incorporated. The
goal of our paper is to offer a way in which to begin to address the ubiquity
of human engineering by understanding how current security systems may be
built on hypotheses of human action which are not sustainable. Certainly this
has been recognized with respect to the fact that humans are unreliable sources
of random information.

We examine the study of trust from social and philosophical perspectives.
This leads to identification of implicit assumptions about the ways people be-
have, trust, and conceptualize security. We show that these assumptions conflict
with results and arguments found in theoretical and empirical work in philosophy
and social science.

The Variable of Trust

We develop three hypotheses where technology and social science seem to be
on a collision course. However, each of these hypotheses at its core points to a
common point of collision: technologists often assume that humans are attentive,
discerning, and ever-learning. Philosophy argues that humans are simplifiers,
and this implies that humans will use trust of machines to simplify an ever more
complex world. Social science argues that humans may slowly lower barriers
against trust, rather than refining them.

To be specific, theories relating social capital and trust predict that, if com-
puters are perceived as elements of a single undifferentiated network, then trust
in computers will increase as computing experience increases. If these theories of
human behavior are applicable to computer/human interaction then computer
security mechanisms must be built with the assumption that individuals will be
too likely to trust untrustworthy machines, and that this risk-taking behavior
will increase over time.

Conversely, in computer science there has been an implicit assumption that
humans learn to manage their own network security as individuals. If humans do
learn to differentiate between servers then increased experience on the network
will correlate with a greater ability to distinguish trustworthy and untrustworthy
machines. Mechanisms from content selection (e.g. PICS), and privacy calcula-
tions (e.g. P3P), to public key systems (e.g. PGP) require that humans learn to
manage trust on a machine-by-machine or transaction-by-transaction basis.

If the view of the social sciences is correct then the autonomy provided to
users in an end-to-end network may in fact undermine the autonomy of a naive
user, rather than enhance it, through exposing the user to risk which the naive
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user cannot reasonably be expected to manage. A user who cannot secure his or
her machine from malicious code and malevolent crackers cannot be said to be
autonomous.

Research has found that interface design (e.g. Kiesler, Sproull, and Waters,
1996), group affiliation ( e.g. Dawes, McTavish, and Shaklee, 1977) and commu-
nication (e.g. Kerr and Kaufman-Gilliland, 1994) influence the extension of trust.
While these studies focus on the effect of computer mediation on the extension
of trust, they do not address the issue of the trustworthiness of the underly-
ing computer technology with which individuals interact. The rapid advance of
computer performance and connectivity means that individuals are often inter-
acting with and depending on more computer systems, with a greater diversity
in computer hardware and computer software. In addition the owners of these
machines are increasingly diverse as the Internet is adopted for business across
the globe and across the demographic range of industrialized nations.

As computer systems become more integral to individual action, social inter-
action, and commerce, the study of trust must extend to explain how individuals
extend trust to computers and computer systems. Since the early work on com-
puter mediated trust, human/computer interaction has become extremely com-
mon. Bloom (1998) proposes that the human willingness to expose information
to a computer will usher in a new age of social science, in which data accuracy
is ever increasing, as computers become ubiquitous. As computer use becomes
more widespread and computer users more sophisticated, human willingness to
divulge information may suggest an overall increase in users’ trusting behavior
regarding computer mediated interaction. Such observed behavior may indicate
a decreased ability to distinguish between various machines and thus suggests
that computer security policies and mechanisms which require active learning
on the part of users may prove to be inadequate.

In contrast, other research suggests people now have large and increasing con-
cerns with privacy and security in information technology (e.g. Wacker, 1995;
Walden, 1995; Hoffman and Clark 1991; Compaine, 1988; Computer Science and
Telecommunications Board, 1994). Examinations of computer systems show that
security protections are inadequate (Office of Technology Assessment, 1985; Of-
fice of Technology Assessment, 1986; National Research Council, 1996). Profes-
sionals in computer science, law and business (e.g. Wacker, 1995; Walden, 1995;
Anderson, Johnson, Gotterbarn, and Perrolle, 1993; United States Council for
International Business, 1993) point to privacy and security as the stumbling
blocks of electronic commerce.

Privacy and security concerns reflect a growing unwillingness to expose infor-
mation to computers, and suggest greater discernment on the part of users called
on to trust the machines which increasingly dominate transactions in daily life.
The emergence of electronic commerce and public key-based encryption systems
increases the need for computer security and appropriate evaluation of computer
trustworthiness. Public key cryptography uses certificates to link (usually) a
person, an electronic key and some attributes. With public key infrastructures
individual computer users are expected to become security managers. The de-
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sign decision is based on the assumption that users are increasingly discerning of
distinct machines. Yet this core assumption remains unexamined, as technolo-
gies that require users to select which individual public keys, key hierarchies and
computer systems to trust proliferate. In designing public key infrastructures for
the mass market, it is critical to understand the direction and nature of indi-
vidual user’s approach to computers with respect to trust. The implications of
previous studies suggest that beliefs commonly implemented in computer secu-
rity systems should perhaps be reversed – for example, the interface should be
purposefully less attractive to avoid lulling users into potentially inappropriate
high trust behavior. Understanding how the trust that computers engender will
evolve over time is critical to the appropriate evolution of security mechanisms.

2 The Internet as Self-Organizing

In order to argue that social theory results should have a significant impact
on the design of security systems we consider the definition of trust that social
theory provides. Axelrod (1984) poses the question, ”Under what conditions
will cooperation emerge in a world of egoists without central authority?” (p.3).
His results suggest that the willingness to extend trust initially and to display
forgiveness at some point after a defection are important to the maintenance
of a cooperative social group. We argue that the Internet illustrates trust as
exhibited by the self-organization of egoists who choose to extend trust in order
to connect. The Internet has central authority with respect to the assignment
of domain names and Internet protocol addresses. However, there is no central
authority to govern the daily interactions on the Internet.

We argue that the emergence of connectivity and ordered communication
illustrates the applicability of the social theory studies to the Internet and in
particular to the design of security systems. On at least three levels, trust is
necessary and extant on the Internet. First, at the nuts and bolts level of the
router system, users must explicitly and implicitly trust that each link of the
underlying technology of the Internet will behave as expected. Second, users must
trust that other people will behave in ways that uphold the community norms in
the absence of central authority enforcing norms. Finally, users must trust that
institutions - such as Internet businesses - will conduct themselves in ways that
are conducive to productive ongoing transactions. Trusting the nuts and bolts
level, means trusting the underlying infrastructure of the Internet, which in turn
is made up of the collaborative effort of several computers connected together. A
router that must be maintained by individuals at the site controls each top-level
domain.

Any single router can seriously impede the functioning of the Internet. (For
example, a router on the East Coast once decided it was in Berkeley and be-
came a black hole for what would otherwise have been smoothly-flowing traffic.)
Changing a single parameter in a single router table can cause significant damage
to network traffic. At the level of infrastructure, the integrity of the Internet can
be compromised through individual error or guile. That it is rarely so compro-
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mised underscores the high level of collaboration and mutual trust underlying
the Internet’s functioning. The TCP SYN flooding attack was an open secret on
the Internet for many years. Anyone who knew TCP could have implemented
the attack, but for more than a decade no one did.

The picture is similarly challenging in the case of trusting the people of the
Internet. For example, every USENET newsgroup is self-governing and therefore
vulnerable to the bad behavior of a small subset of users. Every group member
must adhere to the rules of participating in the USENET newsgroup. Members
may only post on topics relevant to the group, and they must treat others in
the group with respect. Periodically, the ground rules of group participation
are posted to the entire group, but no mechanism for enforcement of the rules
is in place. Some USENET newsgroups have been disbanded, and others have
descended into eternal flamewars or spam pits because users did not adhere to
the rules. Yet many continue to flourish.

As necessary as trust is in Internet commerce as it is implemented today,
trusting virtual institutions poses special challenges as well. The consumer has
no way to validate the existence of a business, nor the comfort offered by the
location and presentation of a storefront. Items can not be examined in a tactile
manner before purchase. The existence of the item may be pure fiction, and
transmitting one’s credit card number to such a merchant is indeed an exercise
in trust.

A question of particular interest to the design of secure systems is how peo-
ple individuate the agents with which they interact. How users individuate net-
worked machines is relevant to when and how they extend trust initially, and
how various kinds of betrayals affect this trust. In other words, do people ex-
tend trust to computers as single agents, or do they individuate and distinguish
among them? Alternatively do people consider all computers as elements of a
single network with out distinguishing between what are, in fact, very distinct
machines? Outside of the question of the way users experience their interactions
with computers, system designers may reasonably think that users should dis-
tinguish among individual computers as they do among individual people, or
individual institutions. This is because, despite attempts at quality control and
reliability, computers differ from each other from the moment they are shipped
from the factory floor. They differ in terms of operating systems, exposure to
the environment, exposure to viruses, and history of use.

All of this makes it likely that individuals will have different experiences
with different computers. By ”surfing the net” users are choosing to interact
with many different computers. Certainly, the trustworthiness of the people
themselves behind the computers on the Internet covers the range of humanity.
However, it may be the case that individuals do not differentiate among differ-
ent computers or different human agents behind the computer with which they
interface, knowingly or unknowingly. If users do not make distinctions among
different computers that they use, then they may extend trust or refuse to extend
trust using past information and experiences that are not entirely applicable to
the new situation.
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3 Defining Trust from the Social Science Perspective

The social sciences offer us a definition of trust which may be useful in computer
security; and is certainly useful for this discussion. Coleman’s (1990) definition
of trust accounts for the rational action of individuals in social situations. Cole-
man’s definition of trust has four components:

1. Placement of trust allows actions that otherwise are not possible.
2. If the person in whom trust is placed (trustee) is trustworthy, then the trustor

will be better off than if he or she had not trusted. Conversely, if the trustee
is not trustworthy, then the trustor will be worse off than if he or she had
not trusted.

3. Trust is an action that involves the voluntary placement of resources (phys-
ical, financial, intellectual, or temporal) at the disposal of the trustee with
no real commitment from the trustee.

4. A time lag exists between the extension of trust and the result of the trusting
behavior.

Coleman’s definition is consistent with a rational decision making model.
His definition is behavioral rather than affective. In this framework, trust is an
action, not a feeling. If a person would be no worse off after placing resources in
the hand of the trustee and having the trustee cheat, then trust is not an issue.
So, for example, trust would not be an issue if an individual delivers a message
to a client and also asks a colleague to deliver the same message to the client.
In this case, the individual does not have to trust his or her colleague because
the message has already been delivered, and no bad consequence will occur if
the colleague does not hold up his or her end of the agreement.

Notice that trusted in the social sciences has exactly the same meaning of
trusted in computer science. Namely, that which is trusted is trusted exactly
because if it fails there is a loss. Except in the case of computer security there
is often an assumption that the trusted third party is trustworthy, and there is
no such assumption in social theory.

Often the costs of safeguarding against untrustworthy behavior are so high
that the only solution is to extend trust to others. This is currently the case in
routing, USENET newsgroups, and commerce described above. Trustees must
make judgments about whether or not the people with whom they enter agree-
ments are likely to uphold them.

Trustees may not hold up their end of the agreement because they lack the
ability to take the agreed-upon actions, committing error. Alternatively, trustees
may not hold up their end of the agreement because they have made a decision
to defect on the agreement, or cheat, to improve their own welfare at the cost of
the trustee, acting with guile.

Error and guile are two possible causes of the breakdown of trust agree-
ments. For example, in the case of Internet routers, an individual at a single
site, may not be able to handle the volume of traffic going through the domain
and make an error in routing. Alternatively, an individual at the site may decide
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to take down another site for self- interested reasons. The result is the same
in both cases. However, the individual extending trust may react differently in
response to error versus guile. We propose that reactions to computer betrayals
as opposed to betrayals through obvious human action will result in different
forgiveness behavior. People’s decisions to trust computers may be affected by
their perceptions of the difference between computers and humans in error mak-
ing and acting with guile. It is a commonly held belief that computers only
replicate human error and that computers can be easily monitored to find the
source of error. Also, most individuals do not perceive computers are able to act
with guile.

Previous research has supported the hypothesis that people are more trusting
of computers than of other people. For example, people disclose more information
and more accurate information during interviews with computers than during
interviews with humans (Sproull and Kiesler, 1991). However, these studies do
not consider people’s willingness to distinguish between trustworthy and un-
trustworthy computers (or, reliable and unreliable computers) in the same way
that people are willing to characterize different individuals as either trustworthy
or untrustworthy. Thus there has been a disconnect between the critical trust
questions in computer security and those questions as framed in other fields.

Besides the connections we wish to make between the proposed study and
past empirical studies of trust in computer mediated environments, our work is
informed by social-theoretic and philosophical work on trust. Social theorists,
like Niklas Luhmann (1979) stress the trial-and-error nature of the development
of trust, suggesting that starting with a baseline desire (indeed need to trust)
people begin with a readiness to trust. This initial readiness to trust is then put
to the test in transactions with others, where it is either confirmed or undermined
by their experiences with the particular object of their trust. Another relevant
thesis that emerges out of both philosophical and social scientific work on trust
is that trust is not as vulnerable to incompetence as it is to bad intention. That
is, people are ready to forgive harms they may have suffered due to incompetence
far more quickly and readily than harms they perceive to have been caused by
the bad intentions of others. (See for example, Becker 1996 and Slovic 1993.)

4 Conflicting Assumptions

Implicit and unexamined assumptions about trust are embodied in many widely
prominent technical security techniques and mechanisms. Yet, work in philos-
ophy and social science on trust offers reasons for thinking that at least some
of these assumptions are wrong. In this section we discuss three hypotheses,
showing how they have informed existing security mechanisms and policies and
suggesting ways that the mechanisms and policies might be altered in light of
this knowledge. The cases fit our paper’s theme, namely that optimal security
systems would draw on what is known about trust in non-technical literatures
and paradigms.
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Hypothesis I: In terms of trust and forgiveness in the context of computer-
mediated activities, there is no significant systematic difference in people’s re-
actions to betrayals that originate from human actions, on the one hand, and
computer failure, on the other.

According to this hypothesis, in terms of effects on trust in computers and
computer-mediated activity and readiness to forgive and move on, people do
not discriminate on the basis of the origins of harms such as memory damage,
denial of service, leakage of confidential information, etc. In particular, it does
not matter whether users believe the harms are the result of technical failure,
on the one hand, or human (or institutional) malevolence.

For example, key revokation policies and software patches all have an as-
sumption of uniform technical failure. Consider key revokation. A key may be
revoked because of a flawed initial presentation of the attribute, a change in
the state of an attribute, or a technical failure. Currently key revokation lists
are monolithic documents where the responsibility is upon the key recipient to
check. Often, the key revokation lists only the date of revokation and the key.
The social sciences would argue that the three cases listed above would be very
different and would be treated differently. Consideration of that possibility leads
to a key revokation system which may better fit human consideration of trust,
and manage risk more effectively as well.

Consider the case of an incorrect initial attribute. In this case, the possibility
of malevolent action is most likely. Consider identity theft, since identity is a
favored attribute linked to public keys (and was in fact required by the first
X.509 standard). Identity theft would call for more than revokation at the date of
discovery. In a web of trust system; for example, the revokation should be able to
be broadcast or narrowcast to anyone whose key or reputation is authentication
by the stolen identity. Any extension of cumulative trust enabled by the use of the
key should be removed, and this should occur recursively until the entire result
of the stolen identity is removed. Alternatively any accounts set up or configured
with this key should be terminated. The capacity to create additional accounts
and thus implement a domino of trust extensions is exactly the feature which
makes identity theft attractive. Thus, key revokation schemes should take into
account this capacity when evaluating methods for addressing the revokation of
a particular key.

Consider a change in the state of an attribute. For example, a particular em-
ployee may be unauthorized to charge a particular account after a sudden, unex-
pected, or particularly unpleasant termination. In this case, again, accounts that
may have been created for the duration of the certification should be reconfig-
ured. An example may be an account at B2B exchange that requires certification
at account initiation and considers the key lifetime, as set by the employer, as the
appropriate duration of a valid account. Noting that this is a sub-optimal policy
by the exchange is not likely to prevent flawed policies from being adopted; in
particular when the interest of the businesses and the exchange is to accept risk
in order to prevent denial of service. Recall that the Electronic Funds Transfer
Act was initiated by exactly this type of change in attribute and malevolence,
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although in that case the malevolence resulted from divorce and not employment
termination. The card issuer had a policy that expected individuals to know in
advance how long the attributes – in that case the marriage – would last. In
contrast, given a technical failure of a lost key all that would be necessary is
that future assertions by the holder of the subverted key. By having a single
standard key revokation systems implement the assumption that there is no sig-
nificant systematic difference in people’s reactions to betrayals which originate
from human actions, on the one hand, and computer failure, on the other.

With respect to software patches, the possibility of a purposefully malevolent
alteration of the code is not considered. The social sciences would argue that such
cases require a different level of active response and oversight than technical error
made in the market equivalent of good faith. For example, a bug purposefully
placed by hackers who had access to Microsoft’s source code would presumably
be meant for harm; while the other 63,000 bugs in Win2k (Foley, 2000) could
be considered either minor or less likely to enable malevolent action. Thus the
discovery of a malevolent bug should result in active contact with all customers
who had installed the product and technical support to enable effective patching;
while the standard policy of customer-driven seeking and downloading could be
adequate for other cases.

The hypothesis makes sense from a purely technical standpoint. Certainly
good computer security should protect users from harms no matter what their
sources and failure to do so is bad in either case. Yet a closer examination, based
on an understanding of social theory, yields a more complex problem space and
more nuanced solution to the problem of key revokation or patch distribution.

Nevertheless, there are good reasons for questioning the hypothesis. One is
related to a view that a number of researchers hold about trust: that it should
be reserved for the case of people only, that people can only trust (or not trust)
other people not inanimate objects.

These researchers suggest that we use a term like confidence or reliance to
denote the analogous attitude people may hold toward things like computers
and networks. To the extent that this is more than merely a dispute over word-
usage, we are sympathetic to the proposal that there are important differences
in the ways trust and confidence or reliance operate (See, for example, Selig-
man; Nissenbaum; and Friedman, Kahn and Howe.) One reason to reserve the
concept of trust for a relation between people is the role motives and intentions
seems to play in it. Various works on the subject of trust have discussed this. For
example, the philosopher Lawrence Becker argued that the motives and inten-
tions we perceive others to have are far more relevant to our readiness to trust
than are actions and outcomes. So, if we believe that things have gone wrong
as a result of incompetence, our trust will be far less affected than if we believe
ill-will to be behind it. Psychologists Paul Slovic and Tom Tyler, in separate
works, demonstrated similar themes, namely, that the way people see intentions
mediating outcomes is significant for trust and forgiveness. What this means
for our purposes is that people’s trust would likely be affected differentially by
conditions that differ in the following ways: cases where things are believed to
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have gone wrong (security breaches) as a result of purely technical glitches, as
compared with cases where failures are attributed to human engineering, as com-
pared with cases where evil intention is seen as the cause of harm. Even within
these categories, there is quite a range of difference. A number of the cases in-
volving identifiable human agents (i.e. including incompetence and malevolence)
can, for example, be seen as points along a continuum rather than as instances of
entirely non-overlapping categories. To briefly illustrate, a security breach which
is attributed to an engineering error might be judged accidental and forgiven if
things went wrong despite considerable precautions taken. Where, however, the
breach is due to error that was preventable, we might react to it in a manner
that is closer to our reaction to malevolence. Readers familiar with categories of
legal liability will note the parallel distinctions that the law draws between, for
example, negligence versus recklessness.

Efforts at designing security mechanisms and policies which reflect the vari-
eties of human judgments and reactions and be sensitive to these distinct condi-
tions will be more robust in real-world environments. This hypothesis also has
implications for the design of intrusion detection systems. It implicitly suggests
that up to a point the false negatives in intrusion detection are more dangerous
than false positives. Currently there are risks in these systems which allow sus-
picious activity versus the risk of producing too many false positives. If humans
perceive much malicious activity to be simple reliability failures, a higher level of
suspicion generated through false positives would be preferable to a false sense
of security, as undetected attacks will be unduly accepted and forgiven.

Hypothesis II: When people interact with networked computers, they sensi-
bly discriminate among distinct computers (hosts, websites), treating them as
distinct individuals particularly in their readiness to extend trust and secure
themselves from possible harms.

In terms of best practices for security, it makes most sense for people to view
distinct remote computers as distinct individuals, each one warranting indepen-
dent evaluation. Yet, there are several reasons that converge on a quite different
story suggesting that users tend to view networked computers as constituting a
more homogeneous system. Social theory predicts that individuals’ initial will-
ingness to trust and therefore convey information in the context of a web form
will depend more on the characteristics of the individual and interface than the
perceived locality of or technology underlying the web page. An empirical study
of computer science students also demonstrated that experience with computers
increases a willingness to expose information across the board.

What this means is that users, even those with considerable knowledge and
experience, tend to generalize broadly from their experiences. Thus, positive
experiences with a computer generalize to the networked system (to computers)
as a whole and presumably the same would be true of negative experiences.
In other words, users draw inductive inferences to the whole system, across
computers, and not simply to the particular system with which they experienced
the positive transaction. Such a finding would have grave implications for the
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design of user-centered security. Security systems which empower the user, for
example, ActiveX, to select between trustworthy and untrustworthy code may
not, in fact, be empowering if humans do not differentiate between machines.
Human centered security mechanisms may prove to offer no more autonomy to
the naive user than the option to perform brain surgery at home would offer
medical autonomy to the naive patient. In fact, the argument that alterable
code is not empowering to the user has been presented in the case of applications
(Clark and Blumenthal, 2000). This tendency to generalize across computers has
other implications for security strategies. It suggests that we should be thinking
of ways to impress users with the distinctiveness of different machines so that
they realize that trustworthiness of one is independent of trustworthiness of
another.

In particular the Secure Sockets Layer and the pop-up windows as imple-
mented in all currently and previously predominant browsers encourage users to
consider the network to consist of two elements: secure and trustworthy pages
versus insecure and untrustworthy pages. This is done by providing a uniform
graphic to display at every site with no customization for user or site. The com-
bination of the ”lock” in the lower right-hand side and the notice of ”leaving a
secure” page encourages users to view all sites which use SSL to be equivalent
in terms of trustworthiness.

In a related issue, that of ensuring that the person at one end of a connection
is indeed connected to the host as believed, a useful solution for this problem has
been proposed. Tygar and Whitten (1996) propose window personalization to
prevent proxy attacks or Java Trojan Horses from stealing passwords. A similar
window personalization could require that the installation of SSL includes a
selection of a JPEG image to be included as part of the ’lock’ image. This
would communicate to the user that no two SSL-using sites are, in fact, the
same. Furthermore, the deletion of this image would identify any redirections,
for example from a conference site to a secure payment mechanism site – a
transition that now appears seamless to the SSL user. An examination of social
theory suggests that the implementation of a program which has only increased
security in the near term (SLL) could prove problematic in the long term by
encouraging users to treat all machines with SLL as equally trustworthy.

Hypothesis III: Over time and with experience users will tend toward greater
discernment among distinct remote computers.

According to this hypothesis, the tendency to draw narrow inferences based
on experience with remote computers will increase with users’ level of experi-
ence with computers and computer mediated interactions. Computer experience
alone cannot increase the tendency toward greater discernment among remote
computers until the design of those parts of security mechanisms that users
experience clearly signal differences among distinct computers. Current design
encourages users to continue to generalize broadly on the basis of experience
with individual cases. They simply will have more experience. This reduction is
reinforced by theories of social capital addressing a broader social context. This
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work suggests that when decisions to trust individual members of a community
are vindicated, these positive experiences will generalize to the community as a
whole and thus will contribute to social capital.

It is often noted that if telephone systems still required operator assistance,
the services of every man, woman, and child in the United States as operators
would be required to support today’s traffic on the public switched telephone
network (PSTN). Similarly, the evolution of computers into ubiquity requires
a decrease in the level of human labor as system operators. In the case of the
PSTN, there were no requirements for alterations in human trust, as the smart
network addressed issues of trust and security in billing and dialing. In fact,
almost every man, woman and child in America is a telephone operator. Instead
of requesting a location or number, we enter seven or more digits to enable a
connection to the end user whom we seek.

In the packet-switched world end users must evolve into network operators.
The switch from human-to-human requests (as dominates system operation to-
day) to human-to-machine requests is far more problematic when the machine
is multi-purpose. This is compounded by the requirement that humans become
security managers. The capacity of humans as security managers is assumed to
be high when hypothesis three is assumed correct. However, social theory and
philosophy argue that hypothesis three is incorrect. If humans monotonically
increase trust then user-managed security systems which monotonically increase
trust are problematic.

Consider an implementation of cumulative trust, as with PGP or Lilith. In
both cases the user begins with a small set of trusted parties and expands this
set of trusted parties as these trusted parties vouch for others. In no cases are
the system implemented with a requirement for a reset. That is, at each moment
as trust accumulates it becomes more likely that the trust is being extended to
an untrustworthy participant. A requirement that the machine effectively reset
its trust barriers; for example, by requiring that the user select a predefined size
for a set of initial trusted parties before the set is defined anew, could mitigate
against the tendency of humans to increase trust for all computers. Assuming
long term use, and the human tendency to be increasingly trusting, the social
argument for a reset function is strong; although the technical argument is weak
at best.

Consider the case of the Platform for Privacy Preferences. P3P allows a user
to do business with a site which has privacy practices which follow the user’s
preferences. A natural result would be for a user to be informed, “To use this site
you must enable privacy preference n,” just as today sites commonly recommend
closed standards or lower security settings (e.g. accepting cookies) for interaction.
Such a site may be one which has a particularly high draw. Eventually users may
decrease their privacy thresholds so that P3P offers little or no protection. Again,
a reset mechanism is called for. At the least, privacy settings should be lowered
at a site-by-site basis when they are lowered, or lowered for a specific duration
after initially being set. Conversely, if the hypothesis is correct then privacy
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protection increases should be implemented across all sites without a temporal
limit.

5 Conclusions

In this work we have offered and supported three hypotheses with respect to the
manner in which humans extend trust to computers. We have shown that the
hypotheses are assumed to be correct in social theory and philosophy, and at
least implicitly assumed correct in computer security implementations. For each
hypothesis we have offered design suggestions which would align the computer
science with the social science.

The first hypothesis was, ”In terms of trust and forgiveness in the context of
computer-mediated activities, there is no significant systematic difference in peo-
ple’s reactions to betrayals which originate from human actions, on the one hand,
and computer failure, on the other.” In this case the hypothesis lead to criticisms
of common key revokation practices. The second hypothesis was, ”When people
interact with networked computers, they sensibly discriminate among distinct
computers (hosts, websites), treating them as distinct individuals particularly in
their readiness to extend trust and secure themselves from possible harms.” This
hypothesis lead to recommendations that visual identifiers which indicate that
some particular mechanism is in use integrate signals which encourage users to
differentiate between machines. The third hypothesis was, ”Over time and with
experience users will tend toward greater discernment among distinct remote
computers.” This hypothesis is the most radical in terms of the differences be-
tween computer and social sciences. In general this hypothesis calls for caution in
the implementation of user-managed computer security mechanisms. Specifically,
this hypothesis, if correct, would argue that any user-managed system that tends
to monotonically increasing trust would, over time, be completely subverted by
user tendencies to extend trust. In each case a social science and philosophical
hypothesis had direct technical implications for the design of a purely technical
system to implement trust. If it is not possible to design a computer security
system without assumptions about human behavior then the design of computer
security systems should be informed by philosophical and social science theories
about trust.
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Abstract. This paper describes two attacks on an anonymous group
identification scheme proposed by Handley at Financial Crypto 2000.
The first attack enables to forge valid proofs of membership for any
secret key. As a consequence, any user, registered or not, can be prop-
erly authenticated by the group manager. The second attack enables the
authority to recover the identity of any user who authenticates. Those
two attacks can be very easily conducted in practice, without any heavy
computation. Those attacks can be fixed with simple modifications and
additions to the protocol but we think that the technique used to issue
certificates is conceptually flawed and we propose a way to repair this
phase of the protocol using zero-knowledge proof techniques.
Keywords: Anonymity, group authentication, cryptanalysis.

1 Introduction

The problem of secure identification was first introduced by Feige, Fiat, Shamir
in Stoc 86 [9]. Later the problem of anonymity in group identification was
first posed and studied by A. De Santis, G. Di Crescenzo, G. Persiano, and
M. Yung [18]. These protocols are immediately converted in perfectly anony-
mous group identification protocols.

Then, other perfectly anonymous group identification protocols were given
by A. De Santis, G. Di Crescenzo, and G. Persiano [17] using only quadratic
residuosity as the underlying assumption, and by D. Boneh and M. Franklin [3].

Informally speaking, an anonymous group identification protocol is a scheme
that enables previously registered users to convince an authority they belong to
a specified group without revealing any information about their identity. Such
protocols can be designed using public key cryptography tools. During a first
phase, users prove their identity to an authority who issues certificates. Then,
when a user wants to be authenticated without revealing his identity, he proves
that he knows a certificate and convinces the authority that he has been properly
registered.

A group authentication protocol has to satisfy some security properties: legit-
imate users must always be correctly authenticated, non-authorized people must
always be rejected; it should be impossible for the authority to uncover any in-
formation on the user who authenticates or link different authentications...

The notion of anonymous group identification is closely related to other no-
tions such as group signature [6, 7, 4, 2, 1] and identity escrow [13], which provide

P. Syverson (Ed.): FC 2001, LNCS 2339, pp. 106–116, 2002.
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a revocable anonymity, and to multisignatures [15] that enable people to sign
messages for a group.

Our Results

This paper describes two attacks on an anonymous group identification scheme
proposed by Handley [11] and that we recall in section 2. The first attack, de-
scribed in section 3, enables any registered user to forge valid proofs of mem-
bership for any secret key. As a consequence, any user, registered or not, can be
properly authenticated by the group manager. Notice that this specific attack is
fixed in Hanley’s final paper [12].

The second attack, described in section 4, enables the authority to recover
the identity of any user who authenticates. This attack cannot be detected and
the computational effort for the authority is linear in the number of registered
users.

Even if those attacks may be fixed by modifications and additions to the
protocol, we think that the technique used to issue certificates is conceptually
flawed and that the choice of the parameters is of crucial importance. We propose
in section 5 a way to repair the protocol using zero-knowledge proof techniques
but we do not claim that the resulting protocol is secure.

2 Description of Homage

Throughout this paper, we use the following notations: for any integer n,

– we use Zn to denote the set of integers modulo n,
– we use Z

∗
n to denote the multiplicative group of invertible elements of Zn,

– we use ϕ(n) to denote the Euler totient function, the cardinality of Z
∗
n.

The Homage group authentication protocol [11] consists of two main parts:
registration and anonymous authentication. We recall the protocol with the char-
acters Alice and Bob; Alice is a user, member of the group, and Bob is the au-
thority who issues certificates in the first phase and authenticates users in the
second one.

2.1 The Setup of the Scheme

During the Homage setup phase, the authority generates the following parame-
ters:

– p a public prime integer,
– g a public generator of the multiplicative group Z

∗
p,

– u ∈ Z
∗
p−1 a public constant,

– z and w two private keys kept secret by the group authority (it is specified
in [12] that z ∈ Z

∗
p−1 and w ∈ [1, p− 2]),

– v = uw mod p− 1 a public key of the authority.
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In order to make the discrete logarithm problem intractable in Z
∗
p, it is re-

quired that (p− 1)/2 should have few prime factors and that all of them should
be large. It is specified that the size of p should be at least 2048 bits.

Furthermore, each user has got a private key x ∈ Zp−1 and the related public
key y = gx mod p. The public key y is associated with the identity of the user; it
is used for group authentication but should also be used for other protocols such
as personal identification (for example using the Schnorr scheme [19]), signature
(DSA [14]) or encryption (El Gamal [8]). This surprising requirement is proposed
as an efficient way to provide “strong dissuasion”, i.e. to avoid that legitimate
users of the system give their secret data to unauthorized people. We don’t argue
on such a problem that seems closely related to the anonymity the system wants
to provide and consequently to the absence of an identity recovery mechanism.

2.2 Registration of a Member

Alice, identified by her public key y, first registers and obtains a group certificate
issued by Bob. We assume that Bob is convinced that Alice is a legitimate
member of the group and that her public key is y. He chooses a random number
a ∈ Z

∗
p−1 and computes the two following values:

– α1 = (gyz)a mod p
– α2 = aw mod p− 1,

that he sends to Alice as her certificate.

2.3 Anonymous Authentication

Alice, owning certificate (α1, α2), wants to convince Bob she is a member of the
group without revealing her identity:

– she chooses two random numbers b and c,
– she computes
• β1 = αcub

1 mod p
• β2 = α2v

b mod p− 1
• β3 = gc mod p,

– she sends β1, β2 and β3 to Bob,
– Bob computes

• γ1 = β
1
w
2 mod p− 1

• γ2 = β
1

γ1
1 mod p

• γ3 = ( γ2
β3
)

1
z mod p,

– Alice finally proves to Bob that she knows the discrete logarithm x of γ3 in
basis β3. The author of Homage proposes in [11] a zero-knowledge protocol
to achieve this; notice that this protocol is exactly the Schnorr scheme [19]
with challenges chosen in {0, 1}.
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Completeness of the Authentication Protocol. If both parties are honest
in their computations, i.e. follow the previously described protocol, we should
have the following:

– d = ub mod p− 1
so dw = uwb = vb mod p− 1

– β1 = αcd
1 = (gyz)acd mod p

– β2 = α2v
b = α2d

w = (ad)w mod p− 1
– β3 = gc mod p

– γ1 = β
1
w
2 = ((ad)w)

1
w = ad mod p− 1

– γ2 = β
1

γ1
1 =

(
(gyz)acd

) 1
ad = (gyz)c mod p

– γ3 = ( γ2
β3
)

1
z =

(
(gyz)c

gc

) 1
z

= (yzc)
1
z = yc = gxc = β3

x mod p,

and finally the discrete logarithm of γ3 in basis β3 must be the user’s secret
key x.

In other words, this means that the triplet (β1, β2, β3) must satisfy the equa-
tion:

β1 =
(
β1+xz

3

)β 1
w
2 mod p

Consequently, the knowledge of four numbers β1, β2, β3 and x satisfying the
above equation enables their owner to be authenticated.

2.4 Soundness of a Certificate

As explained in [11], a dishonest group manager can break the anonymity of au-
thentication if he issues bad certificates, i.e. certificates that are not computed
using the formula ((gyz)a mod p, aw mod p−1) or correctly computed but using
bad secret keys w and z. As a consequence, when Alice receives her certificate
(α1, α2), she has to make sure that Bob has not cheated. To do this, it is sug-
gested in [11] that she goes through the verification protocol with Bob. The only
difference is that, at the end, Bob sends Alice the number γ3 he has computed
and Alice verifies that γ3 = yc mod p (see section 2.3).

Furthermore, this verification of the soundness of the certificate should be
conducted in a way such that Bob has no way of guessing who Alice is. To
achieve this, the author of Homage suggests the use of a third party acting as
an anonymizer.

Note. Handley seems to have felt the danger of revealing γ3 and replaced it by
an hash value H(γ3) in the final paper [12]. Consequently, Alice’s verification
becomes H(γ3) = H(yc mod p). The following attack is fixed by such a modifi-
cation, even if the principle of looking for zth roots modulo p remains the main
way to forge certificates.
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3 How to Forge Valid Proofs of Membership

3.1 Basic Idea

Assume we know a pair (n,m) such that m = nz mod p and that we want to
construct a valid proof of membership. Remember that we know a pair (u, v)
such that v = uw mod p. We choose a random x and we compute the three values
β1, β2 and β3 that will be sent to Bob as follows:

– randomly choose b ∈ Zϕ(p−1) and c ∈ Zp−1,
– compute δ = nc ×mxc mod p,
– compute β1 = δub

mod p,
– compute β2 = vb mod p− 1,
– compute β3 = δ

mxd = nc mod p.

When Bob verifies the certificate, he obtains:

– γ1 = β
1
w
2 = v

b
w = ub mod p− 1

– γ2 = β
1

γ1
1 =

(
δub
) 1

ub

= δ mod p

– γ3 = ( γ2
β3
)

1
z =

(
δ
δ

mxc

) 1
z

= m
xd
z = nxc mod p

Finally, it is easy to prove to Bob that we possess the discrete logarithm x
of γ3 = (nc)x in basis β3 = nc since we have chosen such an x. Consequently,
we can forge valid proof of membership for any secret key x provided we know
a pair (n, nz mod p), i.e. a zth root modulo p.

3.2 Finding zth Roots Modulo p

Preliminary Remark. Let us first remark that the pair (1, 1) is a suitable
couple (n,m) and that one of the pairs (−1,−1) and (−1, 1) is also suitable.
However if these pairs are used to forge proof of membership Bob can observe
that γ3 and β3 are equal to 1 or −1 and can consequently easily detect the
forgery. Anyway, this has to be added in the protocol.

Verification of Soundness Leaks zth Roots. In section 2.4, we have seen
that, in the original protocol [11], when Alice receives her certificate, she goes
with Bob through a verification protocol where, at the end, Bob sends her the
γ3 he has computed.

Suppose now that, instead of following the protocol, Alice proceeds as follows
in order to make Bob compute and reveal a zth root of a randomly chosen integer
m ∈ Z

∗
p. Firstly she randomly chooses b ∈ Zϕ(p−1) and δ ∈ Z

∗
p. Then she sends

β1, β2 and β3 to Bob, where:

– β1 = δub

mod p,
– β2 = vb mod p− 1,
– β3 = δ

m mod p.
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Following the procedure described in section 2.3, Bob computes

– γ1 = β
1
w
2 = v

b
w = ub mod p− 1,

– γ2 = β
1

γ1
1 =

(
δub
) 1

ub

= δ mod p,

– γ3 =
(

γ2
β3

) 1
z

=
(

δ
δ
m

) 1
z

= m
1
z mod p.

and, as proposed in [11], he sends γ3 to Alice so that she can verify he has not
cheated. Consequently, Alice obtains a zth root of m and just tells Bob she is
satisfied. Then, using the cheating strategy we have described above, she can be
authenticated for any secret key x.

Note. Replacing γ3 by H(γ3), as proposed in [12], is a simple fix to this way of
finding zth roots modulo p.

4 How to Break the Anonymity of Authentication

We now demonstrate how a dishonest authority can break the anonymity of
authentication. We propose two attacks; the first one shows that the modulus p
should be a safe prime and the second one shows how a dishonest authority can
recover the identity of any authenticating user, even if p is a safe prime.

Attack 1. The basic idea of the first attack is to choose a modulus p such
that (p− 1)/2 has more than one prime factor: p = 1 + 2 ×∏η

i=1 qi. Then, the
authority can distinguish 2η different subgroups of users:

– first the authority associates to each subgroup a binary vector v = (v1, ...vη)
of length η,

– when a user registers, the authority chooses a random number a′ and com-
putes a = a′×∏η

i=1 qi
vi mod p−1 according to the subgroup the user belongs

to; then certificates are regularly computed,
– finally, when a user wants to be authenticated, the order of β1 is a product

of some of the qis that reveals the vector v and consequently the subgroup
of the user.

As an example, if p is 2048 bits long, the authority can choose (p−1)/2 with
η = 10 prime factors and consequently distinguish more than 1000 different
subgroups! However, such an attack can be easily avoided, just verifying that
the second part α2 of any certificate is relatively prime with p− 1. Anyway, we
think that using a safe prime as public modulus is a good precaution.

Attack 2. We now describe a much more serious attack; let us assume that the
modulus p is a safe prime p = 2q+1 with q a prime integer and that q = 2r1r2+1
with r1 and r2 two large prime numbers. The set Z

∗
p−1 of invertible elements

modulo p− 1 has ϕ(p − 1) = ϕ(2q) = q − 1 = 2r1r2 elements. It is well known
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that the multiplicative order of each element is a divisor of ϕ(p−1) = 2r1r2 and
that there are ϕ(d) elements of order d. We obtain the following repartition for
the elements of Z

∗
p−1:

multiplicative
order ω

1 2 r1 r2 2r1 2r2 r1r2 2r1r2

number of elements
of Z

∗
p−1 of order ω

1 1 r1 − 1 r2 − 1 r1 − 1 r2 − 1 (r1 − 1)
×(r2 − 1)

(r1 − 1)
×(r2 − 1)

Consequently, a randomly chosen element in Z
∗
p−1 has overwhelming prob-

ability
(
1− 1

r1

)
×
(
1− 1

r2

)
≈ 1 − 4√

p to be of large order q − 1 or (q − 1)/2.
Furthermore, if the factorization of q−1 is unknown, we do not know any efficient
algorithm to compute the order of elements in Z

∗
p−1.

Let us consider an authority who chooses u of order r1 in Z
∗
p−1; consequently,

v = uw mod p − 1 is also of order r1 if w �= 0 mod r1, i.e. with overwhelming
probability.

Then, following the protocol, the authority can recover the identity of any
authenticating users. Just notice that β2 = α2v

b mod p − 1 is of order r1r2 or
2r1r2 with very high probability but β2/α2 = vb is of order r1. Consequently, if
the authority wants to test if β2 comes from a user who received α′

2 as second
part of his certificate, he just checks if the order of β2/α

′
2 is of “pathological”

order r1. Indeed, if α′
2 corresponds to the good user, β2/α

′
2 is equal to vb that is

of order r1 whereas if α′
2 belongs to another user, β2/α

′
2 is of order r1r2 or 2r1r2

with very high probability.
Consequently, the authority recovers the identity of the user in time com-

plexity linear in the number of registered users: he just has to check the order
of β2/α

′
2 for all α′

2 he has delivered.

Notice that if the authority can choose the modulus p and the parameter u
as he wants, this attack cannot be detected. Furthermore, we have considered
the case of a safe prime p = 2q + 1 such that (q − 1)/2 has two large prime
factors but the attack can of course be applied in many other situations where
the description is more difficult but the attack always as efficient.

5 How to Repair the Protocol

The main flaw of the Homage protocol comes from the need of a certificate verifi-
cation phase. A modification that avoids the extraction of zth roots described in
section 3.2 simply consists of making Alice prove with a zero-knowledge protocol
that she knows the discrete logarithm of γ3 in basis β3 before Bob reveals γ3.
Consequently, Bob is convinced that Alice already knows γ3 and that he does
not disclose any information when he gives it over to her.

However, a dishonest authority can use different secret keys z to compute
certificates and then distinguish users during authentication. More precisely, the
authority chooses various keys zi for different subgroups of users and computes
“correct” certificates with the formula (α1, α2) = ((gyzi)a mod p, aw mod p−1).
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Then, during authentication, he can check which zi is used and consequently
to which subgroup the user belongs. The repartee suggested in [11] is to use
an anonymizer between users and the authority for the certificate verification
phase. However, we believe that such a protection is not good since a user who
wants to verify the correctness of his certificate, even using an anonymizer, is
probably the user who last registered...! Consequently, we definitively think that
the verification phase is the weak point of the protocol.

We are now going to propose a different approach based on classical zero-
knowledge techniques and that seems to avoid many difficulties and that makes
the first step in the direction of a provably secure variant of Homage.

How to Avoid Verification. The idea to avoid verification is to provide with
each certificate (α1, α2) a proof that it has been correctly computed, i.e. that the
authority knows an integer a such that α1 = (gyz)a mod p and α2 = aw mod p−
1, and that the correct secret keys w and z have been used. This is achieved with
the following modifications:

– The prime modulus p is a safe prime p = 2q+1 with q = 2r+1 a safe prime
as well,

– g is an element of Z
∗
p of order q,

– u is an element of Z
∗
q of order r,

– another basis h of order q is chosen such that the discrete logarithm of h in
basis g is unknown to the authority,

– the secret key z is committed with a public key Y = gzhz′
mod p where

z′ ∈ Zq is a randomly chosen value,
– a commitment scheme is selected and we note commit(x) the commitment of

data x; as an example of such a scheme, we can use Pedersen’s protocol [16]
using parameters g, h and p.

Then the authority proves the knowledge of secret values w, z, z′ and a such
that the following four relations are valid:

α1 = (gyz)a mod p, α2 = aw mod p− 1,

v = uw mod p− 1 and Y = gzhz′
mod p

We can use well known proofs derived from the Schnorr scheme [19] such as
the proof of equality of discrete logarithm of Chaum and Pedersen [5] and we
obtain the following protocol:

– The prover (the authority), chooses a random value t ∈ Zq and computes
• C1 = commit(t)
• C2 = commit(t× a mod q)
• C3 = (gyz)ta mod p
• C4 = (ta)w mod q,

– the prover sends C1, C2, C3 and C4 to the verifier (the registering user) who
answers a challenge e randomly chosen in {0, 1},

– if e = 0, the prover opens the commitment C1 and reveals τ ; then he proves
with subprotocol A (see fig.1) that logτ (C4/α2) = logu(v); furthermore, the
verifier checks that C3 = ατ

1 mod p,
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– if e = 1, the prover opens the commitment C2 and reveals τ ′; then he proves
that logτ ′(C4) = logu(v) (with subprotocol A, fig.1) and that logyτ′ (C3/g

τ ′
)

is equal to the secret key z committed into Y = gzhz′
(with subprotocol B,

fig.2).

The probability of success of a cheating prover is smaller than 1/2 so this
elementary round has to be repeated n times in order to make the cheating
probability smaller than 1/2n.

Parameters: p = 2q + 1 a safe prime integer
B an integer
g1 and g2 two elements of Z

∗
p of order q

Secret data: s ∈ Zq

Public data: I1 = gs
1 mod p

I2 = gs
2 mod p

Prover Verifier

choose r in Zq

x1 = gr
1 mod p

x2 = gr
2 mod p

x1, x2−−−−−−−−−−−−−−−→
c←−−−−−−−−−−−−−−− choose c in [0, B[

y = r + c × s mod q
y−−−−−−−−−−−−−−−→ check gy

1
?
= x1 × Ic

1 mod p

and gy
2

?
= x2 × Ic

2 mod p

Fig. 1. Subprotocol A: Proof of equality of discrete logarithms

Security Analysis. Subprotocols A and B are complete and sound (see for
example [10] and [9] for definitions); a prover who is accepted with probability
larger than 1/B during the execution of subprotocol A can be used by an ex-
tractor which computes the common discrete logarithm s of I1 and I2 in basis g1

and g2 respectively. Similarly, s and s′ can be computed using a prover accepted
with probability > 1/B in subprotocol B.

Those two protocols, like the Schnorr scheme, are not zero-knowledge when
B is not polynomial because the communications cannot be simulated. Anyway,
this does not lead to any known attack. Furthermore, if we want a zero-knowledge
protocol, we can use a polynomial value forB and repeat the protocol % times; the
probability of success is smaller than 1/B� and the simulation has polynomial
complexity O(% × B). Another solution to obtain constant-round protocols is
to have the verifier commit to his challenges by using, for instance, Pedersen’s
commitment scheme [16].
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Parameters: p = 2q + 1 a safe prime integer
B an integer
g1 and g2 and h three elements of Z

∗
p of order q

Secret data: s ∈ Zq and s′ ∈ Zq

Public data: I1 = gs
1h

s′ mod p
I2 = gs

2 mod p

Prover Verifier

choose r and r′ in Zq

x1 = gr
1hr′

mod p

x2 = gr
2 mod p

x1, x2−−−−−−−−−−−−−−−→
c←−−−−−−−−−−−−−−− choose c in [0, B[

y = r + c × s mod q

y′ = r′ + c × s′ mod q
y, y′

−−−−−−−−−−−−−−−→ check gy
1hy′ ?

= x1 × Ic
1 mod p

and gy
2

?
= x2 × Ic

2 mod p

Fig. 2. Subprotocol B: Proof of equality of partial discrete logarithms

It is not difficult to prove that the protocol we propose is complete and zero-
knowledge. The soundness is proved in the following way: if a prover is able to
answer the two challenges e = 0 and e = 1 for the same commitments C1,...C4,
we can extract w, z, z′ and a such that α1 = (gyz)a mod p, α2 = aw mod p− 1,
v = uw mod p − 1 and Y = gzhz′

mod p. Consequently, if a prover is accepted
with probability > 1/2n, he can be used by an extractor to compute the four
secret values.

Notes.

1. The basis h is used for the computation of public key Y in order to avoid
revealing something like “Y = gz mod p”, i.e. a zth root.

2. A practical way to be sure that the authority as not chosen a second basis h
of known discrete logarithm in basis g is to derive the basis from a publicly
verifiable pseudo-random generation algorithm.

3. The modulus p is a safe prime p = 2q+1 so elements of Z
∗
p have order 1 (the

unity), 2 (the element -1), q or 2q. A simple way to generate an element g
of order q is to choose a random element x ∈ [2, p − 2]; if x is a quadratic
residue, let g = x and otherwise let g = x2 mod p. This avoids residual
problems described in section 4 (attack 1).

4. The computation of a prime modulus p such that q = (p−1)/2 and (q−1)/2
are also prime integers can be done in reasonable time. Such modulus have
already been used in protocols such as [20].
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Abstract. This paper presents a technique for providing users with
anonymity tools without using conventional cryptography. The method,
Anonymous Multi Party Computation (AMPC), provides a generic build-
ing block for providing electronic anonymity in various applications, e.g.,
electronic voting and oblivious transfer. It uses a variation of Chaum’s
mix-nets that utilizes value-splitting to hide inputs, and hence requires
no “conditionally-secure” operations of its users. This is achieved under
the assumption that there are secure channels between good participants,
and under a suitable resilience threshold assumption that, in our worst
adversarial scenario, is a square-root of the system.

“The truth about a man lies first and foremost in what he hides” –
Andre Malraux

1 Introduction

An important property for users of many electronic systems, such as E-commerce
systems, electronic voting, and web browsing, is the ability to preserve their
anonymity. This paper present an abstract building block for providing users
with electronic anonymity in various applications. The building block, called
Anonymous multi-party computation (AMPC), transforms a list of input values
into a list of output values such that output values cannot be correlated via
the computation to any input(s) (precise definition is given in the body of the
paper). This generic paradigm is utilized for providing anonymity properties in
several applications, e.g., electronig voting.

Generally, anonymity is the ability to hide a user or a value within a larger
group of users or values. For example, in the context of anonymous communi-
cation, anonymity properties could relate to the sender, the receiver, or both
[PW87], and various degrees of hiding could be achieved [RR98]. As another
example, in digital cash, anonymity represents the ability to obtain n anony-
mous cash-notes. In this paper, the AMPC property is presented as an abstract
anonymity property that does not derive from any particular application. Its
applicability is then demonstrated within several applications.

P. Syverson (Ed.): FC 2001, LNCS 2339, pp. 117–135, 2002.
c© Springer-Verlag Berlin Heidelberg 2002
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Unlike most existing methods for anonymity, where the user is required to
use conventional cryptography, the AMPC method is realized without requiring
users to employ conventional cryptography. The motivation to reduce the use of
cryptography by users is a practical one. It allows users with fairly ubiquitous
means, such as hand-held cards, palm devices, or cellular phones, to participate
in our protocols. In particular, it alleviates the need to rely on a PC to guard
cryptographic keys and perform conventional cryptographic protocols on behalf
of users. It also alleviates the need to manage key distribution. Finally, the
guarantee provided in this manner is information theoretic.

The implementation of AMPC is derived of Chaum’s mix-nets [Cha81]. A
mix-net is a tool for achieving anonymous communication. The underlying prin-
ciple of a mix-net is a chain of mixing elements, through which values (messages)
are sent encrypted and permuted in order to prevent linking the source of a value
to its destination. The AMPC implementation proposed in this paper is essen-
tially a variant of mix-net that is efficient to deploy, and that does not need
to employ conventional cryptography. This is done by replacing each ‘mix’ by a
group of mixes, and using secret splitting to hide input values. The primary price
is that we tolerate a reduced threshold of colluding parties in the computation,
compared with conventional mix-nets. In our worst adversarial scenario, this
threshold is a square-root of the system size. With an eavesdropping adversary,
the number of bad communication channels that can be tolerated is the total
number of channels to the power of 2/3.

In order to hide by distribution, we need to assume that there exist communi-
cation channels that are secure against an eavesdropper between users and good
participants (i.e., assume the secure channels model). On the practical side, it
should be noted that the secure channels model is a reasonable one: First, rea-
sonably secure channels can be established by sending One Time Pads at some
initial stage using benign means such as telephones and regular mail. Second,
even electronically, one may rely on existing infrastructure for secure communi-
cation channels (e.g., SSL communication), whereas adding cryptography at the
application level is more difficult.

The AMPC network is constructed as follows. We build a graph of players,
which is depicted in Figure 1. On the top level are m input players that receive
lists of initial values at the start of the computation. The goal is to apply any
chosen homomorphic output function on these input lists in order to produce
permuted output values corresponding to these inputs, such that no correlation
is revealed between the inputs and the outputs. This is achieved by employing
m additional auxiliary levels. Between levels a permutation is applied to the
list of inputs and partial values are calculated. At the final level all results are
published.

As an example, consider a system with two players at the top level. These two
players agree on a permutation and each of them permutes their list of inputs and
sends it to a third player. The third player then calculates the output function,
permutes the outputs using a second permutation, and publishes them. In this
example, no single player can learn anything about the mapping between the
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inputs to outputs beyond that which results from knowledge it has of inputs and
of the outputs.

The result is an efficient multi-party computation that can be used to
anonymize input values from corresponding output values (for any homomor-
phic output function). The computation tolerates a threshold of m− 1 corrupt
players (or m2/3 in the eavesdropping adversarial model), that may be controlled
by the adversary, out of O(m2). The scheme is easy to apply and understand
and does not require the usage of higher mathematics.

In addition to obviously providing for an anonymous communication tool, we
leverage from the efficiency and ease of the AMPC paradigm to achieve several
additional important applications. The primary one is a full fledged electronic
voting system, that requires participating voters only to add numbers in order to
guarantee their privacy. Additionally, we provide an oblivious transfer protocol
and a variant of signatures.

2 Related Work

Our work relates first and foremost to previous methods for achieving anonymity.
One of the common methods used are mix-nets, which were first introduced by
Chaum in 1981 [Cha81], and recently received considerable attention both on the
theoretical and the practical levels. A mix net is a multi party protocol consisting
of a set of mix-servers, that take a list of input messages and collectively produce
as output a permuted list of messages, such that it is impossible to correlate
between the input and output lists as long as a threshold of servers are honest.
In order to achieve this the messages have to be encrypted. In classical mix
nets the threshold is such that if at least one mix server is honest, then an
adversary cannot correlate the input with the output. Mix-nets have been used
as anonymizers, e.g. in [SGD97], in election schemes such as [FOO92] and in
many other applications. Various enhancements were introduced to mix-nets,
including enhanced configurations of mixes [RS91] and the protocol proposed
in [J99], which requires only approximately 185 multiplications per server and
input item. AMPC achieves in the secure channels model all of the functionality
of a mix-net. Our techniques can be viewed as a mix-net in which cryptography
on the level of individual mixes is replaced by splitting secrets among a group
of players. Comparing with all of the above, AMPC is compute efficient, does
not require conventional cryptography of the end user, and requires only a few
arithmetic operations per server per input. The cost of the AMPC method is a
reduced resilience to corruption of a square root of the system only.

Other methods for anonymous communication operate among peer groups
only. The earliest of such works is the Dining Cryptographers (or DC-nets) by
Chaum [Cha88], and its extension in [BB89]. In DC-nets, message transmission
is hidden by XORing each message with several secret keys, each shared among
some subset of the players. In this way, any collusion that does not control all
of the subsets cannot reveal who–among the unknown subsets–is the sender of a
message. Another peer method used for achieving anonymity is Crowds [RR98].
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The Crowds system achieves anonymity for web browsing using a mechanism
that resembles a mix-net but with significant differences. Similar to our ad-
versarial model, Crowds assumes that the adversary is limited to controlling a
threshold of the players, and does not require multiple encryptions at the orig-
inating point of a message. Unlike our scheme, the utilization of both Crowds
and DC-nets is limited to peer-groups and to achieving anonymity in commu-
nication only, whereas AMPC is a scheme that can provide general permuted
homomorphic function computation.

Our work also relates to the general problem of secure multi-party computa-
tion (SMPC); a good introduction to SMPC can be found in [Gol00]. Informally,
in SMPC there are n players, each with a secret input i1, i2, ..., in. The goal is to
devise a method that can compute any desired, recursive function f(i1, i2, ..., in)
on these inputs and reveal the result to all of the players without revealing any
information on the inputs beyond that which the known inputs and output re-
veals. By its definition, SMPC can solve any multi-player problem that can be
expressed as a function, including mix-nets and AMPC. However, the known
methods for SMPC require laying out the output function f as a computation
circuit at the level of individual primitive operations (e.g., XOR and AND),
and hence, they are not very practical. In particular, expressing the function of
AMPC at the individual operation level would require a very large circuit, due
to the permutations.

While AMPC is less general than SMPC, it is sufficiently general to solve
several multi-party problem models. One is oblivious transfer, which was first
introduced in [R81], and some variations introduced in [BC86,NP99]. Another
is one-time receipt, also investigated in [RB89,CR90]. For all of these, AMPC
provides an unconditionally secure solution in the secure-channels model, which
unlike existing SMPC methods, may be practical.

Finally, another example application of AMPC is electronic voting. A vast
body of knowledge exists on electronic voting protocols. These range from cen-
tralized protocols to completely decentralized ones: The former include, e.g.,
[S91,NSS91,FOO92,CC97,HS98], that involve privacy schemes such as blind sig-
natures [Cha85], All-or-Nothing-Disclosure of Secrets (ANDOS) [BC86], and
anonymous communication channels [Cha81,RR98]. The latter include decen-
tralized schemes that are based on homomorphic secret sharing
[BY86,SK94,CFSY96,CGS97,Sch99], and a self-adjudicating scheme which re-
quires public signatures only [DmLM82]. All of these protocols require the voter
to seal and/or anonymize her ballot by employing fairly heavy cryptographic
tools. We introduce a new voting scheme that relaxes this requirement.

3 Model

We assume a system of players that perform a multi-party computation. Play-
ers that follow their prescribed protocol are good. We assume a secure channel
between every pair of good players, that maintains the secrecy of messages, is
non-malleable and authenticated. That is, a good player receives a message from
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another good player if and only if the other good player sent the message. This
is the standard secure channels model, e.g., as used in [BGW88,CCD88].

Some of the players may be corrupt, and consequently behave arbitrarily.
This is known as Byzantine model, allowing an adversary full control of corrupt
players. For the most part, the adversary we assume has unlimited computational
power, is fully adaptive, and is limited only by restricting the number of players
it can control to some designated threshold. In some of our applications, we will
need to limit the computation power of the adversary, and will be explicit when
we do so.

We further distinguish a group of m players as input players, and denote
them by P 1, ..., Pm. These players receive initial values at the beginning of com-
putation. The remaining players are called auxiliary players, and receive input
only within our protocols. We use Aindex to denote both kind of players.

Our model also naturally extends to include users that may provide the
initial values to input players and/or receive the outputs of the multi-party
computation. There is no restriction on the number of corrupt users.

Finally, all of the players agree on a prime p. Except where noted, all arith-
metic calculations will be done in Zp.

4 Anonymous Multi-party Computation

In this section we present the basic building block of our scheme, an AMPC. We
exemplify the computation using as an output function the sum function, though
it should be clear that it can be applies it to any homomorphic function. In the
sequel, we assume that all output functions are homomorphic with respect to
addition; the reader can easily adapt the techniques below for output functions
that are homomorphic with respect to multiplication.

An AMPC of some multi-variate function f is a computation performed by
multiple players. Each one of m input players receives an ordered list of initial
values (pieces). The collection of input lists may be viewed as a list of tuples,
each containing one piece from each player, ordered by the order that the players
received the pieces. The computation yields as output a list of f -values that are
computed on these input tuples. The property of an AMPC is: Players learn
nothing about the relation between the inputs known to them to any specific
output values, beyond the information provided by these values. More precisely,
we use the following definitions. First, let G be a sub-group of players, and
φ(I) be some function (possibly randomized) they compute together on input I
(intuitively, φ will be an attempt to “guess” the placement of a particular part
of the output). We denote by φ(I, AMPCG) the computation of φ(I) using any
internal values known to G during the AMPC (for any φ, φ(I) alone denotes
the computation of φ without knowledge of any such internal values). We then
define an AMPC as follows:

Definition 1. Let the input consist of n tuples each consisting of m values from
a domain D: {〈X1

j , X
2
j , ..., X

m
j 〉}1≤j≤n ⊆ Dm . Let a function f be from do-

main Dm to some domain D′. Let P 1, . . . , Pm be a set of players. Suppose that
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each P i initially knows only {X i
j}1≤j≤n. We say that a protocol is an AMPC

of f on the inputs {X i
j} with robustness b if it calculates the set of values

{f(X1
j , X

2
j , . . . , X

m
j )}1≤j≤n such that for any set of players G, |G| ≤ b, and

any function φ, there exists a function ψ such that:

Pr[φ({f(X1
j , X

2
j , . . . , X

m
j )}j=1..n, AMPCG) = (X1

j , X
2
j , . . . , X

m
j )] ≤

Pr[ψ({f(X1
j , X

2
j , . . . , X

m
j )}j=1..n) = (X1

j , X
2
j , . . . , X

m
j )] .

Two things are worth noting about this definition. First, unlike the definition
of SMPC, the above definition does not guarantee preserving secrecy of inputs.
We could add this as requirement (see e.g. [Gol00], [BY86] for a formal definition
of preserving secrecy of inputs), and in fact, using a variant of our method we
could have achieved secrecy of all of the input values. As this is unnecessary for
the applications we use we do not elaborate on this direction.

Second, the problem statement above assumes, similarly to SMPC, that the
initial values that are held by the P i’s are originated by them. In later applica-
tions, we will explicitly add users which provide these inputs.

In the rest of this section we present a scheme for performing AMPC. We
describe the scheme using as an example output the sum function. That is, we
suppose that each player P i, i = 1..m, has a set of values {X i

j}j=1..n and we
wish to calculate the sums Xj =

∑m
i=1 X

i
j with AMPC.

We build a graph of players (see Figure 1). At the top level are m players
that possess initial input values (which they may receive from an external source,
e.g., the users, or generate themselves). This level is called the input level. At all
other levels we have auxiliary players, with no intrinsic knowledge beyond what
is given to them by the players in a higher level. Each level has one less player
than the prior level. Messages pass on edges that connect two players on adjacent
levels (the solid lines in the figure). Each player has two parents (except for the
input level) and one or two children (except for the final (output) level/level 1).
Messages also pass among players on the same level (dashed lines). The purpose
of this communication is to decide on a permutation in each level.

Stage 1:
To bootstrap the protocol, the leftmost player P 1 players on the first level
sends to P 1, . . . , Pm a randomly chosen permutation πm ∈ Sn on the input
list.
Each player P i applies πm to its input list. It then splits each input X i

j into
an algebraic sum ai

j+bi
j = X i

j . It then sends ai
j to the left child, and bi

j to the
right child. The first and last players simply send to their only children X i

j .
This means that each auxiliary player Am−1,i, 1 < i < m−1, on level m−1,
receives from its two parents bi

πm(j), a
i+1
πm(j). The two extremal auxiliary play-

ers, Am−1,1, Am−1,m−1, receive the pairs (X1
πm(j), a

2
πm(j)), (b

m−1
πm(j), X

m
πm(j)),

respectively.
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Auxiliary level m-2

Auxiliary level 1

P1 P2 P m

Am−2,m−2
Am−2,1

b2
π(1).. b2

π(n)

P3

Auxiliary level m-1
Am−1,1 Am−1,2

a2
π(1).. a2

π(n)

X2
1 .. X2

n

A1,1

Am−1,m−1

Input level

Fig. 1. The communication graph in a triangular AMPC

Stage 2:
Stage 2 is the same as stage 1 except that the inputs are not inputs that the
players hold but inputs that the players received from the previous level.
For all levels k such that m − 1 ≥ k > 1: Denote the pair of values
received by any auxiliary player Ak,i from its left and right parents by
Li

π(j), P
i
π(j), respectively. Since we describe each level separately, the level k

should be clear from the context, and it should be understood that π(j) =
π(k+1)(π(k+2)(. . . (πm(j)) . . .)). Note that as the j’s are permuted, it is not
possible (for any single player) to connect the L or R values to the original
input order.
From here on we do exactly the same as the prior stage. To bootstrap the
protocol, the auxiliary player Ak,1 sends a a randomly chosen permutation
function πk ∈ Sn to auxiliary players Ak,1, . . . , Ak,k. Each auxiliary author-
ity Ak,i combines its two inputs and applies πk to the input list. That is,
define Zi

π(j) = Li
π(j) + P i

π(j). Each player then randomly chooses new values
ai

π(j), b
i
π(j), such that ai

π(j) + bi
π(j) = Zi

π(j). It then sends ai
πk(π(j)) to the left

child, and bi
πk(π(j)) to the right child. The two extremal players that have

only one child send Zi
πk(π(j)).

Stage 3:
The last auxiliary player A1,1 (the square one in Figure 1) chooses a random
π1 ∈ Sn. Denote by π̂ = π1 ◦ π2 ◦ ... ◦ πm. The player then combines its two
inputs, permutes using π1, and publishes the list {Xπ̂(j)}j=1..n.
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Theorem 1. The above protocol is an AMPC of the sum function with resilience
m− 1.

Proof. We say that an adversary dominates a player if (i) the adversary controls
this player, or (ii) if all of its inputs pass through players that are dominated by
the adversary.

As the adversary can control less than m players it cannot dominate both
an entire level and one player on each level above it. This stems from the fact
that each player the adversary dominates requires at least one additional corrupt
player. Furthermore, the adversary can’t dominate the entire input level.

We now divide into two cases:

Case 1: The adversary dominates some level k but at some level above k, it does
not dominate any player. We examine the highest level that it dominates. As
mentioned above, this level is not the input level. Therefore the adversary lacks
knowledge of at least one permutation, and at least one random summand at
the input level, to be able to connect the value of the output to the pieces that
are held only on the input level.

Case 2: The adversary does not control an entire level. In this case there is at
least one value in the sum, as well as at least one permutation that it doesn’t
know. As all of the values are random numbers it cannot guess the sums given
the information it has. Therefore all of the output numbers are unconnected to
the numbers it knows (as we add at least one random number). This means that
it cannot correlate the outputs to the information that it has. �

Remark 1. In our protocol, we assume that any good player proposes a random
permutation, but a corrupt player may choose any permutation and furthermore,
might send different permutations to different players in the level. This is not a
concern, as security only comes from permutations that dishonest players don’t
know, and therefore, if any player in a level is corrupt, the level does not add any
security to the protocol irrespective of who proposes the permutation. Further-
more, a corrupt player can disrupt the computation anyway, e.g., by stopping it
or by altering values. We will see below in Section 5 methods to robustify the
AMPC so as to guarantee detection in these cases.

4.1 Secret Preserving AMPC

In many applications, the output of the mix-net needs to remain secret. We can
preserve output secrecy using a variant of AMPC without resorting to conven-
tional encryption. This is done by employing a square network, with m players
at each one of m levels, as depicted in Figure 2. Computation proceeds similarly
to the above, but side players split the values they pass to the next level just as
middle players do. The bottom level produces the pieces of the desired output
function, and sends the pieces over secure channels to the target recipient. By



Anonymity without ‘Cryptography’ 125

our assumption that the adversary can control at most m−1 of the bottom-level
players, the output is thus secret and can be reconstructed only by its designated
receiver.

A1,1 A1,2 A1,m

P1

X2
1 .. X2

n

Input level

Am−2,1 Am−2,2 Am−2,m

Aux. level m-1

Aux. level m-2

Am−1,1 Am−1,2 Am−1,m

b2
π(1).. b2

π(n)

P2 P m

Aux. level 1

a2
π(1).. a2

π(n)

Fig. 2. The communication graph in a Secret Preserving AMPC

5 Robust AMPC

The AMPC method presented so far preserves input anonymity, but is not ro-
bust. Specifically, any player can undetectably modify any value and arbitrarily
affect the output of the computation. Even if players are unable to identify any
particular value to modify, they could corrupt the output undetectably, e.g., by
adding a constant sum to all values or the like. Naturally, in most applications,
it is desired to detect when such alterations have occurred. Below, we present a
method that doesn’t utilize cryptography for robustifying AMPC against alter-
ations, that is suitable for Secret-Preserving AMPC. The method does not deal
with alteration of initial values: Similarly to SMPC, any input player can unde-
tectably change its initial value. However, we can and do detect when auxiliary
players modify intermediate values.

In the full paper, we present a different method for robustifying AMPC that
utilizes cryptography by the servers. Its main advantage is that this method is
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that it is suitable for the basic (triangular) AMPC architecture (as well as a
Secret Preserving architecture), by using a homomorphic commitment scheme.
Similar techniques can be applied to robustify it against omission and duplication
of values; for brevity, we omit these from the discussion.

Our method for robustifying the Secret-Preserving AMPC works by intro-
ducing redundancy. Specifically, if the output function is homomorphic with
respect to addition, then we replace each initial value Xj = 〈X1

j , ..., X
m
j 〉 with

k transformations, for some security parameter k, such that each transformed
value needs to be modified differently in order to consistently modify Xj . For
example, we let initial input values contain a randomly shuffled list of the mul-
tiples Xj , 2Xj, ..., kXj. From here on, we denote a randomly shuffled list of the
k multiples of Xj by 〈ρ(!)Xj〉1≤�≤k. (In some settings, such multiples might
leak information; other possibilities include sending Yj ±Xj , where Yj and the
operation to apply–addition or subtraction–are chosen at random, followed by
the value Yj itself, etc.). Correspondingly, the output value is a list that should
contain k (shuffled) multiples of f(Xj). To consistently modify all k outputs, a
corrupt player would need to guess the correct value to add to each one of the
relevant inputs, which has probability 1/(k!) of success. This is stated in the
following lemma.

Lemma 1. Let there be a Secret-Preserving AMPC computation for an output
function f , as described above, such that f is homomorphic with respect to ad-
dition. Suppose that for each initial value Xj, the initial input to the AMPC
network contains the randomly shuffled list of multiples 〈ρ(!)Xj〉1≤�≤k. Further
assume that the output is accepted only it is contains for each value f(Xj) a ran-
domly shuffled list 〈ρ(!)f(Xj)〉1≤�≤k. Then the probability that any value f(Xj)
is undetectably altered is at most 1/(k!).

Proof. In order to consistently change 〈ρ(!)f(Xj)〉, all k multiples should be
appropriately modified. That is, to correctly change f(Xj) to, say, f(Yj), players
need to add !(f(Yj)−f(Xj)) to the !’th multiple. However, in a Secret Preserving
AMPC, no player or collusion of up to m− 1 players has any information about
the output values f(Xj), 2f(Xj), ..., kf(Xj). Hence, players are able to perform
such a modification only if they can identify the !’th multiple of Xj as such, for
all 1 ≤ ! ≤ k. By the properties of the Secret Preserving AMPC, this can be done
with probability 1/(k!). Note that the adversary can’t change all of the values
on any level as there are m players on each level and the adversary controls at
most m− 1 players. �

6 An Eavesdropping Adversary

So far we have considered an adversary that controls players. In many applica-
tions the more appropriate adversary is one who can eavesdrop to communication
channels. Additionally one might want to consider an adversary who controls a
mixture of players and channels.
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In this section we show that our model can be significantly more robust
against such an adversary. We say that an adversary is an eavesdropping ad-
versary if it can eavesdrop to a threshold of the communication lines. To work
with this type of adversary, we work with yet another variant of the AMPC net-
work (though similar analysis could be performed for the basic and the Secret
Preserving AMPC that were introduced before). In the new variant, we build a
complete m-level graph, i.e., there are m levels with m nodes in each level, and
each node is connected to every node in the level below. In this case each node
splits all outputs among all of the players on the next level. There are O(m3)
edges in the graph.

Care should be taken when determining the permutation for each level. If
the adversary knew all of the permutations as well as the output then it could
correlate the outputs to inputs. Therefore, we wish to make the cost of knowing
the permutation on each level as expensive as possible. In order to do this we
have each player on level i choose a permutation, which we call a simple permu-
tation, independently of all the other players. Each player then sends to all the
other players on the level the simple permutation it chose. The simple permu-
tations are composed by each player in the order of the players in the level to
create a composite permutation for the level. Formally, each player Ai,j chooses
a permutation πi,j and sends it to each Ai,�. The permutation for the level is
πi = πi,1 ◦πi,2 ◦ · · · ◦ πi,m. Note that for the adversary to know the permutation
it must eavesdrop to m edges. Therefore in order to know all the permutations
it must eavesdrop to m2 edges.

Definition 2. We say that a node is compromised if an adversary knows all of
its inputs.

By the eavesdropping adversarial model, the top level of the graph is uncom-
promised by definition. We note that if every level has a node that is uncompro-
mised then the secrecy is preserved, simply as there is a random summand that
the adversary does not know.

Lemma 2. Any node that has at least one input edge from a node that is not
compromised that the adversary can’t eavesdrop to is uncompromised.

Proof. As the graph is a complete layered graph, for a node to be compromised
each of the nodes on the prior level must either be compromised or the adversary
must listen to the edge from the nodes. Otherwise, the adversary doesn’t know
the input from at least one uncompromised node in the prior level. �

Lemma 3. If on level i there are k compromised nodes then in order for the
adversary to compromise k′ nodes on level i− 1 it must be able to eavesdrop to
(m− k)k′ edges.

Proof. Follows from the previous lemma. �
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Corollary 1. In order for the adversary to compromise the graph it has to eaves-
drop to O(m2) edges.

Remark: The case in which the adversary controls some nodes and some edges
follows similarly.

7 An Election Protocol

In this section, we describe in detail the use of the AMPC building block we have
devised to construct a complete electronic voting protocol. We utilize the AMPC
building block to build a voting system that requires the use of no conventional
cryptography from the voter. The only requirement from the user is the ability
to perform additions and to choose random numbers. In addition we require
a threshold of secure channels between users and the top level of the AMPC
network in the initialization of the protocol. As discussed before, this can be
achieved with benign means.

In what follows we shall use the standard terminology of voting protocols.
We therefore have a group of players that we call the registrars. We have an-
other group of players that we call the talliers. There are m registrars, denoted
R1, ..., Rm and m talliers, denoted T 1, ..., Tm, such that at least one tallier and
one registrar are good. Our treatment will suppose that these groups are distinct
from the AMPC network, although it is possible to identify them with the top
level and bottom level, respectively. We note that in contrast to the previous dis-
cussion in the election protocol the registrars are not part of the AMPC network
but rather provide input values into the network.
The voting protocol is as follows.

1. Each registrar Ri chooses for each voter vj a random vector V IDi
j of length

d, for some security parameter d > 1, unilaterally and without consulting
other authorities. Ri sends to each voter vj , j = 1..n, the vector V IDi

j, over
a secure channel.

2. Voting phase: Each voter vj secretly chooses her ballot Bj , which is one
of a finite set of valid possibilities. She calculates her VID vector V IDj =∑m

i=1 V IDi
j (where vector summation is done component-wise). The voter

then chooses at random one of the coordinates 1..d, and produces a vector
Sj by adding Bj to that coordinate in V IDj . Then, the voter prepares for
each player in the top level of the robust Secret Preserving AMPC network
Ai , i = 1..m − 1 , a vector of random numbers (uniformly distributed) X i

j .
To the last player Am she prepares the vector Xm

j = Sj −
∑m−1

i=1 X i
j . Note

that for all 1 ≤ i ≤ m, these vectors are uniformly distributed, and that the
sum of all such vectors is Sj . To avoid modification by the AMPC players,
the voter uses the robustifying method described above in Section 5, e.g.,
she sends 〈ρ(!)Xj〉 for some security parameter k.
At the end of this step, each player A1,i at the bottom level of the AMPC
network sends its shares of the outputs Sj ’s to tallier T i.
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3. First Verification and tallying stage: Registrars send their VID vector shares
to the top level of a robust Secret Preserving AMPC network, in order to
compute the list of valid, anonymous VIDs. As in the previous step, the
bottom level of the AMPC sends the shares of the outputs V IDj’s to the
talliers.

4. Commitment stage: Tallier T i performs a commitment of the share vectors
of Sj that it holds. Registrar Ri performs a commitment of the share vectors
of V IDj that it holds. (The details of the commitment are irrelevant and
left unspecified; see discussion below).

5. Second Verification and tallying stage: The talliers and registrars open their
commitments, and all of the Sj , V IDj vectors are computed. Valid votes
corresponding to valid VID’s are tallied.

We now elaborate in detail on the protocol outlined above. In a set-up stage
(Registration) registration authorities issue voting credentials–VIDs–using a de-
centralized protocol such that no authority or collusion of up to m − 1 au-
thorities knows the voting credentials. Each registrar Ri chooses for each voter
vj a random vector of length d. We denote the vector chosen by Ri for vj by
(V IDi

j) ∈ (Zp)d. Registrar Ri sends to each voter vj the vector V IDi
j , over a

secure channel. For any homomorphic function of the VID pieces that is strongly
dependent on all of the shares, if at least one of the registrars is good then all
of the VIDs, V IDi = f(V ID1

j , . . . , V IDm
j ) are random vectors in (Zp)d. We

can now choose any appropriate homomorphic function f . However, in order for
the voters to be able to calculate any function over their input vector pieces
(i.e., on her set of inputs) we choose to use as the output function f simply
the sum function. This both allows the voter to calculate the value of her VID
easily without knowledge of higher mathematics, and enables a randomization
that is strongly dependent on each of the inputs. During the present stage no
set of corrupt registrars of size less than m can calculate which VID’s are valid.
After ballots have been cast using these VIDs, in stage 3 above the authorities
use AMPC to compute a list of anonymous VIDs, which is used to validate any
ballot cast.

In the Voting phase, each voter vj secretly chooses her ballot denoted Bj .
She calculates her VID vector by summing the share vectors she received from
the registrars. She then hides Bj (which could be only one of few possibilities)
by adding it to one of the components (randomly designated) of V IDj . We
denote the resulting vector by Sj . Each voter splits Sj and provides it as input
to a robustified, Secret Preserving AMPC. As robust AMPC is used, then by
Lemma 1 the adversary can’t change any of the values without being detected
(with high probability). The outputs of the bottom level of this AMPC are sent
separately to the talliers.

For the first verification and tallying stage, registrars first provide their VID
vector shares as input to the robustified, Secret Preserving AMPC, to compute
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a list of valid, anonymous VIDs. As in the previous step, the bottom level of the
AMPC sends the shares of the output V IDj’s to the talliers.

The use of the AMPC suffices to achieve anonymity of the voters. However,
in the setting of a voting protocol we have an additional problem that we don’t
have in other settings, of ensuring that the registrars provide correct inputs to
the players, and that the talliers do not change the values they receive from
the players. In particular, the problem is to ensure that these authorities do not
change values dependent on the values of the other players.

More specifically, in order to calculate the set of valid ballots we have to both
calculate the valid VID’s and to calculate the ballot vectors Sj ’s. Care should be
taken here to avoid the following possible attack: For every voter vj the ballot
of the voter is related to Sj, V IDj : it is the only non zero component of the
vector Sj − V IDj. Therefore if the adversary knows Sj , during this stage, it
could modify V IDj to change the ballot. Therefore, we need to calculate the
Sj , V IDj pairs in the following manner:

1. Commit to all of the values Sj and V IDj .
2. Open the commitment to calculate both values and publish them.

This is done in the next two steps of the voting protocol.
In the Commitment stage, talliers commit to the shares they receive from

the AMPC, and registrars commit to their shares. This could be done in several
ways. The first way, which is conceptually simple is for the i’th tallier to use
a commitment scheme like that of Pederson [Ped92] to commit to values of Si

j

and likewise for the i’th registrar to commit to the VID share vectors V IDi
j .

Although this is conceptually simple and requires no cryptography on the side
of the users it does require the use of conventional cryptography on the part of
voting authorities.

The second way that we can commit, in the spirit of AMPC, is as follows:
For a given security parameter d′, each tallier chooses a set of random vectors
〈ci,1

j , ..., ci,d′
j 〉 such that

∑d′

�=1 c
i,�
j = Si

j . For each ! player i chooses a random

permutation, permutes the vectors ci,�
j and publishes the permuted list of vectors.

The same is done by registrars with respect to V ID share vectors. Note that it is
computationally infeasible (depending on d′) to discover the permutations used.
In addition, when revealing the committed permutation, for a corrupt tallier (or
registrar) i to choose different permutations than the ones committed to so as
to coincidently produce legitimate entries is equivalent to a birthday attack on
Zd

p (the domain of VID vectors), which is also infeasible.
In the final stage, talliers calculate both V IDj and Sj and tally the valid

votes.

7.1 Security Analysis

A good election protocol must provide certain security properties. In this section,
we use the terminology of [CC97] to examine the characteristics of out voting
scheme.



Anonymity without ‘Cryptography’ 131

We first examine its Accuracy, i.e., the requirement that ballots cannot be
omitted, changed, or added (stuffed).

– For a ballot to be changed, players (registrars or auxiliary authorities) need
to modify their pieces of the ballot at some stage. With a robust AMPC,
this can generally be done with probability no higher than 1/(k!), for the
chosen security parameter k. In fact, this probability can only be reached
in the worst case, namely, when authorities know what ballot value they
change. As this information is not available to the authorities, they should
randomly guess the difference B′ − B between their desired value B′ and
any (unknown) value B, which can be done with probability 1

|B| per ballot.
Overall, the probability of undetectably changing x ballots is exponentially
decreasing in x. Furthermore, if there are y detected changes, then with high
probability (using Chernoff bounds) there is no more than O( 1

k! (
1

|B| +
1
p )y)

undetected modifications.
– For a ballot to be added, there must be a party with access to a V IDj by

Stage 2. As the only party who has this at Stage 2 is the voter herself (unless
all the registrars are corrupt), the probability of correctly guessing a valid
VID is 1

pd .
– For a ballot to be omitted, all the players at some level need to drop it.

As the adversary controls at most m− 1 players at each level of the Secret
Preserving AMPC we employ, this cannot be done.

Next, we examine Democracy, i.e., that only eligible voters can vote, and can
vote once only. That each eligible voter receives a valid VID pair depends on
the reliability of the registration phase; presumably, there is sufficient time for
the registration to ensure this. In order to be counted in the tally, a ballot must
have a valid VID. Hence, only valid ballots corresponding to eligible voters are
counted. Since no voter receives more than one usable pair of VIDs, each voter
can vote once only. Note that not even the registrars know the VID’s until after
the voting is over.

For Verifiability, i.e. the ability of each voter to verify that her vote is correctly
tallied, the protocol allows anyone to verify that published ballots are correctly
tallied, i.e., it achieves universal verifiability in the sense of [BY86], and for each
voter to separately verify that her ballot is included in the tally.

Finally, we consider Privacy. Since ballots are cast in pieces and combined
using AMPC, and likewise the VIDs that validate them, no ballot can be linked
to the voter who cast it.

An interesting property of the voting scheme above is that it provides receipt
freedom. That is, once a voter has voted, it is impossible for the voter to prove
how she voted. In other words, unless the voter sells her voting credential (VID)
prior to voting, there is no way for others to learn what a particular voter has
voted.

Finally, we note that while most of our techniques merely detect failures, they
can further be employed to recover or prevent them. These will be discussed in
the full paper.
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8 Anonymous Communication

In this section we show how we can use the Secret Preserving AMPC to achieve
anonymous communication. We ignore timing attacks, as they can be prevented
by batching a large (possibly all) inputs together. If a player Alice wishes to
communicate anonymously with a player Bob then Alice can send a pair (ad-
dress,message) splitting up both address and message in the AMPC network.
The network can then continue percolating the values as pairs until they reach
the bottom level. At the bottom level the address is reconstituted while leaving
the message split into shares. Each node on the bottom level then sends the mes-
sage share that it holds to the designated recipient who can add all the values
to receive the final value.

The network can also be used to return responses to the anonymous senders
by forming a virtual circuit through the levels, in a manner similar to
[Cha81,SGD97].

9 One Time Receipt

In this section we show how we can use AMPC to provide “one time receipts”.
In many applications where signatures are used the primary need is not for a
long-term commitment but for the ability to ensure (even if only once) that
the signature is indeed valid. For instance a signature on a cheque needs to be
validated only at the time of deposit. The study of signatures that can be verified
a finite number of times is not new, see for example [RB89,CR90]. Although such
signatures are weaker than standard signatures inasmuch as they can be used
only a constant number of times, they are interesting in that we can relax the
requirements needed to achieve them.

At a high level, the protocol for achieving such one time receipts has the
signer send to the verifier via an oblivious transfer with a “key escrow property”
a set of random keys. The oblivious transfer primitive we need can be, in turn,
implemented using AMPC. The verifier then chooses a message for the signer to
commit to (in general as long as two separate entities choose the keys and the
message the scheme will work). The signer then sends all of the keys along with
the message added (or subtracted) to them. The verifier can immediately check
that the keys that he holds are correctly calculated. A third party can check the
signature upon receiving the keys that the verifier does not hold.

We proceed to describe the protocol in two stages: First, we use AMPC to
achieve oblivious transfer with an additional property which we call a ‘key escrow
property’. We then show that any oblivious transfer with this property can be
used to achieve such ‘one time receipts’.

9.1 Oblivious Transfer with Key Escrow

We say that an oblivious transfer protocol has the key escrow property if there
exists a set of players that can disclose all of the secrets of the protocol as well as
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which secret was actually transfered. We can utilize the Secret Preserving AMPC
graph to achieve oblivious transfer as follows. The secrets are provided as input
to a Secret-Preserving AMPC, but at the bottom level, instead of agreeing on
a permutation the players agree simply on one index to output. All properties
follow similarly to the presentation above. The width of the graph prevents more
than one secret being passed on while the height of the graph prevents the sender
from knowing which secret was actually given. This oblivious transfer trivially
has the “key escrow property”, as the players of the AMPC can reveal all of the
keys, permutations, and the final index of the secret output.

9.2 One Time Receipts

A one time receipt is a protocol that has the following properties:

1. The party getting the receipt can verify its validity (at any time).
2. Other parties can verify it at the cost of revealing the key.

We can now define a method for signing using oblivious transfer with the key
escrow property.

1. Alice does an oblivious transfer of k pairs of keys {(Ki
1,K

i
2)}1≤i≤k . For each

pair, one of the keys is sent to Bob using oblivious transfer with key escrow.
(This is the only stage that utilizes the properties of AMPC.)

2. Bob sends to Alice the value he wants her to sign. This could be a message
where the last part is padded with a random value chosen by Bob.

3. For 1 ≤ i ≤ k Alice sends to Bob a pair of values 〈Ki
1 op1 M,Ki

2 op2 M〉,
where op1, op2 are chosen at random from {+,−}.

4. Bob verifies that for 1 ≤ i ≤ k, one of the pair of keys opens properly.
5. Bob can prove something simply by showing k′ of the pairs of keys, for some

chosen security parameter k′, and asking that the commitment be opened
on that pair, using the AMPC graph.

The following two lemmata state the correctness of the one-time receipt pro-
tocol.

Lemma 4. If m �= 0 then a signature on m is alterable to a signature on a
message m′ with probability at most (1

2 + 1
p )

k.

Proof. Let there be a signature on m. For each 1 ≤ i ≤ k, if m �= 0 then as one
of each pair of keys is not known, the signature contains a random number with
m either added or subtracted to it. Since it is not known which one–addition or
subtraction–a forger can guess it with probability 1/2. Any change will therefore
succeed only if the operation is correctly guessed, or if the unknown values in the
signature happen to form a valid signature on m′. This happens with probability
(1
2 + 1

p ). In order to forge the entire signature, the forger must correctly alter
k′ ≤ k keys, with probability of success at most (1

2 + 1
p )

k′ �
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Lemma 5. If the message m is chosen randomly from a field of size p then the
probability of successfully passing an invalid signature to Bob is (1

2 + 1
p )

(k−1).

Proof. For each key pair if the signer doesn’t know which one of the keys the
recipient has he can only guess which key not to sign properly. His guess will
succeed with probability 1

2 . If he does not succeed in guessing properly then he
can succeed in cheating iff there exists an m′ such that for every j, Kj

1 + m =
Kj

1 −m′; this happens with probability 1
p . As he must succeed in all of the pairs

we get the desired probability. �

Note that probabilities can be amplified by using k-tuples instead of pairs at the
cost of larger communication.
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Abstract. We present an electronic payment system offering a new kind
of tracing mechanism. This mechanism is optimistic fair, as any misuse
of the tracing mechanism is prevented by using an audit concept so that
a violation of privacy can be detected and will be prosecuted. Thus, com-
pared to previously proposed tracing methods our optimistic fair tracing
approach offers more privacy for customers and does not need any trusted
third parties, which simplifies the infrastructure of the payment system.
Our payment system is able to defend against blackmailing, kidnapping,
and bank robberies and can also be used to support investigations of
money laundering and illegal purchases.

1 Introduction

Anonymous payment systems based on blind signatures [Cha83] have been pro-
posed as a solution for privacy protecting payments over the internet. However,
von Solms and Naccache [vSN92] have shown that unconditional anonymity
may be misused for untraceable blackmailing of customers, which is also called
“perfect crime”. Furthermore, unconditional anonymity may ease money laun-
dering, illegal purchases, and bank robberies [JY96]. Due to these anonymity
related problems tracing of payments is a desired property for governments and
banks, and thus payment systems with revokable anonymity [SPC95, CMS96,
JY96, FTY96, DFTY97] have been invented, where one or more trusted third
parties can link the withdrawal and the deposit of coins with two different trac-
ing mechanisms:

Coin tracing: The withdrawn coins of a given customer are deanonymized so
that the bank will recognize these coins at deposit.

Owner tracing: The coins deposited by a given merchant are deanonymized
so that the identity of the withdrawer is revealed.

Compared to physical cash such tracing features of electronic cash are clearly
superior, e.g. with physical cash owner tracing is not possible and coin tracing
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is rather inefficient. In our opinion tracing capabilites of electronic payment
systems should also be restricted to coin tracing, as owner tracing may offend
the privacy of honest customers. For example, if a merchant sells legal and illegal
goods and uncontrolled owner tracing is used to determine all his customers,
then even innocent customers buying only legal goods will be suspected to be
criminals, without being able to notice the investigations against them.

Furthermore, all currently known traceable electronic payment systems have
one general problem, which we call the fair-tracing-problem: No one is able to
control the legal usage of tracing, leading to the possibility of illegal tracing.

Legal tracing: Tracing is legal, if it has been permitted by a judge or by the
withdrawer.

Illegal tracing: Tracing is illegal, if it is used without the permission of a judge
or of the withdrawer.

Fair tracing: Fair tracing is achieved, if legal tracing is always possible, but
illegal tracing is inhibited.

None of the previously proposed payment systems supports fair tracing, as it is
hard to control the usage of tracing mechanisms: Even in the case that a quorum
of trusted third parties have to agree to trace a given transaction, illegal tracing
cannot always be prevented, as only a few number of parties have to conspire and
even an honest trusted third party cannot detect illegal tracing performed by
other trusted third parties. It is also impossible for a traced customer to detect
afterwards that tracing has occurred, particularly in the case that tracing was
illegal.

We introduce a new kind of tracing mechanism, which supports more privacy
than all other known approaches, although our fair coin tracing can be carried
out by the bank without any help of trusted third parties. We believe that fair
coin tracing is the right balance between uncontrolled, undetectable trusted third
party based tracing and no tracing at all. Our proposed tracing mechanism is
withdrawal based, which means that the decision whether the coins should be
traceable or not must be made at their withdrawal.

We call our approach optimistic fair tracing (according to the definition of
optimistic fair exchange [ASW97]) as it doesn’t strictly prevent illegal tracing.
Instead tracing is always detectable afterwards by the traced person and if trac-
ing turns out to be illegal this can be proven to a judge. We conclude that only
legal tracing will be performed, as illegal tracing will be detected and prosecuted,
which most likely discourages parties interested in illegal tracing.1

The remainder is structured as follows: We present our new approach for
tracing in section 2 and show how to implement a payment system with this
optimistic fair tracing in section 3. In section 4 we discuss how our payment
system copes with blackmailing of customers and banks, and how it supports
investigations of money laundering and illegal purchases. Finally, we compare
our system to other approaches for tracing in section 5.
1 A similar idea is used to prevent double spending in offline payment systems [CFN88],
where the bank can only afterwards detect double spending and identify the cheating
customer.
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2 A New Approach for Tracing

We base our approach on the concept of marking which was invented by Kügler
and Vogt [KV01] to prevent blackmailing of customers. In this section we will
sketch this mechanism in short and show how to extend it to a new privacy
protecting tracing mechanism.

2.1 The Marking Mechanism

Physical cash, particularly banknotes, have two important features, which can
be used for tracing:

– The serial numbers of the banknotes can be annotated.
– The banknotes can be marked, e.g. with a special color.

The goal of both approaches is to support tracing of banknotes similar to coin
tracing as they enable recognition of spent banknotes. An analogy to the mark-
ing of banknotes with a special invisible color was suggested in [KV01] for a
new blackmailing resistant anonymous payment system. Due to the properties
of electronic coins, the electronic marking mechanism is even stronger: In an
online payment system the bank is involved in every payment and the usage of
a marked coin will immediately be recognized by the bank, which leads to an
effective tracing mechanism. However, an uncontrolled electronic marking mech-
anism may be misused by the bank to deanonymize payments of all customers,
which obviously enables illegal tracing.

In the proposed payment system marking of coins is only possible with the
admission of the customer, although marking is invisible for anybody but the
bank. For every withdrawn coin the bank has to confirm that the coin is indeed
unmarked (also called valid), unless the customer has requested marked coins.
For this confirmation protocol a designated verifier proof [JSI96] is used, because
only the legitimate customer shall be convinced of the validity of a coin. Every
other party can falsely be convinced by the customer of the validity of a coin
even if the coin is marked.

However, this marking mechanism cannot be used for withdrawal based coin
tracing, because the customer always detects marked coins and thus knows that
his payments will not be anonymous. Therefore, we extend the marking mecha-
nism to support coin tracing.

2.2 Extending the Marking Mechanism

If all customers trust the bank not to do any illegal tracing, we may simply
omit the confirmation protocol. However, not everyone is willing to trust a bank
that way. Our solution is to make tracing auditable and illegal tracing provable:
A customer can always verify his previously withdrawn coins later and may
prove any attempt of illegal tracing to the public, especially to a judge or to the
press. Thus a dishonest bank may be punished and denounced. In our opinion
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no bank can afford illegal tracing, because e.g. the bank may loose its license or
its customers.

For auditable tracing the bank never proves to anybody that the withdrawn
coins are unmarked. Instead a proof is given afterwards by publishing a single
information which uncovers marked coins and enables every customer to check
the validity of all his coins. If the bank traced a customer, this check will fail. In
this case the bank must prove that this tracing was legal, by showing a judge’s
permission for tracing this customer.

2.3 Uncovering Marked Coins

Uncovering marked coins is strongly related to the life cycle of a coin generation,
which is shown in figure 1. Those life cycles are necessary for security and storage
reasons [Sch97]. For every new generation of coins new key pairs are generated,
distributed, and activated. Then these key pairs are used during the generate
phase to issue coins. The generate phase ends with the deactivation of the keys
for withdrawal. Coins can be used for payments during the accept phase, which
ends with the deactivation of the keys for payments.

for withdrawal
deactivate keysactivate

keys
generate

keys
deactivate keys

for payment
deactivate keys
for redemption

timeredemption phaseaccept phase

generate phase

audit phasetracing phase

Ω
uncover marking

spend the marked coin detect marking

Example:

issue a marked coin

Fig. 1. Life-cycle of a coin generation with tracing extensions

Afterwards, during the redemption phase coins will only be accepted non-
anonymously and the coins can only be deposited to the same account, from
which they were withdrawn. Thus the bank need not check the coins for marking.
As marks are ignored in the redemption phase, marking can safely be uncovered
during this phase.

During the tracing phase marked coins are indistinguishable from unmarked
coins, but only marked coins are traceable. Thus, tracing is undetectable and
it is desired that the tracing phase is a certain time period Ω longer than the
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accept phase: If a coin is spent at the end of the accept phase, tracing is still
guaranteed to be undetectable for at least the time period Ω. Finally, at the
beginning of the audit phase marking is uncovered and the customers can check
whether their coins have been marked or not.

From the customer’s view the tracing phase should not be too long, as it is
desired that illegal marking can be detected as soon as possible. However, the
generate phase, the accept phase and Ω should not be chosen too short. For
example these time periods can be chosen as follows: The tracing phase can be
half a year, with an Ω of two months, which results in an accept phase of four
months. Thus, the generate phase can be about two or three months.

3 Implementation of Auditable Marking

We base our implementation on the payment system of Kügler and Vogt [KV01].
Their marking mechanism was based on a variant of an Okamoto-Schnorr blind
signature [Oka92] in combination with a Chaum-van Antwerpen undeniable sig-
nature [CvA89,Cha90]. The main idea of this construction is to use the blind
signature to implement anonymity and the undeniable signature to implement
marking. In this paper we assume that the bank will never prove the validity
of an undeniable signature in a confirmation protocol, but still may prove the
invalidity in a disavowal protocol.

3.1 Implementation of the Marking Mechanism

The system parameters are prime numbers p and q with q|(p− 1) and elements
g1, g2 and g3 of (Z/pZ)∗ of order q. The bank chooses a key pair

SKB := (s1,s2) ∈R (Z/qZ)2

PKB := v = gs1
1 gs2

2 mod p

for the blind signature and a key pair

SKU := x ∈R Z/qZ
PKU := y = gx

3 mod p

for the undeniable signature scheme. Then it publishes the public keys PKB and
PKU .

The withdrawal protocol is shown in figure 2. For every withdrawal the bank
creates a new random generator α = gr

2 mod p, computes an undeniable sig-
nature w = αx mod p as a certificate for α and sends these values to the cus-
tomer. For every coin the bank and the customer interact in an Okamoto-Schnorr
blind signature protocol, where the bank uses the generators g1 and α. The cus-
tomer transforms this signature to a signature based on the generators g1 and
α′ = αδ mod p using a randomly chosen δ ∈R (Z/qZ)∗ for every coin. This trans-
formation is needed, because otherwise the bank could recognize coins at deposit
on behalf of the generator α. Similarly, the certificate w has to be transformed
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to w′ = wδ = α′x mod p by the customer to circumvent recognition by the bank
and to be a valid undeniable signature for α′. At the end of the withdrawal
protocol the customer possesses coins of the form (m, c′, S′

1, S
′
2, α

′, w′).
If the bank is instructed to issue marked coins, it simply chooses and stores

a random undeniable signature key xM , which is used instead of x to compute
the certificate w = αxM mod p. At deposit such a marking will be detected,
as the key x will fail in the verification process. In this case the bank tests
w′ ?= α′xM mod p for all stored marking keys xM . If this test succeeds for one of
the marking keys, the coins can be associated with a certain withdrawal.

Once per withdrawal:
For every coin:

g1, g2 and g3 are some elements of (Z/pZ)∗ of order q

(s1, s2) ∈R (Z/qZ)2 is the blind signature private key of the bank
v = gs1

1 gs2
2 mod p is the blind signature public key of the bank

y = gx
3 mod p is the undeniable signature public key of the bank

p and q are prime numbers such that q|(p− 1)

a = gk1
1 αk2 mod p a′ = a·gβ1

1 α′β2vγ mod p

c = c′ − γ mod q
c′ = H(m,α′, a′)

S′
1 = S1 + β1 mod q

S′
2 = δ−1S2 + β2 mod qS2 = k2 − cs2r−1 mod q

S1 = k1 − cs1 mod q

(k1, k2) ∈R (Z/qZ)2
a

(β1, β2, γ) ∈R (Z/qZ)3

δ ∈R (Z/qZ)∗

α′ = αδ mod p
w′ = wδ = α′x mod p

S1, S2

coin: (m, c′, S′
1, S

′
2, α

′, w′)
a′ ?= g

S′
1

1 α′S′
2vc′ mod p

r ∈R (Z/qZ)∗

w = αx mod p

α,wα = gr
2 mod p

c

Bank Customer

x ∈R Z/qZ is the undeniable signature private key of the bank

Fig. 2. Withdrawal of unmarked coins based on an Okamoto-Schnorr blind
signature combined with a Chaum-van Antwerpen undeniable signature
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3.2 Separating the Tracing Capabilities from the Bank

The capability of tracing can be removed from the bank and transfered to a
separate tracing authority. The advantage of such a separation is that marking
is invisible even for the bank. This clearly achieves a higher level of privacy
protection, as the bank learns nothing about investigations against its customers.
Again, the tracing authority need not be trusted, because illegal marking can
always be detected and proven by the customer afterwards. It directly follows
that the tracing authority is definitely not a trusted third party.

Figure 3 shows how the withdrawal is split into issuing coins by the bank
and the possibility of marking coins by the tracing authority. At deposit only
the tracing authority can check the undeniable signature of the coins and can
trace the owner of each marked coin.

For simplicity we omit this extension in the rest of the paper as it leads in
principle to the same solutions.

Once per withdrawal:

For every coin:

v = gs1
1 gs2

2 mod p is the blind signature public key of the bank

r ∈R (Z/qZ)∗

w = αx mod p

α,wα = gr
2 mod p

k∗ ∈R Z/qZ

a∗ = αk∗
mod p

S1 = k1 − cs1 mod q
S∗

2 = k2 − cs2 mod q

a∗

S2S2 = k∗ + S∗
2r

−1 mod q

α,w

a = gk1
1 gk2

2 a∗ mod p

x ∈R Z/qZ is the private key of the tracing authority
y = gx

3 mod p is the public key of the tracing authority

Tracing Authority Bank

c

a

S∗
2

S1, S2

(s1, s2) ∈R (Z/qZ)2 is the blind signature private key of the bank

(k1, k2) ∈R (Z/qZ)2

Fig. 3. The tracing authority takes the responsibility for marking, while the
bank only issues coins
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3.3 How to Uncover Marked Coins

We suggest the following mechanism to uncover marking: The private undeniable
signature key x can be published at the beginning of the audit phase. Revealing
this key has no impact on the security of the Okamoto-Schnorr signature, which is
completely independent of the undeniable signature. Although anybody can use
x to create valid undeniable signatures, this cannot be misused, as the undeniable
signatures aren’t checked anymore since the beginning of the redemption phase.

However, this enables the customer only to detect marking by testing whether
w

?= αx mod p, but he needs additional information to prove this to other par-
ties. Therefore, the bank has to issue an additional signature S = Sigbank(α,w,
customer ID, coin generation) at the beginning of every withdrawal. Then the
customer is able to prove that the bank gave him marked coins of a specific coin
generation.

3.4 Secure Redemption

Instead of spending the withdrawn coins, a customer can always redeem unspent
coins to his own account. As marks can easily be removed after uncovering them
in the audit phase, we do not check the mark w′ of every coin during redemption.
Anyway, marks are irrelevant in the redemption phase, as a coin can only be
redeemed to the same account from which it has been withdrawn. We guarantee
this property with the secure redemption method.

The idea for secure redemption of a coin C = (m, c′, S′
1, S

′
2, α

′) is that the
customer has to reveal the used blinding factors B = (β1, β2, γ, δ) to the bank,
which then takes advantage of the mapping between the bank’s and the cus-
tomer’s view on a coin:

S′
1 = S1 + β1 mod q

S′
2 = δ−1S2 + β2 mod q
c′ = c+ γ mod q
α′ = αδ mod p

With the given blinding factors the bank calculates the blinded values (c, S1,
S2, α), looks them up in its database and checks that the customer has indeed
withdrawn this coin. However, it is a property of blind signatures providing
unconditional anonymity that for every other coin C = (m, c′, S′

1, S
′
2, α) different

blinding factors B can be found that map this coin to the same blinded values
(c, S1, S2, α).

In general the computation of blinding factors B can be prevented, if one
way functions are used for blinding, e.g. by choosing γ = H(R) mod q. In our
case finding a blinding factor δ already requires to calculate discrete logarithms.
Therefore, to redeem a coin C it suffices to send C and the used blinding factor
δ to the bank, which then calculates α = α′δ−1

mod p and looks up α in its
database to retrieve the identity of the withdrawer. If the signature of the coin
C is valid, the coin is accepted for redemption and the amount is credited to the
account of the ascertained withdrawer.
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4 Properties of the Payment System

Based on the described marking mechanism, we will sketch how this mechanism
may be applied to solve anonymity related problems.

4.1 Withdrawal Based Tracing

Withdrawal based tracing can be used in case a customer is suspected of money
laundering or purchasing illegal goods. In such a case of legal tracing, marking
has to be authorized by a judge, who issues a certificate for the marking key yM =
gxM
3 mod p. This certificate must at least include yM , an identification for the

customer to be traced and the coin generation(s) for which marking of withdrawn
coins is allowed (e.g. Cjudge = Sigjudge(yM , customer ID, coin generation)).

When a marked coin is deposited, the bank will recognize that the undeniable
signature w′ was not given with x and the bank will check whether the coin was
generated with a stored marking key xM . A traced coin is always accepted by
the bank, which records this deanonymized transaction, as it can identify the
traced customer on behalf of the used xM .

In the audit phase the customer should be able to detect marking. Therefore,
at the beginning of the audit phase the bank has to publish all marking keys
xM , which were used for tracing, together with an identifier of the judge, who is
responsible for this tracing.

If the customer detects marking, he tests all the published marking keys to
find out which judge issued the certificate for tracing. Then he can ask either
the bank or the judge for the corresponding certificate Cjudge, which proves that
tracing was legal. Alternatively, the bank can directly give the used marking
keys together with the corresponding Cjudge to the traced customers. For privacy
reasons this certificates should not be made available to persons other than the
traced customers.

If none of the published marking keys was used for marking the customer’s
coins, the customer can prove the illegal marking by presenting S and (α,w,
customer ID, coin generation) to a judge or to the press. If S is a valid signature
on (α,w, customer ID, coin generation), but w was not generated with x or any
of the published xM , the fact of illegal marking may be made public and the
bank can be punished.

4.2 Resistance against Blackmailing and Kidnapping

Withdrawal based tracing initiated by the customer can be used to fight black-
mailing and kidnapping. The difference between blackmailing and kidnapping is
that a kidnapper has physical control over his victim. Thus, the actions of the
victim are observed by the kidnapper. In contrast to blackmailing, a kidnapper
risks to be identified by his victim.

In both cases the customer should instruct the bank to issue marked coins,
which will be detected at deposit. Depending on the choice of the customer the
bank can accept or reject detected blackmailed marked coins at deposit. If the



Fair Tracing without Trustees 145

customer later instructs the bank to reject all his blackmailed coins, the bank
will immediately refund all the unspent blackmailed coins to the customer. Then
the bank can also prove with the disavowal protocol that the rejected coins have
been blackmailed.

However, in the audit phase the bank must be able to prove that the issued
marked coins are not illegally marked. Therefore, the bank needs a certificate
from the customer, which proves that tracing was initiated by the customer.
Then the bank will publish the corresponding marking key at the beginning of
the audit phase together with a special flag, which indicates that the customer
himself instructed the bank to trace his coins with this marking key.

In the case of kidnapping issuing such a certificate might be a problem, as the
kidnapper observes the actions of the customer. This problem can be prevented,
if the customer always has to issue a certificate Ccustomer = Sigcustomer(yM ,
customer ID, coin generation) before a withdrawal. This certificate either au-
thenticates the customer or it allows tracing depending on which of the following
keys is used for the signature Ccustomer :

Authentication key: The customer uses this key for authentication towards
the bank.

Emergency key: The customer uses this key for authentication in case of an
emergency.

When the customer has set up his account, he certified both the authentication
key and the emergency key with his signature key, for which a certificate is
available from a PKI, and gave these certificates only to the bank.

As we assume that the kidnapper cannot distinguish between the usage of
the authentication and the emergency key, the customer can inform the bank
about a blackmailing or a kidnapping by using the emergency key for issuing
the certificate Ccustomer (a similar idea can be found in [DFTY97]).

Thus, for every withdrawal the bank chooses a new marking key xM and cal-
culates the challenge (yM , customer ID, coin generation) with yM = gxM

3 mod
p. If the customer signs this challenge with the emergency key, the bank will
issue coins marked by xM and may prove that the customer instructed the bank
to mark these coins by presenting a certificate Ccustomer signed with the emer-
gency key. As the emergency key itself is certified with the signature key, the
customer cannot deny that he signed Ccustomer with his emergency key.

4.3 Resistance against Bank Robberies

The ability to forge banknotes is a major threat for governments and banks, as
a huge amount of forged banknotes will let the financial system of a country
collapse. This situation is even worse with coin based anonymous electronic
payment systems, as forged coins cannot be distinguished from regularly issued
coins. This problem was first discovered by Jakobsson and Yung [JY96] who
introduced the bank robbery attack, where the goal is to illegally obtain money
from the bank: A robber can receive money either by gaining access to the
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bank’s private signature keys, which are used to mint (unmarked) coins, or by
blackmailing the bank to issue a number of coins in a non-regular withdrawal, so
that tracing mechanisms will be circumvented by the blackmailer. The problem
of bank robberies was already addressed in several papers (e.g. [JY96, PP97,
JM98,Jak99]), however the previously proposed practical solutions rely on trust
in a third party and thus offer only restricted privacy for the customers.

Our payment system cannot guarantee that the marking mechanism can also
be used in the case of bank robberies, because the robber may gain the undeniable
signature key x or force the bank to prove that the coins are unmarked (e.g. using
a confirmation protocol for the undeniable signature).

A basic assumption of our approach to prevent bank robberies is that they do
not occur often. After a bank robbery, the bank will immediately finish the accept
phase of the affected coin generation to prevent spending of robbed coins. Then
the customers have to redeem their coins with the secure redemption method
and thus may exchange the legally withdrawn and unspent coins against new
coins. The bank robber cannot redeem the robbed coins, as the bank always
detects that these coins were not issued in a regular withdrawal, as their α will
not be stored in the database of withdrawn coins and the secure redemption also
prevents mapping of robbed coins to legally withdrawn and already spent coins
(as explained in section 3.4).

We still have to prevent the bank from cheating by erasing withdrawal tran-
scripts from its database so that those coins cannot be redeemed anymore. In
this case the customer may present the signature S = Sigbank(α,w, customer ID,
coin generation) given at the withdrawal (see section 3.3) to prove that the bank
has indeed issued this coin. Note that a bank robber, who is able to forge this
signature S and wants to accuse the bank of having erased his withdrawal tran-
scripts, faces the problem that he has to identify himself to a judge and risks to
be prosecuted for the bank robbery.

5 Comparison of Tracing Methods

The advantage of systems with revokable anonymity is the ability of tracing
and even invalidating any withdrawn coin. Thus, blackmailing of customers and
investigation of money laundering or illegal purchases can easily be solved. In
our system tracing is only possible, if the customer or a judge has decided to
make the coins of a certain withdrawal traceable. If it was not decided to make
the coins traceable, this decision is unalterable afterwards.

An advantage of our scheme is it’s strong privacy, because unmarked coins
enjoy unconditional anonymity, while our payment system is very efficient in
fighting anonymity related problems. Instead of using steamroller tactics to
investigate blackmailing, money laundering, and illegal purchases our tracing
method can only be applied for tracing suspicious persons by marking the with-
drawn coins and tracing them to the depositing persons. Anyway, this tracing
will be detected in the audit phase so that illegal tracing is inhibited.
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Due to the unconditional anonymity, our payment scheme protects the pri-
vacy of payments until the end of time. In contrast, illegal tracing will be pos-
sible in payment systems offering only computational anonymity (e.g. [CMS96,
DFTY97]) as soon as the used cryptosystem can be broken. Then even an honest
trusted third party might not be able to inhibit illegal tracing.

The simple infrastructure of our system is clearly another advantage. In con-
trast to systems with revocable anonymity our approach doesn’t rely on trusted
third parties. In general a trusted third party causes additional costs, which
the customer may not be willing to pay for. As a trusted third party man-
ages sensitive personal data or even administrates security relevant data, it has
to be protected carefully. However, the more secure the trusted third party is,
the more expensive is the service of the trusted third party. Other arguments
against the use of trusted third parties may be found in the discussion of key
escrow [AAB+98].

6 Conclusion

We have presented a new payment system with a fair tracing mechanism, which
is able to defend against blackmailing, kidnapping, and bank robberies and can
also be used to support investigations of money laundering and illegal purchases.

Although our payment system allows tracing, it offers more privacy than
any other system offering the same features: A traced customer will afterwards
detect the fact of being legally or illegally traced. If the tracing turns out to be
illegal, the customer can prove this violation of his privacy and the bank can be
prosecuted. Nevertheless, our payment system requires only a simple and cheap
infrastructure, as it does not rely on trusted third parties.

Finally we’d like to recall that our payment system is quite modular, as a
separation of issuing and marking coins is possible. If desired, a tracing authority
can mark and trace coins, which is even invisible to the bank. This tracing
authority need not be trusted, as our tracing mechanism is auditable.
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Financial cryptographers are heroes, because their efforts both increase the
economic well being of most of the world’s peoples, and more importantly, pre-
serve their liberty. I shall explain.
Money laundering is a terrible crime—right? Government officials and their

allies in the press seem on almost a monthly basis to demand new powers to deal
with the terrible menace of money laundering. Exactly what is this crime?
If you hesitate while trying to come up with a definition, you have begun to

understand part of the problem. Money laundering is hard to define because it
is not a crime like murder, robbery, or rape, where the evil act is clear. It is a
crime of motive rather than activity. In fact, two different people can engage in
the exact same set of activities, and one can be guilty of money laundering while
the other is not. In fact, money laundering has only been illegal in the US since
1986, and it is not illegal in all countries.
Government efforts to combat money laundering will directly or indirectly

affect the institutions for which you work. Thus, it will be important to be aware
of the rules and regulations against money laundering, and the detrimental effect
that they have on economic growth and personal liberty.
To observe, let alone regulate, money laundering is the financial equivalent of

the Heisenberg uncertainty principle in quantum mechanics, whereby the act of
observing the activity changes its nature. There are close to an infinite number
of ways to “launder” money, and sophisticated money launderers know what the
government rules and regulations are, and what information financial institutions
are supposed to monitor and report. Thus, the behavior of money launderers
instantly changes as the rules, regulations, and monitoring systems change. It is
a classic no-win situation for the regulators.
Money laundering is generally understood to be the practice of taking ill

gotten gains and moving them through a sequence of bank accounts so they
ultimately look like the profits from legitimate activity. Institutions, individuals,
and even governments who are believed to be aiding and abetting the practice of
money laundering can be indicted and convicted, even though they may be com-
pletely unaware that the money being transferred with their help was of criminal
origin. This makes as much sense as convicting an automobile manufacturer or
dealer because someone who has purchased a car uses it in a criminal act, or
charging the telephone company with a crime when someone uses a telephone
to facilitate a criminal act.
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Financial institutions are required to “know your customer,” which means
they are required to know that their customers are not doing anything wrong -
an impossible task. This is a dangerous principle because it could obviously be
extended to any business from which a good or service sold is used for illegal
purposes.
We are told we must stop money laundering in order to combat terrorism,

drug dealing, assorted criminality, and tax evasion. However, if you look at the
results of this so-called war on money laundering, you find that it has failed
to produce the advertised results and, in fact, has not been cost effective, has
resulted in wholesale violations of individual civil liberties (including privacy
rights), has violated the rights of sovereign governments and peoples, has created
new opportunities for criminal activity, and has actually lessened our ability to
reduce crime.
Anti-money laundering advocates claim that strong anti-money laundering

legislation and regulations are needed to prevent terrorism. Without a doubt,
terrorism is a real threat, and has the potential to destroy millions of lives and
severely damage our economic and social infrastructure. Chemical, biological and
even nuclear weapons probably have leaked into the hands of terrorists from the
former Soviet Union and former communist Eastern European states. Simply
stated, the threat is real and ought not to be treated lightly. However, that said,
is there evidence that the anti-money laundering activities have stopped or are
likely to stop terrorist activities? The answer is no, for the following reasons.
Terrorists for the most part only need modest amounts of money to ply their
trade, and such relatively small sums can easily be hidden in normal looking
transactions. In fact, anti-terrorism experts report that terrorists frequently use
innocent sounding NGO’s to fund their activities. These same experts tell us that
the only effective way to destroy terrorist organizations is to infiltrate them. In
addition, the NSA and CIA have long had the legal authority they need to
monitor the activities (including financial) of terrorist organizations. In sum,
there is no evidence that the arsenal of anti-money laundering tools employed
by governments has stopped any major terrorist activity, nor is it likely to have
any impact on committed terrorists in the future. In fact, the claims made by
some in the anti-money laundering war, that their activities reduce terrorism,
may well be giving an erroneous and false sense of security, which only increases
the risks.
The most common claim of the anti-money laundering advocates is that

anti-money laundering tools, such as Currency Transaction Reports, Suspicious
Activity Reports, and asset forfeitures are needed to stop illegal drug trafficking.
Most objective observers of the “war on drugs” acknowledge that the war is not
being won and, at best, is a stalemate. For instance, the Governor of New Mexico,
Gary Johnson, recently wrote in the New York Times (Dec. 30, 2000):

I’m neither soft on crime nor pro-drugs in any sense. Yet when I ask
whether our costly, protracted war on drugs has made the world safer
for our children, I must answer no. The federal anti-drug budget in 1980
was roughly $1 billion. By 2000, that number had climbed to nearly
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$20 billion, with the states spending at least that much. Yet according
to the federal government’s own research, drugs are cheaper, purer and
more readily available than ever before.

Governor Johnson’s skepticism is shared by many knowledgeable and thought-
ful people across the political spectrum, including former Secretary of State
George Shultz and Nobel Prize winning economist Milton Friedman, who be-
lieve drugs should be decriminalized.
Those who call for decriminalization are not denying that drugs destroy the

lives of many people and cause great harm to society. They are merely arguing
that the war on drugs, including the war on money laundering, has many more
negatives than positives.
The anti-money laundering laws certainly have made life more inconvenient

for drug dealers, but not so inconvenient as to get them to change their ways.
Part of the reason is that fewer than 1,000 people per year have been convicted
of money laundering in the US since it became illegal. The amount of money
confiscated is a tiny fraction of 1% of the total amount of money the government
says is laundered each year. (It is worth noting that other governments, such as
the UK, have been no more successful than the US in this endeavor.) In sum,
the deterrent effect is almost nil. Laundering money is a far easier task than
smuggling literally thousands of tons of marijuana plus vast quantities of other
illegal drugs into the US each year.
The curse of the drug culture is not going to be stopped with sporadic attacks

on drug supplies or increases in anti-money laundering activities. At times, after
listening to those who advocate doing more of what clearly doesn’t work, one
cannot help but wonder what they might be smoking. The drug war is only
going to be won by substantially reducing the demand for drugs, which is an
educational task, not a police task.
Another common reason given in favor of anti-money laundering activities is

to reduce various sorts of crimes such as kidnappings, smuggling and racketeer-
ing. However, the empirical evidence indicates that anti-money laundering (and
anti-drug) laws have, in fact, stimulated kidnappings, smuggling and racketeer-
ing. Kidnappings are soaring in parts of Latin America, particularly Colombia,
to many thousands per year, largely because of the drug war. Yet, at the same
time, honest individuals are having increasing difficulties hiding their assets from
potential kidnappers, corrupt governments, and other criminals because of the
anti-money laundering laws and regulations. In fact, a whole new criminal indus-
try has grown up because of these laws and regulations - the money laundering
industry. We now know that much of what we call organized crime began during
Prohibition, which gave rise to the bootlegging industry. Like Prohibition, what
is happening is a classic case of the police creating an increased demand for their
services by inventing new crimes which, in turn, creates a new criminal industry
to evade the new laws.
Former Federal Reserve Governor Lawrence Lindsey (and now President

George W. Bush’s chief economic advisor) has been an outspoken critic of the
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current war on money laundering, primarily on the grounds that it has not been
cost effective and has violated basic privacy rights. Lindsey has noted:

Between 1987 and 1995, the government collected 77 million currency-
transaction reports, something on the order of 62 tons of paper. Out
of that, it was able to prosecute 3,000 money-laundering cases. That
is roughly one case for every 25,000 forms filed. In other words, entire
forests had to be felled in order to prosecute one case. But it gets worse:
Of the 3,000 money-laundering cases prosecuted, the government man-
aged to produce only 580 guilty verdicts. In other words, in excess of
100,000 reports were filed by innocent citizens in order to get one con-
viction. That ratio of 99,999 to one is something we normally would not
tolerate as a reasonable balance between privacy and the collection of
guilty verdicts.

It gets worse. Banks are required to supply the government with not only
Currency Transaction Reports but also Suspicious Activity Reports. These re-
ports impose huge regulatory costs on banks and require bank employees to
operate as police officers. As a result, the total public and private sector costs
greatly exceed $ 10,000,000 per conviction. This whole effort not only does not
make any economic sense, but is clearly incompatible with a free society. The
anti-money laundering laws allow almost complete prosecutorial discretion. For
instance, any potential government official who did not pay the “nanny tax”
could be subject to prosecution under the anti-money laundering statutes, be-
cause it was a crime involving money. Again, Governor Lindsey noted: “we have a
literally unlimited application of that law to anyone engaging in any transaction
who has ever committed a crime ? [no matter how minor].”
It is clear that former Vice President Al Gore and many of his staff could

have been charged with violating the anti-money laundering statutes because of
the Buddhist temple fundraising scam, if he did not have such a sympathetic
prosecutor in Attorney General Janet Reno. Newspaper reports give the impres-
sion that there are many money laundering violations in political fundraising
by all parties. However, virtually no one is prosecuted since such prosecutions
would not be popular with the political class.
However, a corporate leader (particularly one who had not made large con-

tributions to the appropriate politician) probably would have been subject to
both civil and criminal liabilities for the same “studied ignorance” of activities
performed by underlings that were ignored in Al Gore’s case.
Thomas Jefferson said: “When the government fears the people, there is lib-

erty. When the people fear the government, there is tyranny.” The anti-money
laundering statutes are a clear attempt to get the people to fear the government.
For those of you who doubt that government officials use such statutes to rou-
tinely violate fundamental privacy rights and prosecutorial discretion, I suggest
that you read an excellent new book by the very distinguished economist and
former Assistant Secretary of the US Treasury, Dr. Paul Craig Roberts, entitled,
The Tyranny of Good Intentions , as well as my own book, The End of Money
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and the Struggle for Financial Privacy. Former judge John Yoder, who was the
first head of the Asset Forfeiture Office of the US Department of Justice, wrote:

When I set up the Asset Forfeiture Office, I thought I could use my
position to help protect citizens’ rights, and tried to ensure that the US
Department of Justice went after big drug dealers and other big time
criminals, rather than minor offenders and innocent property owners.
Today, overzealous government agents and prosecutors will not think
twice about seizing a yacht or car if they find two marijuana cigarettes
in it, regardless of where they came from. I am now ashamed of, and
scared of, the monster I helped create.

There is a certain irony in the fact that many of those who are the biggest
advocates of giving the government more power to control money laundering in
the name of crime reduction are in fact impairing our ability to reduce crime.
Perhaps the most common criminal act is for one person to try to steal another
person’s money. This is most often paper currency. There were approximately
18,000 murders in the US last year, and tens of millions of robberies and bur-
glaries. Many of these crimes were, probably, in pursuit of paper currency. An
easy way to reduce the amount of crime is to greatly reduce the amount of paper
currency by going to various forms of electronic currency. The technology now
exists - transfers from computer to computer, or to and from wireless devices
and smart cards. A major barrier in the widespread adoption of such devices
is the desire of the citizens to have the same degree of anonymity with such
devices that they have with paper currency. Yet government officials have tried
to restrict the use of the necessary encryption (those of you who are financial
cryptographers well understand how absurd such restrictions are) and limit the
amounts of money that can be transferred with such devices, unless there is an
audit trail that enables government agents to spy on everyone’s financial trans-
actions. Those who advocate such restrictions have no understanding of costs
and benefits and little appreciation of liberty and financial privacy.
The most dubious reason often given by the advocates of anti-money laun-

dering laws and regulations is that of trying to stop tax evasion. First, such
advocates seem to have problems differentiating between tax evasion and tax
avoidance - which is not only legal but also a right. Second, such advocates seem
to be unable to differentiate between evading reasonable taxes imposed by hon-
est democratic governments and unreasonable taxes imposed by dishonest and
corrupt governments.
Recently, the Organization for Economic Cooperation and Development

(OECD), the club of 29 rich nations, has denounced and is threatening 35 mainly
smaller and poorer nations for engaging in “unfair tax competition.” What the
leaders of the OECD are upset about is the fact that many of their citizens
are moving financial assets to these non-OECD jurisdictions with less punitive
tax laws. These smaller countries have found that it is good business to build
financial sectors based on reasonable tax rates and financial privacy. Some arro-
gant bullies in the OECD are now trying to use international money laundering
treaties, and more odious forms of coercion, to try to force these small countries
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to raise tax rates and abolish financial privacy. To do so would force many of
these countries to go back to relying almost totally on tourism and sugar cane
for economic sustenance. No nation has the right to tell another sovereign entity
what its tax rates and financial privacy policies ought to be. To do so is nothing
more than financial imperialism.
The facts are that most of the OECD countries now have at least some tax

rates higher than the revenue maximizing rate and, to the extent these rates are
on labor and capital, they diminish both economic growth and the social welfare
of their citizens. Many of the taxes on capital are in essence expropriation. Such
rates are both economically destructive and immoral. To remove one’s capital
from such mistreatment is rational and to be expected. Tax competition is very
desirable because it forces governments to be both more cost effective and less
coercive.
Given that not all the world’s people can live in Switzerland, they at least

ought to have the basic human right to opt out of financially repressive regimes.
No one would argue that it was immoral for a citizen of Nazi Germany to avoid
paying taxes that would be used to support the death camps and the war ma-
chine. There may not be regimes still left that are as criminal as Hitler’s or
Stalin’s but, unfortunately, there are still many criminal and corrupt govern-
ments around the globe. Some of the shrillest voices in the anti-money laundering
crowd are often very näıve about the nature of many of the criminal and corrupt
governments that still inhabit our planet. The OECD nations quite simply have
no moral right to prevent people from hiding taxes and other financial assets
from such governments - and, in fact, the demands to end all bank secrecy and
increase tax rates would do precisely that.
Those governments and politicians who are unhappy about “tax havens”

might do well to look in the mirror and ask themselves why so many of their
own citizens are moving assets and income elsewhere. Even in the relatively free
democratic countries, it is hard to find governmental units where there is not
considerable waste of the taxpayer monies. If a business delivered equally poor
service for what many governments charge, it would either go out of business or
its owners would be fined and perhaps sent to jail for misrepresentation. Given
that governmental units are almost always monopolies and also control the police
and justice functions, an abused taxpayer often only has the options of revolution
or moving his or her assets. Capital flight is a peaceful signal to government
authorities to “get your house in order.” To cut off this alternative under the
guise of fighting money laundering is likely to lead to far worse consequences.
As a result of easily usable and almost unbreakable public key encryption, the

Internet, and rapidly developing digital money products, the ability of govern-
ments to detect and control the movement of money and other financial assets
will be almost impossible without governments knowing everything about every-
one’s financial affairs. History teaches us that governments abuse the information
they have about their citizens. Both the US Constitution and the UN Declara-
tion of Human Rights recognize and guarantee basic privacy rights, including
financial privacy.
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The new technologies are developing so rapidly that government will not be
able to keep up with the innovations. As Ronald Reagan once said, “The best
minds are not in government. If any were, business would hire them right away.”
President Reagan’s quip was not intended to disparage the many very hard-
working, intelligent, and dedicated government employees, but only to illustrate
that government is seldom on the cutting edge of new technologies. The serious
money launderers will always be a couple of steps ahead of government. That
does not mean that the money laundering police will not be able to catch a few
people each year, but they will be primarily the slow, the careless, the small fish,
and the politically targeted. The big, serious money launderers will be less likely
to be caught in the future than they are now, which means it will be a relatively
safe occupation.
We are always told by those who advocate giving government more infor-

mation about us that it will be kept confidential and our trust and confidence
will not be betrayed. Yet we are always betrayed. IRS and FBI files, again and
again, are not kept secret. The government was even unable to keep our most
sensitive nuclear weapons files secret, yet we are told to trust. Do you really
think it was just a coincidence that many of the conservative public policy or-
ganizations that were critics of the Clinton Administration were audited, while
none of liberal ones were?
Benjamin Franklin said it best: “They that can give up essential liberty to

obtain a little temporary safety deserve neither safety nor liberty.”
As I noted in the beginning of this talk, those of you in the financial cryp-

tography business are heroes in that your work is critical in guaranteeing that
people will still be able to enjoy a reasonable degree of liberty in the information
age. Even those of you who are not motivated by belief, but by a desire for more
wealth are nevertheless heroes, because as the great economist and philosopher
Adam Smith noted 225 years ago, the invisible hand of your own self-interested
efforts are benefiting all mankind. Keep it up!
I expect that most of those who advocate anti-money laundering laws and

regulations are not mean-spirited, but decent folks who just have not thought
through the consequences of what they are promoting and doing. I also realize
that during the last two decades a sizable anti-money laundering industry has
emerged with many billions of dollars to spend, and that those whose jobs de-
pend on such an industry - law enforcement officials, equipment purveyors, and
assorted bureaucrats, etc. - are not going to take kindly to my comments, even
if they cannot refute my arguments.
But if you truly want less crime, more prosperity and opportunity, and more

freedom, you will “just say no” to the anti-money laundering laws and regula-
tions.
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Abstract. Optimal mail certificates, introduced in [12], are efficient
types of implicit certificates which offer many advantages over tradi-
tional (explicit) certificates. For example, an optimal mail certificate is
small enough to fit on a two-dimensional digital postal mark together
with a digital signature. This paper defines a general notion of security
for implicit certificates, and proves that optimal mail certificates are se-
cure under this definition.
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1 Introduction

A certificate authority (CA) is a vital component of a secure public-key infras-
tructure. The primary role of the CA is to bind public keys to their legitimate
owners by creating certificates for those users. Certificates are comprised of a
data part which contains, at a minimum, a public key and a user identity, and
the CA’s signature on this data. If the CA’s signature on the data part of a
certificate is valid, then one has confidence that the data (and what the data
implies) contained in the certificate is genuine.

Implicit certificates, introduced in the work of Günther [8] and Girault [7], are
comprised of a user’s identity I and some reconstruction public data P , which
together with the CA’s public key are used to reconstruct the user’s public key.
That is, the public key is not explicitly contained in the implicit certificate. The
authenticity of a reconstructed public key is only established after it is sub-
sequently used in a successful run of some protocol. In identity-based implicit
certificate schemes, the user’s private key is computed by the CA. In self-certified
implicit certificate schemes, the user itself computes its private key and associ-
ated public key. For further details on this distinction, see [10]. This paper only
considers self-certified implicit certificate schemes.
We consider the security aspects of the implicit certificate scheme introduced

in [12], the optimal mail certificate scheme. This scheme has several desirable
efficiency attributes, in particular, the bit length of an optimal mail certificate
is short enough to fit in a two-dimensional digital postal mark together with an
elliptic curve based digital signature with partial message recovery (a PVSSR
signature [4,9]). The major contribution of this paper is the formulation of a
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general definition for the security of implicit certificate schemes, and a proof
that the optimal mail certificate scheme of [12] is secure under this definition.
The remainder of this paper is organized as follows. Our notation and some

security issues of implicit certificates are covered in §2. §3 reviews the optimal
mail certificate scheme. The security model and proof and presented in §4. Fi-
nally, some conclusions are drawn in §5.

2 Background

2.1 Notation

Our notation for the elliptic curve1 domain parameters specifying the group, its
order and its generator are as follows. Let q denote the order of the underlying
finite field Fq, and let E be an elliptic curve defined over Fq. Let G denote
a point in E(Fq), the generator point, and let n denote the order of G. We
assume that n is prime. Thus nG = O and G �= O. The group 〈G〉 of points
generated by G will be used in the optimal mail certificate scheme. We assume
that the discrete logarithm problem in 〈G〉 is intractable. More precisely, this
means that there is no probabilistic polynomial-time algorithm (polynomial in
the security parameter l = �log2 n�) which on input C ∈R 〈G〉, C �= O, can
output c ∈ [1, n− 1] satisfying C = cG with non-negligible probability.
Let c ∈ [1, n− 1] be the CA’s private key, and C = cG the CA’s public key.

Similarly, b ∈ [1, n− 1] is Bob’s private key, and B = bG is Bob’s public key. Let
P denote Bob’s reconstruction public data, which is an elliptic curve point. We
refer to the party that reconstructs Bob’s public key as Alice.
Let I denote some information that is included in Bob’s certificate. In the

case of an implicit certificate, I should typically include data such as Bob’s
identifier, the CA’s identifier, the validity period of the certificate, and possibly
a serial number.
Let H denote a secure hash function, such as SHA-1. The selected hash

function is an important part of the domain parameters of the system.

2.2 Implicit Certificates

Bob’s implicit certificate is a pair (P, I) which, together with the CA’s public
key C, is used by Alice to reconstruct Bob’s public key B. As in traditional,
explicit certificates, Alice must trust the CA and the authenticity of C in or-
der to arrive at the assurance that B is indeed Bob’s public key. With explicit
certificates, Alice verifies the signature with public key C, and thus is assured
that B belongs Bob. However, such an explicit certificate alone is not sufficient
for Bob to authenticate himself to Alice, because the explicit certificate is public
information. To authenticate himself, Bob must demonstrate knowledge of his
1 Although the implicit certificate scheme studied in this paper can be described
using any cyclic group such as Z

∗
p, the efficiency of elliptic curve groups are better

matched with the efficiency of the optimal mail certificate scheme.
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private key b through some secure cryptographic protocol such as a key agree-
ment scheme or a digital signature scheme. The same holds true for an implicit
certificate: to authenticate himself to Alice, Bob must demonstrate knowledge of
his private key b. Once Bob accomplishes this, Alice is assured that B belongs to
Bob, and also that Bob has authenticated himself in the protocol used to prove
his knowledge of b. In other words, one distinction between explicit and implicit
certificates is that, for the latter, the authentication to Alice of B belonging to
Bob and the authentication to Alice that she is communicating with Bob are
not separable.

3 Optimal Mail Certificates

In [12], Pintsov and Vanstone proposed an implicit certificate scheme which
has significant efficiency advantages. We review this scheme, also depicted in
Figure 2. Suppose that Bob wishes to obtain an implicit certificate from a CA.
Bob selects r ∈R [1, n − 1], computes R = rG, and sends R to the CA over
an authentic channel. The CA checks Bob’s credentials according to its policies,
and establishes certificate information I for Bob’s implicit certificate. The CA
then selects k ∈R [1, n − 1], and computes Bob’s reconstruction public data
P = kG+R. The CA then computes h = H(P, I) and s = hk+c mod n.2 Finally,
the CA sends (P, I, s) to Bob. Bob sets his private key to be b = hr + s mod n
where again h = H(P, I). Bob’s public key, B = bG, can be reconstructed by
Alice from the implicit certificate (P, I) using the equation

B = H(P, I)P + C,

which holds because B = bG = (hr+ s)G = (hr+ hk+ c)G = h(k+ r)G+ cG =
hP+C, where h = H(P, I). Thus Bob knows the logarithm of B = H(P, I)P+C
with respect to the generator point G. Alice can reconstruct B using only the
point P , the certificate information I, and the CA’s public key C.
Note that when Bob or any other party receives the response (P, I, s) to

certificate request R, then it is possible to verify the authenticity of the response
by checking the equation

H(P, I)R + sG = H(P, I)P + C.

Since this equation involves the CA’s public key, an integer s, and a secure hash
function, s would seem to depend on the private key of the CA in some way.
Indeed this equation is similar to the equation used to verify digital signatures
such as DSA and Schnorr signatures.

3.1 Applications

In environments where bandwidth is severely constrained, traditional X.509 cer-
tificates based on a digital signature algorithm such as RSA, DSA, or ECDSA,
2 This signing equation is a variant of the Schnorr signing equation [16].
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CA Bob Alice
r ∈R [1, n − 1]

R = rG
R←−−−−−−

authentic

k ∈R [1, n − 1]
P = R + kG
h = H(P, I)

s = kh+ c mod n
(P,I,s)−−−−−→

h = H(P, I)
b = rh+ s mod n

(P,I)−−−−−→
B = H(P, I)P +C

Figure 1. The optimal mail certificate scheme

may be too long to be transmitted in a public-key protocol. Instead, a shorter
piece of information that identifies the certificate, such as the issuer and serial
number or the eight bytes of the hash of the public key, is sent. However, this re-
quires the recipient of the certificate to look up the certificate in some database,
which would either be stored locally or remotely. Such a look-up may be costly,
especially at remote locations or using limited resources. One method to allevi-
ate this problem is random sampling, i.e., verifying only a small fraction of all
certificates.
Optimal mail certificates are designed to be small enough to be sent com-

pletely, in order to avoid look-up and random sampling. Furthermore, their small
size allows for larger local databases to be maintained, in case local look-up or
random sampling is used.
The size of an optimal mail certificate (P, I) based on an elliptic curve over

Fq, where q = 2163, is about 164 bits plus the length of the certificate information
I. In comparison, the size of an explicit certificate containing a public key defined
over the same elliptic curve and signed with ECDSA by a certificate authority
with the public key on the same elliptic curve would be about 492 bits plus
the length of the certification information. An explicit certificate based on RSA
public keys and a digital signature using public keys of comparable security
(namely, 1024 bits) would have length 2048 bits plus the length of the certificate
information. For constrained environments, such as a two-dimensional bar code,
even 492 bits may be too large for a reasonable density and size of bar code.

4 Security Model and Proof

In what follows we prove certain attributes of the optimal mail certificate scheme
described in §3. Our proofs are in the random oracle model [3], in which the hash
function is modeled by a perfectly random function. In reality, a hash function
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such as SHA-1 cannot be regarded as a random function. Nevertheless, a proof in
the random oracle model suggests that if there is any attack against the scheme,
then the attack must be specific to a particular hash function being used, or
must process the description of the hash function itself. Intuitively, such attacks
seem less feasible than generic attacks that simply invoke the hash function
as a black-box. Indeed, almost all attacks in practice on such protocols are in
fact generic attacks. For a more detailed discussion on the pros and cons of the
random oracle model, see [2] and [6].

4.1 Security Model for Implicit Certificates

We formulate a notion of security for general implicit certificate schemes. The
legitimate users in the system are denoted Bob1,Bob2, . . .. The CAs in the sys-
tem are denoted CA1,CA2, . . .; CAj ’s public key is Cj . We assume that all users
have authentic copies of all CA public keys. User Bobi’s request for a certifi-
cate from CAj is denoted (Ri, j). CAj ’s response is denoted (Pi, Ii, si) which,
together with Cj , is used by Bobi to construct his public key Bi and associated
private key bi. Bobi may make multiple requests for certificates from CAj .

Definition 1. A (τ, ε)-adversary A (of an implicit certificate scheme) is a prob-
abilistic Turing machine which runs in time at most τ and interacts with the
legitimate users and the CAs by performing each of the following operations any
number of times:

(i) receive a request (Ri, j) from Bobi for an implicit certificate from CAj; and
(ii) send a request (R′

i′ , j
′) to CAj′ , and receive response (P ′

i′ , I
′
i′ , s

′
i′) from CAj′ .

With probability at least ε, A outputs a triple (P, I, b) such that b is the private
key associated with the public key reconstructed from P , I and some Ck (that is,
bG = H(P, I)P + Ck) such that either

(i) (P, I) was never part of a response of CAk; or
(ii) (P, I) was included in a response of CAk to some request (Ri, j) originally

from Bobi.

A (τ, ε)-adversary is successful if τ is polynomial in l = �log2 n�, and ε is a
non-negligible function of l.

The security model if depicted in Figure 4.1. All requests (Ri, j) from user
Bobi are sent through the adversary A, who may pass on the request unchanged
to CAj , or may choose to modify the request point Ri, or the identity i of
the requester, or the designated CA. In this model, the adversary A is deemed
successful if it generates an implicit certificate that is a forgery in either one of
the following two senses. In the first sense, A generates an implicit certificate and
an associated private key that was not issued by a CA. This may be regarded as
a successful attack by A against that CA. In the second sense, A generates an
implicit certificate and a private key that was issued by a CA for a request of
some user Bobi. This may be regarded as a successful attack by A against Bobi.
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Bobi
(Ri,j)−−−−−→ Adversary (R′

i′ ,j′)−−−−−→ CAj′

(P ′
i′ ,I′

i′ ,s′
i′ )←−−−−−−−−↓

(P, I, b)

Figure 2. A security model for implicit certificates

Note that the security model is stronger in some regards that what may be
required in practice. For example, Definition 1 does not insist that the string
I output by A satisfy some formatting specification as might be the case in
practice. Also, the model does not insist that communications from the requester
to the CA be authentic.

Definition 2. An implicit certificate scheme is secure if there does not exist a
successful adversary of the kind described in Definition 1.

A more concrete definition would be that an implicit certificate scheme is
(τ, ε)-secure if there does not exist such an adversary A that runs in time at
most τ and succeeds with probability at least ε. However, in this paper we will
only consider the asymptotic form of security as given in Definition 2 above.

4.2 Security Proof

In order to prove the security of optimal mail certificates, we shall work in the
random oracle model. Several signature schemes have been proved secure in
the random oracle model. We shall use the following security result for Schnorr
signature schemes.

Theorem 1 (Pointcheval and Stern [13]). In the random oracle model, the
Schnorr family of signature schemes over a group 〈G〉 is secure if the discrete
logarithm problem in 〈G〉 is intractable.

The proof of Theorem 1 follows easily from the proofs given in [13]. The proof
involves the “forking lemma” and a reduction from a signature-forging algorithm
to a discrete logarithm-solving algorithm. We shall use such a reduction in our
proof. Theorem 1 is true for a variety of signing equations that can be used
in the family of Schnorr signature schemes, and in particular it is true for the
signing equation used in optimal mail certificates. That is, the following variant
of the Schnorr signature is secure: For a message m and random oracle H , a
signature (R, s) is generated by Bob with R = kG for random nonzero k and
s = H(R, m)k + b mod n where b is Bob’s private key. To verify the signature,
one checks that sG = H(R, m)R+B, where B is Bob’s public key.
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Theorem 2. In the random oracle model, the optimal mail certificate scheme is
a secure implicit certificate scheme provided that the discrete logarithm problem
in 〈G〉 is intractable.

Proof. Assume that the optimal mail certificate scheme is not secure in the case
where the hash function H is a random oracle. Then there exists a successful
(τ, ε)-adversary A. We construct a polynomial-time algorithm S that uses A as
a subroutine to compute logarithms in 〈G〉 with non-negligible probability.
The input to S consists of a discrete logarithm challenge C ∈R 〈G〉, C �= O,

and the desired output of S is an integer c ∈ [1, n−1] such that C = cG. We shall
construct S in two stages. The first stage S1 takes as input (C, m, H1) where m
is a random message, and H1 is a random oracle independent of H . S1 can use A
as a subroutine. The desired output of S1 is either (i) an integer c ∈ [1, n−1] such
that C = cG, or (ii) an ordered pair (P, b) such that bG = H1(P, m)P +C (i.e.,
(P, b) is a signature of message m with respect to the public key C). If case (i)
occurs, then S outputs c and terminates. If case (ii) occurs, then Theorem 1 is
used to reduce the signature forger S1 to a discrete logarithm solver in order to
extract c. If this stage is successful, then S outputs c and terminates.
To find c, algorithm S1 runs algorithm A. Algorithm A expects there to be

one or more CAs, each with a public key for which A is not given the private
key, and zero or more requester Bobi making one or more requests Ri for which
A is not given the discrete logarithm ri. Algorithm S1 randomly selects one of
the CA public keys or one of the requests to be the challenge point C which is
the input of S. The other request points and CA public keys can be selected by
S1 according to the normal procedure of selecting a random secret integer and
multiplying G by this value. Let t be the total number of CA public keys and
requests. We shall see that there will be a ε/t probability that A can be used to
obtain c or a forgery of a signature with public key C.
Since A can request a certificate from the CA with public key C (if S1

has selected such a CA) and expect a legitimate response, S1 must supply a
response that seems legitimate at least from A’s perspective. (Otherwise A is
not guaranteed success, and S1 may not find A useful to find c.) However, S1

does not know the private key c associated with C. But since H is a random
oracle, S1 can simulate the role of the CA and answer A’s certificate requests
without knowing c by careful pre-selection of the random values of H . Algorithm
S1 simulates the role of the CA as follows: given a requestRi for a certificate with
certificate information Ii, S1 generates integers si, hi ∈R [0, n−1] and computes
Pi = Ri + h−1

i (siG − C), where the inverse is computed modulo n. S1 defines
H(Pi, Ii) = hi and returns the triple (Pi, Ii, si) as the response to A’s request.
Since H(Pi, Ii)Ri + siG = H(Pi, Ii)Pi +C holds, the response to the certificate
request appears legitimate from A’s perspective. Furthermore, the hash function
will be random from A’s perspective because the value hi was initially chosen
randomly.
The adversary A is of course allowed to query H directly. Given a hash

query input, say, (PA, IA), which has not been previously queried or determined
as above, S1 outputs H1(PA, m) where m is the message on which it is trying to
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forge a signature. Clearly, the distribution of the simulated hash values generated
by S will be indistinguishable to A from the distribution of hash values generated
by a random oracle.
Suppose that A is successful. Then A returns a triple (P, I, b) such that

bG = hP + Ck for some k, with h = H(P, I), such that either:

(i) (P, I) is a certificate created by CAk for a request from Bobi; or
(ii) (P, I) is a certificate which was not issued by CAk.

Assume we are in the first case. Then there is at least a 1/t probability that
the request Ri of Bobi was the challenge point C given as input to the algorithm
S1. The private key b of Bobi discovered by A satisfies b = rh + s mod n. But
c = r, and S1 can observe s as CAk’s response. Thus S1 can compute c =
h−1(b− s) mod n.
Assume we are in the second case. Then there is at least a 1/t probability

that public key Ck of CAk is the challenge point C given as input to the algo-
rithm S1. We can assume that (P, I) was an input query to the random oracle
hash H , because otherwise the equation H(P, I)P +C = bG will hold with neg-
ligible probability, contradicting the assumption that ε is non-negligible. Thus
H(P, I) = H1(P, m) by definition of the simulation. But now (P, b) is a signature
of the message m.
There is a minor problem that, if during execution of S1 with A, the message

(P, I) appears first as a direct query to H , and subsequently as a certificate
constructed during the simulation of a CA. Since the values si and hi are cho-
sen randomly during simulation of the CA, the point Pi will be uniformly dis-
tributed, and thus, this event of P = Pi will happen with negligible probability.
Nevertheless, in this case S1 can simply start over.
Clearly, if A runs in polynomial time and succeeds with non-negligible prob-

ability then so will S1. By Theorem 1 and above, if A runs in polynomial time
and succeeds with non-negligible probability then so will S. But by hypothesis,
it was assumed that no such S for solving discrete logarithms in 〈G〉 existed.
Therefore no adversary A exists in the random oracle model unless discrete log-
arithms in 〈G〉 can be efficiently solved. 
�

4.3 Secure Use of Optimal Mail Certificates

In §4.2 we argued that it is unlikely that an adversary can produce a “new” (P, I)
pair such that the adversary knows the associated private key. Since public-key
protocols are designed to be secure unless the adversary knows the private key
associated with a user’s public key, one might conclude that it is safe to now
use optimal mail certificates instead of traditional certificates. However, it is
possible that the use of optimal mail certificates in a given protocol could lead
to insecurities. For example, if optimal certificates are used in conjunction with
the Nyberg-Rueppel signature scheme [11], it would certainly be undesirable
if an adversary could produce a (P, I) pair, and a triple (r, s, M) such that
the pair (r, s) is a valid signature on the message M by the user with public
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key H(P, I)P + C. Nothing we have said thus far precludes this possibility.
Although, in [5], the security of a implicit certificates used in conjunction with
a signature scheme has been defined, and furthermore the instantiation with a
certain version of optimal mail certificates and a certain signature scheme has
been proved secure in the random oracle model. Similar questions could be posed
concerning the use of optimal mail certificates in other public-key protocols such
as key agreement and public-key encryption.

4.4 Denial-of-Service Attacks

One difference between traditional explicit certificates over implicit certificates is
that when presented with a valid explicit certificate, we know that the certificate
belongs to someone. Specifically, up to forgery of the signature scheme used to
generate certificates, a valid certificate containing identifier I is proof that the CA
signed this certificate for I, and so the party identified by I knows the private
key associated with the public key included in the certificate. This guarantee
does not hold with implicit certificates, such as the ones described in §3. In
fact, an arbitrary pair (P, I) can be given to Alice to reconstruct a public key
B = H(P, I)P+C. But, it should be infeasible to find such a pair (P, I) where the
discrete logarithm b with respect to the generator point G of the reconstructed
public key B is known. Since authentication of Bob is only completed once Bob
has demonstrated knowledge of b in a subsequent protocol run, such arbitrary
“faked” (P, I) will not deceive Alice.
The above discussion suggests a denial-of-service type attack, where Alice is

flooded with protocol requests using “faked” implicit certificates. The fact that
the logarithm of the faked public key is unknown is revealed only after Alice
has performed most of the protocol. Of course, a similar attack can be launched
in a system using regular certificates. In this case, though, the attacker floods
Alice with various certificates belonging to other entities. Alice verifies the digital
signature on each certificate received. The certificates are valid, but the attacker
does not know the private keys of the associated public keys. In either case, Alice
is forced to perform many cryptographic operations with no useful result, which
may prevent her from doing something useful like authenticating a legitimate
user.

5 Conclusions

Optimal mail certificates are more efficient in some respects than traditional
explicit certificates and other types of implicit certificates. We have proposed
a security definition for implicit certificate schemes, and proved that optimal
mail certificates are secure under this definition. What remains to be proven is
that the use of optimal mail certificates in conjunction with specific public-key
protocols such as signature schemes does not in any way reduce the security of
the protocols.
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Abstract. We consider certificate revocation from three high-level per-
spectives: temporal nonmonotonicity, user interfaces, and risk manage-
ment. We argue that flawed understanding of these three aspects of revo-
cation schemes has caused these schemes to be unnecessarily costly, com-
plex, and confusing. We also comment briefly on some previous works,
including those of Rivest [16], Fox and LaMacchia [5], and McDaniel and
Rubin [11].
Keywords: Certificates, Revocation, PKI, CRL.

1 Introduction

Public-Key Infrastructure (PKI) is an important enabling technology for e-
commerce. However, the use of PKI can be limited by the cost, complexity, and
sometimes confusion attributable to revocation. There has been a lot of debate
over the meaning of certification and revocation [5,11,13,16], and different re-
vocation mechanisms have been proposed [1,4,9,10,12,15,19,8,14]. In this paper,
we argue that revocation is complex and confusing for the following reasons.

– Revocation makes certification nonmonotonic. More precisely, in a PKI that
has revocation, the validity of a certificate is nonmonotonic with respect to
time, i.e., a certificate may go from valid to invalid as time passes.

– A PKI has a user interface and internal entities and mechanisms that im-
plement this interface. In the literature, this distinction is not always drawn
clearly, and thus discussions of user-interface issues and internal-mechanism
issues are often intermingled.

– Traditionally, revocation schemes have been viewed as methods to provide
“security” instead of methods to control risk. This view limits the ways in
which revocation mechanisms are used and analyzed.

In this paper, we consider certification and revocation from the perspective of
these three issues. We separate the user interface (UI) of a PKI from the internal
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mechanisms of a PKI and argue that the UI should be as simple as possible: It
should provide only the information needed by the users and hide the rest. In
particular, it is desirable for a PKI to have a monotonic user interface: Every
piece of information shown through the interface should have a meaning that is
monotonic with respect to time. In fact, the UI’s of most existing PKI’s can be
made monotonic by making time an explicit element.

We also argue that revocation is a risk-management tool. Risk associated
with a PKI cannot be completely removed, but it can be analyzed and controlled.
With revocation, users control risk by, for example, setting recency requirements
for certificate acceptance. Smaller recency requirements lead to lower risk but
require higher communication and/or computation cost. Setting the right re-
cency requirement requires risk analysis and balancing the risk and the cost. It
is clear that different applications have different risk requirements and that dif-
ferent users have different preferences in the risk-cost balance. Therefore, a PKI
aiming to support multiple applications should provide a revocation interface
that is tunable. Users should be able to set different recency requirements based
on their needs and resources.

The UI of a PKI should also be helpful in auditing, e.g., it should be easy
to obtain a proof that a certificate was valid at a particular time in the past.
This is useful for detecting fraudulent transactions after they occur. It is also
useful when a user’s risk is assumed by a third-party insurer, and the insurer
requires the user to provide a proof that she has followed the insurer’s policy in
a transaction.

2 Background

A public-key certificate (certificate for short) is a data record digitally signed by
a private key; the entity that possesses the private key and signs the certificate
is called the issuer, or the certification authority (CA), of this certificate. Data
in a certificate include a public key, which we call the subject key (of this cer-
tificate), and some information about the subject-key holder (holder for short),
i.e., the entity that holds the private key corresponding to the subject key. A
certificate binds the subject key and the information together. For example, a
certificate may bind the distinguished name (DN) of an entity and its public
key. A certificate may also express implicitly some trust the issuer has in the
holder. For example, a CA-to-CA certificate often implicitly suggests the trust-
worthiness of the holder, in addition to establishing a DN-to-public-key binding.
In the following, we use binding to mean both the binding of the subject key to
the other data in the certificate and the implicit trust semantics.

Normally, a certificate has a validity period that includes a beginning time
and an ending time; the issuer only vouches for the binding during this period.
However, even before the validity period of a certificate ends, things may happen
to make the information in the certificate invalid, e.g., the subject-key holder may
report that the private key has been stolen or lost, the issuer may suspect that
the private key has been stolen from the holder or has been given away by the
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holder, or the binding may be shown to be no longer accurate. The traditional
approach to certificate revocation is certificate revocation lists (CRL’s) [8]. A
CRL, signed by a CA, contains an issuing time t and a list of entries, each of
which contains the serial number of a certificate that was issued by this CA, has
not expired,1 and has been revoked at t.

An architectural model of PKI is given in [8,2]. In this model, a PKI has
end entities, PKI management entities, and repositories. PKI management enti-
ties include CA’s and, optionally, registration authorities (RA’s), to which CA’s
delegate certain management functions. Repositories are systems that store and
distribute certificates and revocation data such as CRL’s.

Here, we recommend a slightly different architecture. End entities are “users”
of a PKI; thus the interface between end entities and the rest of a PKI is the
user interface (UI) of the PKI. We further distinguish between two kinds of
end entities: subject-key holders and entities that use certificates in making
decisions, which we call acceptors or verifiers. In this paper, we focus on the
acceptors’s view of a UI, i.e., the interface for providing information to help
acceptors decide whether to accept a certificate, as opposed to the interface for
requesting certificates.

As a general design principle for UI, we have the following.

Recommendation 1. The UI of a PKI should be clear and simple. It should
provide only the information needed by end users, and it should hide everything
else.

We also stress that, to be clear, a UI should precisely specify, for each piece
of information it exposes to users, the meaning and the expected action.

We now review four kinds of user interfaces for PKI’s, focusing on the data
provided through the UI’s.

– The first kind of UI’s have certificates that cannot be revoked. This is the
simplest kind. Certificates are valid for their life times, which are typically
short.

– The second kind of UI’s have certificates and CRLs. The standard X.509 PKI
belongs to this kind. The characteristic of a CRL is that one piece of data
(i.e., the CRL) provides the current status of all the certificates issued by a
CA. This is good for acceptors who process lots of certificates. However, the
size of one typical CRL is quite large, and so the communication cost might
be too high for acceptors who process only a small number of certificates.

– The third kind of UI’s have certificates and validity proofs for individual
certificates. Such proofs are much shorter than typical CRL’s, but they can
only prove the validity of one or several certificates. Examples of these kind
include OCSP (Online Certificate Status Protocol) [14], CRS [12], etc. CRT
(Certificate Revocation Tree) [9] and 23CRT [15] provide both short proofs
for one certificate and CRL-like data at the same time.

1 According to [8], a revoked certificate should appear in at least one CRL after it has
expired.
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– The fourth kind of UI’s have certificates and revocation notices. See, e.g.,
the work of Wright et al. [19]. In these UI’s, acceptors who are interested in
the status of a certificate register themselves with someone who distributes
revocation notices for the certificate, e.g., the CA. When a certificate is
revoked, the CA broadcasts this information to all interested parties.

3 A Monotonic Interface for PKI

Revocation leads to nonmonotonicity. When more certificates are revoked, fewer
are valid; the amount of validity information decreases when the amount of re-
vocation information increases. Normally, revocation information increases over
time, i.e., as time passes, more certificates are revoked. Therefore, when a PKI
allows revocation, the validity information is temporally nonmonotonic. More
specifically, a certificate valid at time t0 may become invalid at a later time t1.

The nonmonotonicity introduced by revocation is similar to the notion of
“negation-as-failure” in the logic-programming and nonmonotonic-reasoning lit-
erature. Negation-as-failure means that, to conclude “not r,” one needs to try
every way to prove r; if they all fail, then “not r” is concluded. In a PKI with
revocation, one needs to prove “not revoked(cert)” at the time at which one
decides whether to accept a certificate. To prove “not revoked(cert),” conceptu-
ally, one needs complete information about revoked(). Because the information
about revoked() increases with time, one needs current information in order to
conclude safely “not revoked(cert).” In a distributed system, distributing abso-
lutely current information to all concerned parties is impossible. The best one
can do is to deliver recent information. Even this is quite expensive in large-scale
distributed systems. This is a major source of difficulty in revocation.

Recommendation 2. The difficulty of revocation is caused by temporal non-
monotonicity, and thus a PKI should provide an interface that is monotonic.

In fact, when viewed appropriately, existing PKI’s have such an interface.
In the following, we give a monotonic semantics of certificates and information
provided by revocation mechanisms.

Without revocation, the meaning of a certificate is monotonic. A certificate
means that the issuer vouches for the binding in the certificate for the validity
period. Anyone who sees the certificate can check whether it has expired and
decide whether to use it.

When revocation is possible, the meaning of a certificate becomes more com-
plicated. In [16], Rivest discussed the following guarantee for standard certifi-
cates: “This certificate is good until the expiration date. Unless, of course, you
hear that it has been revoked.” Rivest argued that this guarantee is not very
useful, because the acceptor is always required to check whether a certificate has
been revoked; he proposed a different general certificate guarantee: “This cer-
tificate is definitely good from T1 until T2. The issuer also expects this certificate
to be good until T3, but a careful acceptor might wish to demand a more recent
certificate. This certificate should never be considered valid after T3.”
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The above guarantee is a combination of nonrevokable certificates and stan-
dard revokable certificates. It means that a certificate is nonrevokable from T1

to T2 and then is a standard certificate. We argue that this interpretation of cer-
tificate is still problematic. The meaning of this certificate is still nonmonotonic
from T2 and T3.

A certificate states what its CA believed when the certificate was issued. This
belief may change over time, and this change may be reflected by revocation.
This is the cause of nonmonotonicity. However, the fact that the CA believed
the content of the certificate at the time when it was issued doesn’t change over
time. Therefore, we can give a certificate a temporally monotonic meaning if we
take the issuing time as part of the meaning of a certificate.

We now introduce a simple logic for representing meaning of certificates. A
statement in this logic takes the following form:

– At time t0, X believes b to be true in [t1, t2], where t1 ≤ t2.

We call t0 the fresh time of this statement. This logic has the following two
inferencing rules:

1. If, at t0, X believes b to be true in [t1, t2], then, at t0, X believes b to be
true in any [t′, t′′] such that t1 ≤ t′ ≤ t′′ ≤ t2.

2. If, at t1, X believes b to be true in [t1, t2], then, at any time t0 such that
t0 < t1, X believes b to be true in [t1, t2].

Note that this logic doesn’t interpret the belief b. In particular, it doesn’t relate
beliefs b and ¬b. Also note that one cannot express “disbeliefs” in this logic.

The first inferencing rule is straightforward and quite standard [18]. The
second rule says that, if X believes something at time t1, then X has been
believing it at all times up to t1. This is certainly false for general beliefs; however,
it seems appropriate for our purpose, i.e., monotonic reasoning about certificates
and revocation. Next we show that certificates and revocation data such as CRL’s
can be represented by statements in this logic.

Recommendation 3. We propose the following interpretation of certificates:
At issuing time t0, the issuer believes the information in this certificate to be
true from t1 to t2.

This reading is temporally monotonic; it is always true at any time after t0.
Note that our interpretation makes issuing time an explicit part (the fresh time)
of the meaning of a certificate.

A certificate states the issuer’s belief at the issuing time t0, and one can
view revocation schemes as mechanisms to reconfirm the issuer’s belief at a later
time. If one only has a certificate issued at t0, the fresh time of the binding in
the certificate is t0. If one also obtains a proof that a certificate has not been
revoked at a later time t1, then one can update the fresh time to t1.

Consider the case that, at time tu, an acceptor wants to use a certificate
that has validity period [t1, t2], issuing time t0, and fresh time tf . The acceptor
should check that, at a time in recent past, say, within a fresh requirement dt,
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the issuer of this certificate still believed the binding to be true at current time
tu. In other words, the verifier needs to check that at time tu − dt, the issuer
still believed the binding to be true in [tu, tu]. Following the inferencing rules,
the verifier needs to check that tu ∈ [t1, t2] and that tf ≥ tu − dt. The choice
of dt is a policy that the acceptor needs to decide. If one doesn’t want to check
revocation, one can set dt to ∞, then tf ≥ tu − dt is always true.

Most existing certificate formats only have two time fields: not-before and
not-after, and it is often assumed that the not-before time is the same as the
issue time. If one is willing to make this assumption, one can interpret existing
standard certificates as in Recommendation 3. However, we think that a certifi-
cate should have a separate issue time in order to allow post-dated certificates to
be issued. A post-dated certificate can be revoked even before its validity period
begins.

A CRL issued at t1 is a claim that all certificates that are not listed should
have a fresh time t1 or later. Some argue that one can criticize CRL’s because
they make negative statements. We disagree. Although a notice that some cer-
tificates have been revoked is negative, a list of all revoked certificates provides
positive information, because all those certificates that are not listed are still
valid. In some cases, this is more efficient than listing all nonrevoked certificates.
There is also the argument that a CRL doesn’t provide positive information, be-
cause it doesn’t prove the existence of a certificate. We disagree with this, too.
The purpose of revocation is to complement certification, not to replace it. The
purpose of a CRL is not to prove that a binding is valid but rather to update
the fresh time of an existing proof (a certificate). One has to have a certificate
first before caring about revocation.

Similarly, responses of the Online Certificate Status Protocol (OCSP) [14]
and information from other revocation schemes can all be viewed as proofs that
something is still believed at a later time.

In section 2, we reviewed four kinds of UI’s for PKI. Among them, only the
last kind, i.e., the one that uses revocation notices, cannot be interpreted as in
Recommendation 3. A revocation notice is a piece of negative information. If it
fails to reach an acceptor, then the acceptor may accept a revoked certificate as
valid.

We want to stress the point that the difficulty of revocation is caused by
temporal nonmonotonicity. Because revocation information changes with time,
one needs sufficiently recent information about revocation. Some previous work
tries to make certification with revocation monotonic; however, this work does
not address the time issue. In [6], Gunter and Jim argued that revocation infor-
mation can and should be handled in the same way as certificates and that their
system Query Certificate Manager (QCM) with revocation is monotonic. QCM
has dual notions of positive sets and negative sets, e.g., a CRL is a negative
set. For a positive set, a QCM certificate states that an element is a member
of the set. For a negative set, a QCM certificate states that an element is not
a member of the set. An environment is a set of QCM certificates. In [6], the
claim that QCM with revocation is monotonic means that a larger environment
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always leads to more conclusions. However, an environment itself is nonmono-
tonic with respect to time; more specifically, a QCM certificate for a negative set
itself may go from true to false as time passes. For a user to decide whether to
accept a certificate, she needs to forget an old environment and get a sufficiently
recent one. This doesn’t decrease the amount of information that needs to be
transmitted.

4 The Semantics of Revoking a Certificate Is to Cancel It

A certificate may be revoked for several reasons. In [5], Fox and LaMacchia
argued that revocation for different reasons should have different semantics.
When a verifier knows that a certificate has been revoked, the verifier should
remove the revoked certificate from any certificate chain (or graph) that she is
using. In other words, revoking a certificate cancels it. A question that follows is
whether revoking a certificate should do more than that. Consider an example
given in [5].

Example 1. Let C = c0, c1, . . . , cn be a chain of certificates, where cn is the end-
entity certificate of interest, c0 is a self-signed, trusted-root certificate issued by
K0, and each ci, for all i = 1, . . . , n, is signed by the private key corresponding
to Ki−1, the subject key of ci−1. Let j be an integer in [1..n − 1], and let
C′ = c′0, c′1, . . . , c′j be a second chain of certificates from K0 to Kj . Suppose
that the certificate c′j is revoked and that all other certificates in the two chains
are valid. If these are the only certificate chains that the user has that end in
cn, should the user accept the binding in cn, or (equivalently in this acceptance
decision) should cj be treated as valid?

In [5], Fox and LaMacchia argued that whether cj should be treated as valid
depends on the reason for revoking c′j. The certificate c′j may be revoked in each
of the following three cases:

(a) the key Kj has been compromised, in which case, cj should be treated as
revoked as well.

(b) the binding in c′j is no longer valid, in which case, cj should be treated
as invalid if it contains the same binding as c′j .

(c) the binding may still be valid, but the issuer doesn’t want to vouch for it
anymore, in which case, cj should still be valid.

Although it is desirable to revoke all certificates concerning a compromised
private key, we argue that this should be done internally, i.e., on the other side
of the PKI’s UI from the external one that is exposed to users.

Interpreting revocation of c′j as revoking cj as well enlarges the domain over
which an acceptor needs complete information. To use cj , one not only needs
to know that “not revoked(cj)” but also needs to know “not revoked(c′j),” for
all c′j ’s that are somehow related to cj . This has the effect of changing the trust
relationship. Under this interpretation, one certificate path is not enough. To
use a certificate, one needs to have all the CA’s agree that a private key has
not been compromised or that a binding is valid; any CA can veto a binding by
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issuing a certificate and then revoking it for key-compromise reasons. This is not
just expensive — it may also be undesirable.

We believe that revocation schemes shouldn’t change the trust relationships
of a PKI. If a CA wants to revoke a certificate whenever another CA revokes a
related certificate, it should make this arrangement behind the user interface. If a
user needs more than one source to confirm a binding, e.g., a separate proof that
the private key has not been compromised, then this should be clearly specified
by the user’s policy; it shouldn’t be accomplished indirectly with revocation.

Recommendation 4. Revocation of a certificate should cancel the certificate
and do nothing else.

5 Revocation Provides Risk Management for PKI

Traditionally, computer-security mechanisms try to ensure that insecure things
do not happen. In [20], an alternative view is given. We summarize it as follows:
Complex systems can be secured only up to a point. Insecurity always exists
and cannot be destroyed. The question one should ask is not whether a system
is secure, but how secure that system is relative to some perceived threat (page
119 of [20]).

That insecurity always exists is precisely the situation in a global-scale public-
key infrastructure. Total security is unattainable, even under the unrealistic
assumption that revocation information can be delivered to everyone instan-
taneously. A private key may be compromised long before the compromise is
discovered and the certificates for the key revoked. This cannot be handled by
revocation schemes, but it should be taken into consideration when analyzing
the risk inherent in a PKI.

When we acknowledge that risk always exists, we can view revocation schemes
as a way to control risk. Traditionally, it is often implicitly assumed that everyone
should get the most recent CRL. One piece of evidence for this assumption is
that each CRL has a next-update field; a CRL is assumed to be expired after
that date, and a newer CRL is needed.

However, when taking the risk-management view of CRL’s, it is clear that
one doesn’t always need the most current CRL. Instead, one should set recency
requirements as a matter of policy. As long as a user has a CRL that is recent
enough, it should be okay. More strict recency requirements have lower risk, but
they have higher communication costs. Because risk is application-dependent,
different applications and users have different recency requirements. Therefore,
we have the following recommendation.

Recommendation 5. A PKI that serves diverse applications should provide
flexible revocation schemes that can be tuned to support different recency re-
quirements.

Whoever is exposed to the risk of wrongfully accepting a certificate should set
recency requirements. However, which party has higher risk has been debated.
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In [16], Rivest argued that recency requirements must be set by the acceptor of a
certificate, not by the certificate issuer, because the acceptor is the one who is at
risk if her decision is wrong. In [11], McDaniel and Rubin disagreed. They argued
that, in business-to-consumer e-commerce scenarios, in which consumers (or their
browsers) need to decide to whether to accept a merchant website’s certificate
as valid to establish a secure connection, consumers are usually transferring
credit-card numbers through the connection and thus only have limited liability.
Conversely, the merchant risks its reputation for unsafe operation; therefore,
the risk is actually higher for merchants than for acceptors. In [5], Fox and
LaMacchia said that “In theory, the certificate authority has the most to lose
with continued circulation of a bad certificate.”

In the above B2C credit-card transmission scenario, several parties are at
risk in one fraudulent transaction. Both the merchant and the certification au-
thorities risk some reputation damage, but their risk is limited and less tangible.
Note that we are talking about the damage caused by one fraudulent transac-
tion, i.e., one in which a consumer accepts a certificate that she shouldn’t and as
a result sends her credit card number to an intruder, not the damage caused by
revocation of a certificate. When a merchant’s certificate is revoked because of
key compromise, the merchant has already suffered great loss of reputation, even
before a single fraudulent transaction occurs. This means that a merchant has
high incentive to protect its private key, but it doesn’t necessarily have higher
risk than a customer in one fraudulent transaction. One can argue that more
fraudulent transactions will do more damage to the merchant’s reputation, but
it is hard to quantify how much damage each additional fraudulent transaction
does. More importantly, there is no way for merchants or CA’s to enforce the re-
quirements. They can make suggestions about the recency requirements suitable
for particular kinds of transactions; CA’s should also make revocation informa-
tion available. However, if customers don’t follow these suggestions, there isn’t
much that CA’s or merchants can do. Thus, they are mostly free of reputation
damage as long as they have made good suggestions.

The acceptor has the primary risk. In some cases, the acceptor is protected
by insurance, and her risk is limited to a small deductible. In that case, the
insurer has the highest risk. This is the case in the credit-card scenario. Note
that credit-card numbers aren’t the only kind of information transmitted through
secure connections. In online banking or trading, a customer may be transmitting
account numbers and PINs, which can be much more valuable than credit-card
numbers.

When an acceptor is insured by someone, all or part of the acceptor’s risk
is transferred to the insurer. Then the insurer has a strong incentive to set
and enforce recency requirements. However, at the point of decision, only the
acceptor can enforce the recency standard, because it is she who actually decides
whether to accept a certificate. Note that the granularity of the recency standard
is limited by the revocation mechanisms available to the acceptor. If a PKI has
CRL’s as the only revocation interface, and CRL’s are issued at time interval
δt, then no one can operate with a recency requirement that is smaller than δt.
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Although an insurer cannot enforce a recency requirement when the transaction
occurs, the insurer can do so when something goes wrong and the acceptor makes
a claim. The insurer can set a recency requirement and require the acceptor to
provide proof that she has followed the requirement in the transaction.

Recommendation 6. The UI of a PKI should support auditing.

For example, a PKI that supports CRL’s could maintain a CRL that keeps
all the revoked certificates and the time at which they are revoked, whether they
are expired or not. The insurer or some other parties can use this CRL to check
whether a certificate is valid at a time in the past. Besides allowing a certificate
to be revoked, PKIX also allows a certificate to be put on hold (temporarily
disabled) and then activated again [8]. It is difficult for the above scheme to deal
with such certificates, because the notion of “certificates-on-hold” significantly
complicates revocation. When certificates can only be revoked, the revocation
status of a certificate is temporally monotonic (although the validity status is
not). Thus a certificate can only go from valid to revoked. Recording the time
of this change or the fact that such a change has not occurred determines the
status of the whole life of a certificate. When a certificate can be put on hold,
the revocation status of a certificate is not temporally monotonic. To know
the status history of a certificate, one needs to know all the changes that have
occurred in the past. It is even harder to figure out whether a particular acceptor
believes that a certificate is valid or not at a time in the past, especially when
acceptors have different recency requirements. Therefore, we argue that it is
better to disallow this notion of certificate-on-hold. As an alternative, the CA
can revoke the certificate and later issue a new certificate with the same binding
when needed.

Recommendation 7. We recommend not allowing certificates to be put on
hold, in order to simplify auditing and the semantics of revocation.

In addition to being useful in scenarios that involve insurers, auditing can
also be used for earlier detection of potentially fraudulent transactions. Consider
an acceptor that has a CRL issued at time t0 and is scheduled to obtain a new
CRL at a later time t1. Suppose that the CRL at time t0 doesn’t contain the
certificate c. Then, at any time between t0 and t1, the acceptor would accept
c as valid. However, if the certificate c is revoked during this time, then this
is potentially problematic. It would be useful to detect this when the acceptor
obtains a new CRL at t1. To use CRL to support this kind of auditing and to
support variable recency requirements at the same time, a CRL should keep an
revoked certificate longer than required by [8]. In [8], a revoked certificate is
required to appear in at least one CRL after it has expired. If the certificate c
is revoked then expired after t0, and several CRL’s are issued after c expired
and before t1, then the acceptor won’t know that the transaction involving c is
potentially problematic. One solution to this is to have a CA set two parameters
for issuing CRL, δt and ∆t, where a new CRL is issued every δt and a revoked
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certificate will be kept on CRL for ∆t after it has expired. Anyone who uses
CRL’s should set a recency requirement that is between δt and ∆t.

Different revocation mechanisms have been proposed, and there has been ex-
tensive debate over which revocation mechanisms are the best and who should
provide recency proofs. We think that the answers depend on the specific appli-
cation and scenarios. No one scheme fits all scenarios. For example, CRL’s work
well when there are a small number of acceptors who have high communication
capacity and who process lots of requests from a large number of certificate
holders. This is often the case in an intranet setting, e.g., an internal web server
authenticating employees using certificates. In this case, it is more efficient for
the web server to obtain and check a CRL than for certificate holders to be
required to obtain and present proofs.

On the other hand, CRL’s are not suitable in B2C e-commerce scenarios, in
which customers’ browsers are acceptors. There are a large number of acceptors,
each of which processes only a small number of requests. Furthermore, acceptors
often have limited network bandwidth. It is not efficient to have every browser
deal with CRL’s. It is better to have the server obtain a recency proof and reuse
it with different browsers. In this case, revocation mechanisms that can generate
short validity proofs for certificates are needed. The fact that existing PKI’s lack
the ability to provide short validity proofs is one reason that revocation is not
used in B2C e-commerce scenarios.

6 Conclusions

In summary, a PKI should have a clear and simple user interface that is tempo-
rally monotonic and supports functionality needed for applications. Depending
on the application, it may be necessary for a PKI to support tunable revocation
services and auditing.
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Abstract. We propose methods for mutual authentication and key ex-
change. Our methods are well suited for applications with strict power
consumption restrictions, such as wireless medical implants and contact-
less smart cards. We prove the security of our schemes based on the
discrete log gap problem.
Keywords: Low power, medical informatics, mutual authentication, gap
problem.

1 Introduction

Computers can be separated into wired and wireless devices, where no particular
power restrictions are typically placed on the former, and the restrictions on
wireless devices (typically cellular phones) relate mostly to the battery form fac-
tors. The use of wireless devices for medical applications – such as insulin meters
and pacemakers – create a new category in terms of power restrictions, in which
the power limitations are taken to their extreme. While traditional design of such
devices have not relied on communication with nearby devices, there are great
benefits associated with allowing this. Examples of such benefits include more
accurate control of medical conditions, allowing doctors to constantly monitor
health conditions; possibilities to detect inconsistent operation before it becomes
a threat to the patient; and general collection of statistics for the improvement
of the product.

At the same time, these are applications where errors and inconsistencies,
whether due to interference or malice, may be fatal. In order to avoid security
vulnerabilities, authentication methods and key exchange methods become cru-
cial components in such systems. Authentication has traditionally been of an
asymmetric nature, namely, an untrusted entity identifying itself to a trusted
entity. With a trend towards decentralization, there is a greater need for sym-
metric or mutual authentication. The need for mutual authentication becomes
particularly obvious in situations where users carry small wireless devices that
monitor and control the operation of other wireless devices residing in the user’s
body.
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A situation with similar restrictions involves contact-free smart cards, whose
advantages over standard smart cards range from the convenience they offer to
their increased security – where the latter is due to the increased defense against
power and timing attacks. Due to the absence of a local power source for such
devices, electricity to perform computation is obtained by induction over a field
moving in relation to the card. Only minute amounts of computation can be
performed under such premises, severely restricting the choice of schemes that
can be employed.

We propose two closely related schemes that allow for mutual authentication
and key exchange, and which lower the computational requirements (and there-
fore the power consumption) by means of careful protocol design. One common
technique we employ is that of precomputation, which allows for both the shift-
ing of computation to another entity, and for a lower “peak performance” (and
therefore a lower average power consumption). For applications in which devices
are unable to perform such precomputation, and where the memory resources
are limited, we show how trusted auxiliary devices can perform the computation
and wirelessly upload this to the devices in question (after a successful mutual
authentication, of course.) Our solutions have applications within a large set
of seemingly unrelated fields, such as payment schemes, access control schemes,
medical surveillance, and cellular billing schemes.

Outline: We begin by reviewing related work (section 2), followed by a discus-
sion of our model (section 3). We then present two related schemes (section 4),
both of which perform mutual authentication and key exchange. Not counting
the amount of precomputation, we have that in the first scheme, the computa-
tional load for the client amounts to one modular multiplication and addition,
while in the second scheme, we even avoid the modular reduction. Following
this, we model the protocol and possible attacks on it (section 5), to prepare for
the analysis of our solutions. We end by a careful security analysis of the two
schemes, with further improvements (section 6 resp. section 7). We prove the
schemes secure based on the gap Diffie–Hellman problem (which requires the
standard Diffie–Hellman assumption.)

2 Related Work

2.1 Key Exchange and Mutual Authentication

Our paper hails back to the work on Diffie–Hellman key exchange [8], and the
use of a shared key for purposes of authentication. While many methods can
be employed in this later step – symmetric as well as asymmetric – we focus
on asymmetric methods based on Schnorr signatures [17]. The reason is purely
one of efficiency: Taking this approach, we can shift almost all the computational
work to a preprocessing stage. One could use other methods for this second part,
though, such as those proposed by Bellare and Rogaway [5].

Another direction for key exchange is that of Needham and Schroeder [11],
later evolving into Kerberos (see [12] for a description.) There, a mutually trusted
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third party is involved in the key exchange. Under such a trust model, an al-
ternative to our protocols is to use a trusted third party for key exchange or
precomputation. In the latter case, one could use a simple table based method,
in which the TTP distributes pairwise matching lists to the participants. One
part of an entry could correspond to a request, the second to a response, and
a third to the key to be used. However, and as noted, such a solution requires
the TTP to be mutually trusted by the parties involved, and not only trusted by
its client. Another important difference is that such a solution is not necessar-
ily easy to distribute. The (unilaterally) trusted third party in our solution – if
used at all – may perform all the exponentiation using quorum action, and send
the portions of the result to the device, which then computes the corresponding
database entry.

Coming back to the former type of model, we have that a key exchange
scheme (without TTP) involves two participants, a client and a server, who want
to share a secret session key in order to achieve confidentiality. They therefore
communicate on a public channel and eventually compute a value that they both
know but which nobody else knows. Many security models have been defined to
cover this kind of schemes. Of these, the following two models have received the
most consideration:

– The first model was proposed by Bellare and Rogaway [4,5], and refined
in [2] (furthermore considering dictionary attacks). Here, the adversary can
interact with all the participants, with an aim to learn some information
about one session key. Therefore, one tries to prove the indistinguishability
of the session key (from a random key) for the adversary.

– The second model was proposed by Bellare, Canetti, and Krawczyk [1], and
is based on the multi-party simulatability technique. This means that one
first defines an idealized version of a key exchange scheme. Then, to prove
that the real-world scheme is secure, one shows that any adversary in the
real world has to behave like an adversary in the ideal world.

Shoup [19] recently showed that the two models (with some refinements) are
equivalent in preventing active adversaries to break forward secrecy: An adver-
sary who can see all the public communication and has access to all the session
keys but one, cannot obtain any information about that last session key, even if
he later learns the long-term secrets of the parties.

When parties have established a common secret session key, most of the key
exchange protocols, such as the Diffie–Hellman [8] key exchange scheme using
public keys, implicitly ensure that any party is really partnered (sharing the
session key) with the party he wanted, or with nobody. Indeed, if an adversary
uses the public key of Alice, Bob will run the key exchange process, and at the
end he thinks that the actual session key is shared with Alice. However, the
adversary cannot extract the session key from the communication. Therefore,
nobody but Alice can be partnered with Bob as a result of this process.

Thus, apart from performing the key agreement, one usually wants to verify
the actual partner. This latter property for a key exchange scheme is called
mutual authentication. However, as presented in [2], an implicitly authenticated
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key exchange protocol can be easily transformed into a scheme that provides
mutual authentication, merely by adding one more flow, with a key confirmation
step.

2.2 The Gap Problems

Very recently, Okamoto and Pointcheval [14] introduced a new class of problems
to deal with the security of very efficient schemes. Informally, it considers the gap
between a decision problem and its computational counterpart. More precisely,
a gap-problem is a computational problem to solve given access to a decision
oracle. Let us see what it means for the Diffie–Hellman family of problems,
where all the elements belong in a group G of prime order q:
– The Computational Diffie–Hellman Problem (a.k.a. C-DH): given a triple
(g, ga, gb), find the element C = gab.

– The Decision Diffie–Hellman Problem (a.k.a. D-DH): given a quadruple
(g, ga, gb, gc), decide whether c = ab mod q or not.

– The Gap Diffie–Hellman Problem (a.k.a. G-DH): given a triple (g, ga, gb),
find the element C = gab with the help of a Decision Diffie–Hellman Oracle
(which answers whether a given quadruple is a Diffie–Hellman quadruple or
not).

Using the notation from the complexity theory, one could define the Gap Diffie–
Hellman problem as the Computational Diffie–Hellman Problem with access to
a Decision Diffie–Hellman oracle: G-DH = C-DHD-DH. Thereafter, some relations
between these problems become clear: first, if the C-DH problem is easy, so is
G-DH; secondly, if the G-DH problem is easy, then C-DH = D-DH, which is
very unlikely. This latter remark justifies the current assumption that the Gap
Diffie–Hellman problem is hard to solve. The assumption of its hardness seems
very similar to the Decision Diffie–Hellman assumption. Thus, the class of the
gap-problems can be considered a dual to the class of the decision-problems.

This class of problems is already believed to be yield to many secure and
efficient schemes. Indeed, it helped to prove the security of an undeniable signa-
ture scheme, the very old and well-known scheme proposed by Chaum [7,6,14],
for which no security proof was previously known. It is also the basis of very
efficient chosen-ciphertext secure cryptosystems [13].

3 Model

We have two primary types of participants, the client and the server. Although
we strive to limiting the computational burden for both of these participants, it
is the client that we assume have the strictest limitations. It is the purpose of
our protocols to allow a client and a server to perform mutual authentication
and to establish a shared key.

Our schemes can be used with a standard public key infrastructure. The
use of certificates is straightforward; however, we must assume that these are
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verified beforehand to reduce the computational complexity. This only has to
be assumed for the clients, given that the servers are assumed to have sufficient
computational power to verify certificates. We note that this fits well into a
model where many clients know of a few servers, but the servers do not know
about any clients.

Furthermore, we may have trusted devices, who perform computation on
behalf of clients and servers. A trusted device interacts with either a client or
a server, but not both, as is only trusted by the entity it interacts with. The
amount of trust that a device has to place in such a trusted device can be reduced
by means of standard methods for distribution.

We assume that the entire communication network is managed by the adver-
sary, who may schedule interactions arbitrarily, and who may inject and drop
messages arbitrarily. We assume that all participants, and any adversary, can be
modeled by poly-time Turing Machines.

Informally, we want our protocols to satisfy the following requirements.

– From a computational point of view, as said above, the on-line workload of
the client must be minimal. Namely, we avoid the use of modular exponen-
tiation, and avoid or reduce modular additions and multiplications.

– From the security point of view, we want to prevent active adversaries to
learn any information about a session key. Forward-secrecy is also an im-
portant issue. However, under the above computational restriction, it seems
impossible to achieve a forward-secrecy from both sides. We can assume a
strong physical security level for the server, while the client may be a weak
device. Therefore, the corruption of this device, and thus the leakage of the
long-term secret key of the client, should not make public all the previous se-
cret communication. Thus, the most important aspect is that all the session
keys remain secret after the leakage of a client long-term key.

We will define the corresponding security requirements in more detail in the
analysis section.

4 Solutions

We introduce two closely related protocols for mutual authentication and key
exchange. While the protocols differ only on a few points in terms of their de-
scription, the security analysis differs substantially between the two. Still, the
protocols are shown secure based on the same assumption: the intractability of
the gap Diffie–Hellman problem.

Both protocols are based on the Diffie–Hellman key distribution scheme [8]
together with the Schnorr’s authentication scheme [17] (and the GPS scheme for
the optimized version [9,16].) Thanks to the latter, much precomputation can
be performed so that no on-line computation is required of the client. Therefore,
the client can be any low-cost device.

The first scheme is presented in figure 1, the second differs on only a few
points:
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Server A Client B
Initialization

G = 〈g〉, group of prime order q

H0 : G × G × G → {0, 1}�0

H1 : G × G × G × G → {0, 1}�1

H2 : G × G × G → {0, 1}�2

k, security parameter

yA = gxA yB = gxB

Precomputation
b, t ∈ Zq random,

B = gb, T = gt

For known yA: K = yb
A

r = H1(T, yA, B, K)
A′ = H2(yA, B, K)
sk = H0(yA, B, K)

Storage: t, r, B, A′, sk
acc ← term ← False acc ← term ← False

A, B, r←−−−−−−−−−−
K = BxA

A = H2(yA, B, K)

0 ≤ e < 2k random
A, e−−−−−−−−−−→

B, d←−−−−−−−−−−

A′ ?
= A
if not satisfied:

term ← True
d = t − exB mod q

acc ← term ← True

r
?
= H1(g

dye
B , yA, B, K)

if not satisfied:
term ← True

else acc ← term ← True
sk = H0(yA, B, K)
sid = (A, B, r, A, e,B, d)

Fig. 1. Mutual Authentication

– It introduces a new security parameter, k′.
– Instead of selecting t uniformly at random from Zq, t is selected uniformly
at random from Zq′ , where q′ = q 2k+k′

.
– Instead of computing d as d = t− exB mod q, it is computed as d = t− exB.
(Note the absence of the modular reduction.)
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5 Modeling the Protocol

For this proof of security, we use the Bellare and Rogaway model [4,5] revisited
by Shoup [19] to handle the forward-secrecy. In this model (see figure 2), any

A1

AqA

B1

BqB

C

history

0/1

Fig. 2. Security Model

instance of each party, A or B, is seen as an oracle. At the end of each protocol,
when any party Ui has accepted, he gets a session key, denoted by ski

U , and
a session ID, denoted by sidi

U which is the concatenation of all the flows. The
session ID’s are made public, while the session keys clearly remain secret. Indeed,
the session keys are the common secret shared by the two parties at the end of
the protocol. The session ID’s have a technical significance: they are used to
define partnership. The partner of a party is an instance which has a similar
session ID. Since the session ID’s are public, the partnership is also public. With
such a definition of partnership, one can remark that a party may have many
partners, although we will show that it is very unlikely.

The adversary can interact, as a man-in-the-middle, with the parties, or more
formally with many instances of them (Ai for the server and Bj for the client)
as many times as he wants in a concurrent way. He can ask them the following
queries

– Send (U , i, string) – which means that the adversary sends the message
string to the oracle Ui (either a server or a client). The oracle makes some
computation according to the protocol and gives the answer back.

– Reveal (U , i) – if the oracle Ui has accepted (the tag acc has been set to
True), he returns the session key ski

U . It models the misuse of a session key
by the parties after having established it.

– Test (U , i) – if the oracle Ui has accepted, one tosses a coin b. If b = 1 then
the session key ski

U is returned, else a random string is returned. The aim of
the attack is then to guess this bit b. Therefore, there are trivial restrictions
about this query:
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• it can just be asked once;
• no Reveal-query has been asked to Ui;
• no Reveal-query has been asked to Vj, where Vj is partnered with Ui.

– Corrupt (U) – in order to deal with the forward-secrecy, one allows the adver-
sary to corrupt the parties. Then, he obtains the secret key (the long-term
secret key xU ) of the corrupted party U . Therefore, the Test-query will have
to be asked to a party which had accepted before any corruption.

The above game, with the Test-query, just deals with the key agreement
property but not with authentication. We will say that the protocol provides
mutual authentication if no instance accepts and not exactly one partner exists.
Otherwise, it would mean that the adversary has impersonated a party. More
precisely, if an instance Ai of the server accepts with no partner, it means that
the adversary had impersonated the client, and therefore broken the client-to-
server authentication.

In the other direction, if an instance Bj of the client accepts with no partner,
it means that the adversary had impersonate the server, and therefore broken
the server-to-client authentication.

A key exchange protocol guarantees mutual authentication if for any ad-
versary, her probabilities in breaking the client-to-server authentication or the
server-to-client authentication are both negligible. This is usually guaranteed by
implicit authentication together with key confirmations from both parties [2].

6 Analysis of the First Scheme

6.1 Presentation

This section deals with the security of the scheme presented in figure 1. We prove
that it achieves the security requirements:

– an adversary cannot learn any information about a session key which has not
been revealed. This is proven by the fact that any adversary can just obtain
a negligible advantage in guessing the bit b involved in the Test-query;

– an adversary cannot impersonate any of the parties, which guarantees the
mutual authentication;

– forward-secrecy is ensured as long as the server is not corrupted.

As usual, some assumptions have to be made to provide the security result.
The following proof just runs in the random oracle model [3] and assume the
intractability of the gap Diffie–Hellman problem [14].

Indeed, we cannot hope to weaken the computational assumption, but can
prove that it is sufficient.

6.2 The Gap Diffie–Hellman Problem: A Necessary Assumption

First, let us specify more formally the Diffie–Hellman problems we will use. In
the protocol, G is any group of prime order q. For any pair (g, h) of G-elements,
we define the following Diffie–Hellman problems, which are particular instances
of the general problems presented previously.
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– C-DHg,h: given an element a, find the element b = C-DH(g, h, a).
– D-DHg,h: given a pair (a, b), decide whether b = C-DH(g, h, a), which is
equivalent to decide whether D-DH(g, h, a, b) is true or not.

– G-DHg,h: given an element a, find the element b = C-DH(g, h, a) with the
help of a D-DHg,h oracle.

First, it is clear that if the discrete logarithm problem can be broken, then
this authentication scheme is no longer secure. Furthermore, for the server, the
computational Diffie–Hellman problem C-DHg,yA is enough to be broken so that
the security of the overall scheme vanishes. However, one may also remark that
the adversary has access to a kind of oracle D-DHg,yA that answers to any query
D-DHg,yA(a, b), by saying whether b = C-DH(g, yA, a) or not, for any pair (a, b)
of her choice: indeed, the adversary chooses a random r and sends A, a, r to the
server. This latter answers A, e. The adversary stops the game and simply checks
whether A = H2(yA, a, b), which answers the D-DHg,yA(a, b) query.

Therefore, if one can break the Gap Diffie–Hellman problem G-DHg,yA , which
is exactly to compute C-DHg,yA(B) = C-DH(g, yA, B) for a non-negligible part
of B with non-negligible probability, with an access to a D-DHg,yA oracle, which
answers whether C = D-DH(g, yA, B) or not, for any pair (B,C), then one can
use the server for simulating the D-DHg,yA oracle, as shown above.

Now, let us prove that this mathematical assumption is enough for the secu-
rity of this scheme, which would prove the equivalence of the security and the
Gap Diffie–Hellman problem [14]. Let us do it step by step. Whereas we want
to prove the security of the key exchange protocol and of the mutual authen-
tication, we do not proceed as usual. Indeed, we first study the client-to-server
authentication, then the security of the key agreement (no leakage of informa-
tion about any session key) and finally we complete the mutual authentication
by proving the server-to-client authentication.

In all the following claims and proofs, we denote by

– qA (resp. qB), the number of instances of the server (resp. client) involved
in the game;

– �0, �1 and �2, the output size of the oracles H0, H1 and H2;
– q0, q1 and q2, the number of queries asked to the oracles H0, H1 and H2;
– qH , the total number of queries asked to the oracles H0, H1 and H2;
– k, the size of the challenge e.

6.3 Client-to-Server Authentication

Let us first deal with the authentication of the parties to each other. In this aim,
we denote by Eventc2s the event that, at the end of the attack, there exists an
instance Ai of the server which has accepted without exactly one partner. This
event defines the violation of the client-to-server authentication. Respectively,
we denote by Events2c the event that, at the end of the attack, there exists an
instance Bj of the client which has accepted without exactly one partner. This
latter event defines the violation of the server-to-client authentication.
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The following lemma states that the protocol provides client-to-server au-
thentication, relative to the discrete logarithm problem.

Lemma 1. Let us assume that an adversary can violate the client-to-server au-
thentication with probability ε within a time bound t. Then the discrete logarithm
can be solved within an expected time

t′ ≤ t×
(
1
ν
+
(

ν

4qA
− 1
2k

)−1
)
, where ν = ε−

(
1
2�1
×
(
q2B
q
+ q21

)
+
qAq1
q

)
.

Proof. Let us assume that, for some ν,

ε = Pr[Eventc2s] ≥ ν +
1
2�1
×
(
q2B
q
+ q21

)
+
qAq1
q

.

First, one can easily simulate any client B instance without the secret key, thanks
to the random oracle used to commit the first flow. On the other hand, there is
no need to simulate the server instances, since we have the secret key. Let see
the figure 3. On may remark that this simulation is perfectly indistinguishable
from a real game, excepted in the case the definition H1(gdye

B, yA, B,K) ← r
cannot be done in the Send (B, j, (A, e))-query. Indeed, H1 may have already
been defined at that point before. But since d is randomly chosen in Zq, the
simulation fails with probability less than qAq1/q.

Therefore, one can consider this simulation as the game to study, which is
indistinguishable from a real game. Thus, one can remark that the probability
for an Ai to have many partners is bounded by q2B/q2

�1, since B and r are
randomly chosen by the client instances. Furthermore, we condition, using PrH ,
all the probabilities to the event ¬EventColH, where EventColH denotes a collision
for H1. Therefore,

ν +
q21
2�1
≤ ε− qAq1

q
− q2B
q · 2�1

≤ Pr[∃i Eventi] ≤ PrH [∃i Eventi] + Pr[EventColH]

≤ PrH [∃i Eventi] +
q21
2�1

,

where Eventi denotes the event that, at the end of the attack in the simulated
game, the instance Ai has accepted without any partner. Then PrH [∃i Eventi]
is lower-bounded by ν. The end of the proof works exactly as the security proof
of the signature schemes studied in [15], thanks to the forking lemma. Using
this technique, we make a fork on the execution sid = (A, B, r, A, e,B, d), on
which occurred the violation of the client-to-server authentication, by changing
e into e′ at the right time. We then obtain a new violation on the execution
sid′ = (A, B, r, A′, e′,B, d′). This uses the same values for B and r: note that
the correctness of B, and the knowledge of K, are both verified in the test
r = H1(gdye

B, yA, B,K)1. More precisely, let us group inside the set I all the
1 We note that the absence of such a construction would allow a reuse of transcripts,
which opens up to serious abuse. We refer to [20] for a description of how such
vulnerabilities can be taken advantage of. Therein, a weakness of a previous version
of our protocol is described and exploited.
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Initialization

Input g and y
Keys xA ∈ Zq, yA = gxA , yB ← y

Hash functions H0, H1, H2

H0(�), H1(�), H2(�) if the value is not determined at that point, one chooses a
random value in the corresponding range and returns it.

Any hash value used below is implicitly obtained with this simulation, unless
something else is specified.

Instance Ai of A
Send (A, i, (A, B, r)) one computes K = BxA and A = H2(yA, B, K). Then one

chooses a random challenge 0 ≤ e < 2k and returns (A, e).

Send (A, i, (B, d)) one checks whether r = H1(g
dye

B , yA, B, K). If satisfied, one
accepts and terminates, else one just terminates, while still not
accepting.

Instance Bj of B
Send (B, j, “start′′) one chooses random b ∈ Zq and r ∈ {0, 1}�1 . Then, one com-

putes B = gb, K = yb
A and returns (B, r).

Send (B, j, (A, e)) one checks whether A = H2(yA, B,K). If satisfied, one
chooses a random 0 ≤ d < q, computes T = gdye

B , defines
H1(T, yA, B, K) ← r and returns (B, d) while accepting and
terminating, else one just terminates, while still not accepting.

Other queries

Reveal (U , i) if the oracle Ui has accepted, one returns the corresponding
H0(yA, B, K).

Test (U , i) if Ui has accepted, one flips a coin and either returns the cor-
responding H0(yA, B, K) or a random string.

Fig. 3. Game A: Client-to-server authentication

most likely indices i: I = {i |PrH [Eventi |Eventc2s] ≥ 1/2qA}. Then one can
easily prove that we have PrH [∃i ∈ I, Eventi] ≥ 1/2.

Let us call EventPartial
i the event defined by the following property: when the

instance Ai receives the Send (A, i, (A, B, r)) query,
PrH [Eventi |EventPartial

i ] ≥ ν/4qA.

Then, using the splitting lemma [15] one can claim that for any index i ∈ I,
PrH [EventPartial

i |Eventi] ≥ 1/2. Indeed,
PrH [Eventi] = PrH [Eventi ∧ Eventc2s]

= PrH [Eventi |Eventc2s]× PrH [Eventc2s] ≥ 1
2qA
× ν.

Therefore, if one runs the attack, until the event Eventc2s occurs, which re-
quires an expected number of iterations bounded by 1/ν. In that case, with prob-
ability of 1/2, we furthermore have Eventi with an instance i ∈ I. That event
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means that the adversary (since it is not an instance of B) has answered d which
satisfies r = H1(gdye

B, yA, B,K). Therefore, with probability 1/2, EventPartial
i oc-

curs too. One rewinds the game up to the Send (A, i, (A, B, r)) query, answering
with a random challenge e′. One resumes and rewinds with new challenges e′ until
another event Eventc2s occurs, or at most (ν/4qA − 1/2k)−1 times. If EventPartial

i

occurred, we obtain a second success Eventi with probability greater than 1/2.
Globally, after at most 1/ν + (ν/4qA − 1/2k)−1 iterations of the game, we

have obtained two answers d, d′ to two distinct challenges e �= e′ with probability
greater than 1/8, for the same (A, B, r, A).

Thanks to e �= e′, d, d′, since we have assumed that no collision has been
found for H1, we have the relation geyd

B = ge′
yd′

B , which leads to the discrete
logarithm of yB in basis g. ��

Let us postpone the study of mutual authentication and study right now the
security of the key agreement. Indeed, the proof relies on the previous result,
and will be useful for the server-to-client authentication.

6.4 Key Agreement

Theorem 2. Let us assume that an adversary can guess the bit involved in
the Test-query with advantage ε within a time bound t. Then the computational
Diffie–Hellman problem can be solved with probability ε′ ≥ ε/2− pc2s, within al-
most the same time, where pc2s is the maximal probability for an adversary to
violate the client-to-server authentication within a time bound t ( cf. Lemma 1),
with at most qH queries to the decision Diffie–Hellman oracle. Thus the security
relies on the gap Diffie–Hellman problem.

Proof. Let us first remark that because of the randomness of the hash function,
to gain any advantage in guessing correctly the coin involved in the Test-query,
the adversary must ask the query (yA, B,K) to H0: Pr[AskK] ≥ Adv/2, where
AskK denotes the event that the query (yA, B,K) corresponding to the sid of
the Test-query has been asked to H0. Therefore, because of the constraints on
the Test-query,

Pr[AskK ∧ ∃i Test (A, i) ∧ Eventc2s] + Pr[AskK ∧ ∃i Test (A, i) ∧ ¬Eventc2s]
+Pr[AskK ∧ ∃j Test (B, j)] ≥ Adv/2.

If one denotes by pc2s the probability to break the client-to-server authenticity,
one can claim that

Pr[AskK∧∃i Test (A, i)∧¬Eventc2s] +Pr[AskK∧∃j Test (B, j)] ≥ Adv/2− pc2s.

Let us now consider the simulation of the parties, as described on figure 4. Thanks
to the Decision Diffie–Hellman Oracle D-DHg,α, one can perfectly simulate all
the parties and the random oracles. Indeed, the tables HDH

0 , HDH
1 and HDH

2 are
managed using this decision Diffie–Hellman oracle, and record the answers of
the oracles H0, H1 and H2, when inputs are Diffie–Hellman triples.
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The simulation may just fail, in the Test (A, i) query, since this latter simula-
tion requires a client-partner, if the event Eventc2s occurs. Anyway, with this sim-
ulation, the event “(∃i) Test (A, i)∧¬Eventc2s” implies event “(∃j)Test (B, j)”:

Pr[AskK ∧ (∃j)Test (B, j)] ≥ Adv/2− pc2s.

Because of the simulation of Bj, we have

Adv/2− pc2s ≤ Pr[AskK for (yA = α,B = βb,K = C-DH(g, yA, B))].

Therefore, the AskK event says that K = C-DH(g, α, βb) can be extracted from
the queries asked to the H0 oracle, while verifying the correctness thanks to the
Decision Diffie–Hellman Oracle (the D-DHg,α), with probability greater than
Adv/2− pc2s. Thus, C-DH(g, α, β) = Kd, where d = b−1 mod q.

To conclude the proof, one can just remark that if the Gap Diffie–Hellman
problem G-DHg,yA is intractable, so do is the discrete logarithm problem too,
which guarantees that pc2s is small. ��

6.5 Mutual Authentication

Since we have already proven the client-to-server authentication, we just need
to prove the server-to-client authentication to ensure mutual authentication.

Lemma 3. Let us assume that an adversary can violate the server-to-client au-
thentication (without any violation of the client-to-server authentication) of the
protocol with probability π within a time bound t. Then the computational Diffie–
Hellman problem can be solved with probability π′ within almost the same time,
where

π′ ≥ π −
(
qB

2�2
+
q2B
q

)
.

Proof. As we have seen above, the simulation presented on figure 4 is perfect
unless the event Eventc2s occurs. Therefore, let us study the event Events2c, know-
ing ¬Eventc2s. It means that at some point, after having sent (A, B = αb, r) and
received (A, e), a client accepts the proof whereas it has not been produced by
a server:

– either the adversary guessed the value A (probability less than qB/2�2)
– or the value B occurred in an other session (probability less than q2B/q, since
it is randomly chosen by the client)

– or the adversary has asked for (yA, B,K) to the oracle H2

Then

Pr[Events2c | ¬Eventc2s] ≤ Pr
[
(yA, B,K) asked, with yA = α,
B = βb,K = C-DH(g, yA, B))

]
+
qB

2�2
+
q2B
q
,

which completes the proof of the lemma. ��
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Initialization

Input g, α and β
Keys yA ← α, xB ∈ Zq , yB ← gxB

Hash functions H0, H1, H2

H0(a, b, c) two different situations may appear.
– a = α and c = C-DH(g, a, b), checked by the D-DHg,α ora-

cle: if HDH
0 (a, b) has been defined, to say d, (which occurs iff

H0 has been defined to d in the point (a, b, c), then returns
d, else, (i.e. H0 is undefined at the point (a, b, c)) then one
chooses a random value d ∈ {0, 1}�0 , defines HDH

0 (a, b) ← d
and returns d.

– otherwise: if H0 is undefined at the point (a, b, c), then one
chooses a random value in {0, 1}�0 and returns it.

H1(T, a, b, c) same as for H0, but using �1 and HDH
1 (T, a, b).

H2(a, b, c) same as for H0, but using �2 and HDH
2 (a, b).

HDH
0 (a, b) if the query (a, b) has not been asked to HDH

0 then one chooses
a random value in {0, 1}�0 and returns it.

HDH
1 (T, a, b) same as for HDH

0 , but using �1, and queries of the form (T, a, b).

HDH
2 (a, b) same as for HDH

0 , but using �2.
Any hash value used below is implicitly obtained with this simulation, unless
something else is specified. Furthermore, only the simulated parties have access
to the HDH

0 , HDH
1 and HDH

2 oracles.

Instance Ai of A
Send (A, i, (A, B, r)) one asks for A = HDH

2 (yA, B), chooses a random challenge
0 ≤ e < 2k and returns (A, e).

Send (A, i, d) one checks whether r = HDH
1 (gdye

B, yA, B). If satisfied, one
accepts and terminates, else one just terminates, while still
not accepting.

Instance Bj of B
Send (B, j, “start′′) one chooses random b, t ∈ Zq and computes B = βb, T = gt as

well as r = HDH
1 (T, yA, B), and returns (B, r).

Send (B, j, (A, e)) if A = HDH
2 (yA, B) then one computes d = t − exB mod q

and returns d while accepting and terminating, else one just
terminates, while still not accepting.

Other queries

Reveal (U , i) if Ui has accepted, one returns the corresponding HDH
0 (yA, B).

Test (B, j) if Ui has accepted, one flips a coin and either returns the cor-
responding HDH

0 (yA, B) or a random string.
Test (A, i) let us denote by Bj the partner of Ai (abort if not uniquely

defined), and run Test (B, j).
Corrupt (B) one returns xB.

Fig. 4. Game B: Key agreement protocol
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Thanks to both lemma 1 and lemma 3, one can easily claim the following
theorem.

Theorem 4. Let us assume that an adversary can violate the mutual authenti-
cation of the protocol with probability ε within a time bound t. Then the compu-
tational Diffie–Hellman problem can be solved within an expected time bound

t′ ≤ t×
(
1
ν
+
(

ν

4qA
− 1
2k

)−1

+
(
ε

2
− qB

2�2
− q2B

q

)−1
)
,

where

ν =
ε

2
−
(
1
2�1
×
(
q2B
q
+ q21

)
+
qAq1
q

)
.

Proof. Simply adding results of both Lemmas 1 and 3, one gets the expected
result, since ε ≤ Pr[Eventma] = Pr[Eventc2s] + Pr[Events2c | ¬Eventc2s], and there-
fore either Pr[Eventc2s] ≥ ε/2 or Pr[Events2c | ¬Eventc2s] ≥ ε/2. ��

6.6 Forward Secrecy

This protocol furthermore provides partial forward-secrecy. Indeed, it is clear
that if the server is corrupted, then all the session keys can be recovered from
the transcript. However, the corruption of the client may not help to recover
the session keys: the forward-secrecy just deals with the key agreement property
which can be perfectly simulated by the game presented on figure 4. This simu-
lation provides the Corrupt-query, since the client secret key is known. Then the
theorem 2 still holds, since the Test-query has to be asked for a session which
occurs before the corruption.

7 Improvements

7.1 Analysis of the Second Scheme

Without the q-modular reduction, the simulation of the client-to-server authenti-
cation, while choosing 0 ≤ d < q ·2k+k′

, is not perfect [16]. However the distance
of the distribution of the transcripts is less than 1/2k′

(statistical indistinguisha-
bility). Therefore, all the security results still remain, under the condition that
1/2k′

is negligible.

7.2 Hash Functions

Using the proof technique proposed by Girault and Stern [10], one can still
prove the client-to-server authentication even with a short hash functionH1, just
considering the multi-collision resistance. Indeed, if one can avoid �-collisions for
H1, with probability greater than p�, then the lemma 1 is slightly modified, as
follows.
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Lemma 5. Let us assume that an adversary can violate the client-to-server au-
thentication with probability ε within a time bound t, then the discrete logarithm
can be solved within an expected time

t′ ≤ t×
(
1
ν
+ (� − 1)×

(
ν

4qA
− 1
2k

)−1
)
, where ν = ε−

(
q2B
2�1q

+
qAq1
q

+ p�

)
.

The main modification appears in the time complexity, since in the forking
lemma, one has to rewind many times to obtain � values, so that at least 2
are distinct.

7.3 Size of the Parameters

One can use the following sizes for achieving a good security level, assuming that
the adversary cannot ask more than qA, qB ≤ 230 queries to the instance-oracles
and q0, q1, q2 ≤ 264 queries to the random oracles:

– a 160-bit order q for the group G prevents baby-step/giant-step attacks [18]
or any other generic attack. Then a convenient group as to be chosen to
avoid any other kind of attack (e.g. G = 〈g〉 ⊂ Z

�
p, or an elliptic curve). The

integer n will denote the bit-size of the encoding of the elements in G;
– k = k′ = 64 make the simulation indistinguishable but with a very small
distance (less than 2−64);

– �1 = 80, for providing a 5-collision resistant hash function; �2 = 64 or 128;
and �0, whatever needed for a session key, say 64.

7.4 Storage and Computation

With these parameters, the client can precompute anything required during the
protocol:

– two exponentiations before knowing the server;
– one exponentiation and three hashings when he knows the server;

Then, he has to store

– B, a group element (of size n);
– t and r, where t is a |q| + k + k′ = 288-bit long integer and r a 80-bit hash
value;

– A′ and sk, two 64-bit hash values.

The total memory required for one authenticated key agreement is n+496 bits.
Using an elliptic curve group, this is less than 82 bytes.

Thereafter, the client will just have to perform on-line,

– one test of equality between two 64-bit elements;
– one multiplication between a 64-bit and a 160-bit integers;
– one addition between a 224-bit and a 288-bit integers.
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One can even decrease the storage-memory by choosing and storing 0 ≤ t < q,
but computing d = t+ ρ · q + e · xB , where ρ is a random 128-bit element.

Then the storage-memory required for one authenticated key agreement is
n + 368 bits. Using an elliptic curve group, this is less than 66 bytes. But one
multiplication and one addition more have to be performed on-line.

8 Conclusion

In this paper, we have proposed a key exchange scheme which achieves mu-
tual authentication and forward-secrecy (but just for the leakage of the client
long-term key). The main interest of this scheme is the computational efficiency.
Indeed, it requires the client to perform only a few additions and multiplications
of short integers, and a few comparisons between 64-bit strings. The storage
requirements are less than 70 bytes per process, which allows more than 15 pre-
computed tuples per kilobyte.
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Abstract. Recently, some credit card companies have introduced
limited-use credit card numbers—for example, American Express’s
single-use card numbers and Visa’s gift cards. Such limited-use credit
cards limit the exposure of a traditional long-term credit card number,
particularly in Internet transactions. These offerings employ an on-line
solution, in that a credit card holder must interact with the credit card
issuer in order to derive a limited-use token. In this paper, we describe
a method for cryptographic off-line generation of limited-use credit card
numbers. This has several advantages over the on-line schemes, and it
has applications to calling cards as well. We show that there are several
trade-offs between security and maintaining the current infrastructure.

1 Introduction

The proliferation of e-commerce on the Internet has not resulted in a wide diver-
sity of on-line payment mechanisms. While novel schemes such as PayPal [7] have
gained in popularity, most business to customer transactions still utilize stan-
dard credit card numbers over a Secure Socket Layer (SSL) connection [5]. SSL
provides encryption so that data is not revealed in transit, and server authenti-
cation so that the merchant identity is confirmed to the customer. (While SSL
provides for mutual authentication, most consumers do not have the necessary
public key certificates for it and virtually all consumer-oriented Web merchants
implement only server authentication.)

Unfortunately, despite the use of SSL, there is no guarantee that the user is
not being fooled by a malicious merchant (c.f. [6]) or, at least in earlier versions
of SSL, that an outside attacker might not be able to break the encryption [3].
There are several ways SSL can break down even if the encryption mechanism
is not broken. Most users do not actually verify the certificate on a secure site.
That is, most users simply look for the browser’s indication that a page has
been encrypted, such as Netscape’s blue padlock, rather than actually looking
at the certificate itself to verify that the merchant name in the certificate matches
their expectations. Many users do not do check even for this encryption indicator.
Furthermore, even if users do check certificates, it is relatively easy for just about
anyone to obtain one. There are over 50 root certificate authorities’ public keys
in a typical Netscape browser, and many more in Internet Explorer. In addition,
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there are other ways that users can be fooled into thinking they are visiting an
intended site when in fact they are at an attacker’s site [4].

Besides the risk of exposure of card numbers during transit, there is also
the risk of exposure of card numbers while stored at a merchant’s site. There
have recently been several high profile cases in the news where merchants’ sites
were broken into and stored credit card numbers were stolen (c.f. [10]). Even in
the physical world, credit cards are exposed simply by being used. Fraudulent
merchants or employees may sell or use their customers’ credit card numbers,
and attackers can look for discarded credit card receipts in trash bins.

By having a single credit card number that is reusably and indefinitely used
as an authorization token, the traditional credit card system creates substantial
risk for the credit card companies, who lose millions or billions of dollars a year
due to fraud.1 The big companies—Visa, Mastercard, and American Express—
insulate their customers from risk by shouldering any loss above $50 themselves;
in many cases, even the $50 charge to the customer is waived. Thus, there is great
incentive for credit card companies to implement schemes that make it more dif-
ficult for credit card numbers to be compromised. Fraud reduction is also advan-
tageous to customers and merchants because the cost of fraud results in higher
transaction costs charged by credit card companies to merchants, which must
in turn either be absorbed by the merchant or passed to customers. Addition-
ally, customers whose cards are compromised must deal with the inconvenience
of replacing their cards and the potentially devastating and difficult-to-correct
effects on their credit ratings.

The Secure Electronic Transactions (SET) protocol was designed to protect
credit card numbers from malicious parties, and even from merchants. Unfortu-
nately, SET never took off. There was too much overhead required, and buy-in
was needed from too many different parties. Credit cards over SSL, on the other
hand, require no additional infrastructure, and are easy for users to understand.
It is not surprising that this is currently the standard for business to consumer
commerce.

1.1 Related Work

Realizing the security problem in indefinitely reusable credit card numbers,
credit card issuers have recently started to introduce limited-use credit card
number solutions that can be layered over the existing infrastructure. Ameri-
can Express offers single-use credit cards and Visa offers limited-value gift credit
cards. The design and architecture of another solution is presented by Shamir [9].
The main idea is to enable users to shop at existing Web merchant sites without
exposing long-term credit card numbers, and without requiring changes to the
Web pages. All of the existing solutions require users to have an on-line secure
interaction with the credit card issuer during or shortly before a purchase, in

1 Although part of the authorization token eventually changes due to the expiration
date, this is only infrequently (typically, once every one to three years) and further-
more it is easy to guess the subsequent expiration date from the current one.
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which a new single-use or limited-use credit card number, which we call a token,
is obtained. The token is linked to the user’s existing account, in that charges
made with the token will be charged to the original account. Such tokens pro-
vide more security than standard reusable credit cards because even if they are
learned by an attacker, they are either of no further use or of limited further use.

In the on-line setting used by these solutions, a card holder who wishes to
make a purchase visits the Web site of the card issuer to obtain limited-use
tokens. There, the card holder has the option to enter his name and account
number, or perhaps a stronger method of authentication is performed, and then
the card holder obtains a token to use for his purchase. The card issuer stores
the token with the account, along with any restrictions on its use such as dollar
amount or merchant name. When the token user shops at a merchant site, the
token is entered into a Web form as if it were a traditional credit card num-
ber. From the merchant’s point of view, the credit card is like any other. The
merchant clears the credit card number with the issuing bank. The issuing bank
then looks up the account and checks that the token has been stored with the
account and is therefore valid.

There are several problems with the on-line setting. When the card holder
obtains the token, the connection to the card issuer needs to be secured, typically
by SSL, because the traditional long-term credit card number will be communi-
cated over this connection. SSL places a performance burden on the server. Many
simultaneous SSL connections could bring a server to its knees, and any solution
involving a central SSL server does not scale well. Furthermore, a spoofed credit
card company site could collect legitimate credit card numbers from unsuspect-
ing users. In general, it is not a good idea for a site to exist with the sole purpose
of collecting credit card numbers from people. It promotes bad habits and cre-
ates desirable targets. A simple attack against DNS and a certificate from any
root CA is all an attacker needs to run a credit card collection site in this model.

1.2 Our Work

In our work, we consider an off-line model, where limited-use tokens (including
tokens limited to a single use) can be implemented from traditional credit cards
without requiring that a user interact with the credit card issuer as part of
every transaction. Like the on-line solutions, our solution is designed so that
it can be layered on top of the existing e-commerce infrastructure without any
change to the merchant’s systems or the user’s browser. Off-line protocols have
the advantage that the card holder need not interact with the credit card issuer
to create limited-use tokens, and in particular, no secure channel to the credit
card issuer is required at the time of token generation. This is useful because it
removes the reliance on authentication with SSL. In our solution, expenses are
billed to the original card without exposure of the card number; token generation
is off-line for the credit card holder. Off-line schemes have the advantage that
they can be used even for purchases where there may not be user access to a
computer network, such as purchases made over the telephone.
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Limited-use tokens can be useful for features other than limiting risk. In our
work, a token can have various restrictions associated with it: we can limit the
number of uses of a token, its validity period, the set of recipients, the amount of
money, and even the category of product for which it can be used. For example, a
token might only be good for $100 worth of books from either Amazon or Barnes
& Nobles during the first week of classes. Tokens might be used to enforce or
keep track of a personal budget. A user could create a token with a particular
monetary limit that can only be used in restaurants, and thus enforce a limit
on how much she spends eating out; different token with a different monetary
limits could be created for additional expense categories. A parent could create
a token with special restrictions to give to a child in college. There are all sorts
of creative gift possibilities with credit card tokens, such as a token good for
three days of restaurant and entertainment expenses up to $1000.

In Section 2, we present design requirements for token-based solutions. We
present a proposed solution in Section 3, including an intuitive and easy-to-use
user interface for the token-derivation application, and we discuss some security
issues in Section 4. In Section 5, we discuss the use of limited-use tokens for
telephone calling cards. We conclude in Section 6.

2 Requirements

In order to be successfully deployed, a system for generating and using limited-
use tokens must satisfy several requirements.

Ease of use. The system should not place unreasonable burden on the users.
This point cannot be overstated. If a system is bulky or requires users to
learn new techniques and to adopt new ways of shopping, then it is likely to
fail. For instance, users should only be required to type fairly short strings
that consist of alphanumeric characters and are not case-sensitive. The use
of more general strings might be viable if they need only be cut and pasted,
but even then the strings should not be too long, since strings that “wrap”
from one line to the next are not always handled correctly by cutting and
pasting.

Interoperability. The system should be layerable on top of existing infrastruc-
ture. We should be able to deploy it without requiring merchants to change
their Web sites. In particular, this means the tokens should preferably be 16
characters long, so that users can enter them into the existing credit card
number field on Web forms; they may even be required to be strictly numeric
due to type-checking on existing merchant Web forms.

Limited transparency. It should be clear to the card holders that they are
not sending long-term credit card numbers to the merchant, if that is not the
case. For example, if one wishes to design a system that intercepts merchant
Web forms and automatically replaces traditional credit card numbers by
limited-use tokens, care must be taken to ensure it is done in such as way
that the user understands that the card number is not being transmitted
over the network to the merchant.



200 Aviel D. Rubin and Rebecca N. Wright

Security. A limited-use token should not be usable beyond its intended uses,
whether by the user, the merchants, or an attacker. Similarly, it should not
be possible for an attacker to successfully generate and use tokens whose
expenses are charged to someone else’s credit card.

We use these requirements to guide our design process. Each requirement
represents an objective that is difficult to quantify, but the more we adhere to
the spirit of the requirements, the more likely it is our system will be adopted.

In the off-line model, card holders generate tokens on their own. Since it is
not generally reasonable to assume personal computers are safe from hacking
by outsiders, we assume that the credit card holder has an auxiliary tamper-
resistant computing device that can protect secrets and has a reliable clock. For
example, this device might be a PDA, such as a Palm Pilot or Windows CE
device, or a PC equipped with a smart card reader or other tamper-resistant
hardware. We assume that the owner can control access to the data on it by
physical or cryptographic means.

Throughout the rest of this paper, we refer to the entity with whom people
have credit card accounts as a card issuer .2 We refer to a traditional credit card
number held by a person as their account number , and we refer to the person as
a card holder . The intended user of a limited-use token (who may be either the
card holder or another person such as a gift recipient) is referred to as the token
user or simply the user . We refer to the PDA or computer that is used for the
off-line computation of tokens as the device.

3 Off-Line Token Generation

In this section, we present our proposed system, which consists of two parts.
The first part, discussed in Section 3.1, is the token generation application. The
second part, discussed in Section 3.2, is the protocol for using generated tokens.

3.1 Token Generation

We have already discussed several applications of limited-use tokens. In order
to support as many of these applications as possible, our goal is to represent
as many restrictions as possible while still meeting our ease-of-use and security
requirements. To this end, we propose the following design.

Restrictions. In our system, there is a set of possible restrictions that is uni-
versal. For example, the monetary restrictions can be $20, $50, $75, $100, $150,
$200, $300, $500, $1000, $5000. The categories of expense can be food, books,

2 For simplicity, we do not in this paper separate out other entities that may be
involved in transaction processing such as a merchant acquirer, but rather assume
that the merchant talks directly to the card issuer. In order to implement this in the
real system, intermediaries would be required to forward the appropriate messages.
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travel, entertainment, luxury, clothing, electronics, etc. The validity periods can
be one hour, four hours, twelve hours, one day, three days, a week, a month. It
might also be desirable to include the identity of a merchant in the restrictions.
Since we want to limit the size of the description, we suggest allowing the user
only to specify the first few characters of the merchant name.

In the token generation application, all of the possible values are enumer-
ated. Then, the values are laid out in a table, and the plaintext of the token
consists of an index into the table. For readability, selected restrictions can be
represented as an enumeration of the various restrictions. This is analogous to
the way cryptographic algorithms and parameters are listed in SSL ciphersuites.
For example, a setting of restrictions on a credit card might be:

one-hundred-dollars–books–one-week–same-store–two-uses

As discussed in Section 3.2, tokens are formed by encrypting the selected re-
strictions. If we want tokens to look like traditional credit card numbers, tokens
must be 16 characters long, possibly restricted to 16 digits since non-numeric
characters may break some Web sites that check credit card numbers to make
sure they are digits. The symmetric cipher may require that the plaintext to-
ken be padded, and we also add a value for timestamping and uniqueness (as
discussed in Section 3.2 below). Further, in traditional credit card numbers, the
first four digits are typically used to represent a bank code, and the last digit
is usually a checksum. Hence, if we wish to stick with 16 character tokens, then
we can only use 11 characters to represent the restrictions. This means we can
represent somewhere between 1011 and 3616 combinations of restrictions. While
it seems that 1011 is more than enough combinations of restrictions for most
interesting applications, there are also security issues based on the size of the
space of possible tokens. We discuss security issues further in Section 4.

User Interface. User interface is crucial in any system that involves many
users, especially if their level of experience with computers varies widely. We
envision a set of pull-down menus or other graphical interface, independent of
the particular device, for selecting from a predetermined set of restrictions. The
user’s device must contain the table of possible restrictions. Every time the user
generates a token, the application can present the user with a list of choices, say
via a pull-down menu for the restrictions.

In order to allow the largest possible number of interesting settings of restric-
tions and to reduce visual clutter for the user, some less interesting combinations
of restrictions will be disallowed. That is, certain choices early on will restrict the
set of choices for other restrictions. For example, if the user selects the number
of uses of the token to be one, the system may not allow for any transaction over
$500. It is up to the credit card companies to define the set of possible restric-
tions. The user chooses which restrictions from the set of possible restrictions to
utilize for a particular token when creating the token.

Once the user picks all of the restrictions, the device should display the
properties of the token in a manner that the user can confirm that this is what
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is desired. The user can then approve it, in which case the encryption takes place
and the token is displayed, the user can modify it, or the user can discard it.

3.2 The Protocol

The main idea behind our protocol is a simple one: the card holder and the
credit card issuer already have a relationship. In order to start using limited-
use credit card numbers, the card holder must obtain a long-term secret key
K from the card issuer. The key K must be stored in the user’s device and
remembered by the card issuer. Note that the card holder and the card issuer
already share the semi-secret traditional credit card number, but we prefer to use
a different key because it allows us to make K longer than a traditional credit
card number, and because it is reasonable to expect that even if a limited-use
system is adopted, it will be gradual and incomplete. That is, card holders will
still use their traditional credit cards for some purchases. Given that, it is not
wise to use the same card number as the secret shared by a card holder and the
card issuer.

To generate a token, the card holder starts by choosing the desired restric-
tions. Once the restrictions are chosen, the device encrypts using K using an
authenticated encryption scheme (discussed more in Section 4.2). Assuming the
scheme used is secure, an attacker will not be able to learn the key K and use
it to forge new tokens. However, it does introduce a new way that an attacker
might be able to make charges to an account number—namely, by guessing a
valid limited-use token. This is discussed further in Section 4.3.

We also must address the issue of “replay” attacks. In order to ensure that
a limited-use token cannot be replayed for additional uses once its specified
restrictions have been met, the card issuer maintains a database of “used up”
tokens and checks before verifying a token that it has not already been used
up. In order to avoid a database whose entries must be stored and looked at
forever, we follow the standard technique of using expiration dates. That is,
before encryption, the device adds a timestamp to the restrictions indicating
the time of generation. In order to be valid, the token must first be used within
a specified time—say, one month. Tokens first received after the one month
expiration of their timestamps are rejected as invalid. Thus, the card issuer
can remove used up tokens from the database once their expiration period has
elapsed. Once seen by the card issuer, a single-use token has to be stored until
a month from the timestamp in the token, and can then be removed from the
database. A multiple-use token is stored when it is first used, and must then be
stored for the larger of one month or the time limit in the token. (For example,
a multiple-use token good for a year would need to be stored for the full year
so that it would still be recognized as valid on subsequent uses even after one
month.)

Our protocol has three parts, which occur sequentially, but need not be in
quick sequence. The first part is a transformation (via encryption) from the
restrictions and the long-term key K to the token. The second part is the com-
munication of the token and the identifying information via the merchant to the
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credit card issuer. The third part is the verification of the token by the credit card
issuer. Figure 1 shows the execution of the protocol. The card holder interacts
with a token-generation application on the device locally, probably first authen-
ticating to the application with the account number or another human-enterable
password. Using this application, the user picks from a set of restrictions to spec-
ify the type of limited usage desired as described in Section 3.1. Once selected,
the restrictions, along with the timestamp for avoiding replays, are encrypted
with the long-term key K to form a token. Note that the timestamp also ensures
that different tokens generated with the same restrictions are different, provided
that sufficient time granularity is used, which ensures that different instances of
the same restrictions with the same account number are distinguishable.

Later, when the token is to be used, it is communicated to the merchant
along with identifying information such as the card holder’s name and billing
address. Such identifying information is already typically requested by merchants
for Web and telephone purchases. In the case that the restrictions are not very
restrictive (for example, if the merchant is not specified), it may still be desirable
to send the limited-use token over an encrypted channel (SSL) to the merchant
so eavesdroppers cannot overhear the token and use it before the user. However,
note that even if the token itself is overheard, the eavesdropper won’t know a
priori which purchases are compatible with the restrictions in the token, since
the restrictions are encrypted. Even if SSL must be used, a limited-use token
provides additional security over a general-use one if the merchant is not known
to be trustworthy or if there is concern about whether its databases are properly
secured.

Once the merchant receives the token, it need not communicate further with
the token user. The merchant must then get verification from the card issuer
before fulfilling the user’s order. To do this, the merchant passes the token and
identifying information to the credit card issuer. The card issuer then attempts
to verify that the token is a valid token and has not yet been used to the limits
specified. If the merchant need not immediately respond to the user (for exam-
ple, if the user is purchasing physical goods that will be shipped by mail), the
merchant can wait to complete this step, perhaps batching several transactions
together.

Once the card issuer receives the token and identifying information, it uses
the identifying information to look up the long term key. The card issuer then
uses the key to decrypt the token. If the decrypted token is not of the proper
form, the card issuer notifies the merchant that the transaction is denied. If it
is of the proper form, the issuer checks that the restrictions are met and that
the token is not already in the “used-up” database. If the restrictions are not
met or if the token is in the used-up database, the transaction is denied. If the
restrictions are met and the token is not in the used-up database, the transaction
is approved. If approved, the issuer approves the transaction to the merchant,
who then fulfills the user’s order.

Finally, the card issuer updates its databases: first, if the token is now used
up (and not yet expired), whether due to monetary limits or transaction number
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device

authenticates via

card holder

Token generation and usage.

long term key K

selects restrictions R

limited-use token
T = {R}K

merchant card issuer

ID, limited-use
token T

forwards ID, T

looks up K from
ID, decrypts T ,
checks validity

OK/ not OK

if OK, fulfills order

Fig. 1. The card holder authenticates to the device and selects the set R of restrictions.

The device uses a key derived from the credit card number to encrypt R and produce a

token T . The card holder then transmits T to the merchant, along with some identifying

information ID. The merchant forwards these to the card issuer, who uses ID to look

up the account, retrieve the card holder’s long term key K, and decrypts the token. If

the restrictions are met, the transaction is processed; otherwise, it is denied

limits, it is added to the used-up database. Additionally, if the token is a multiple-
use token, the issuer looks for it in a database of current multiple-use tokens,
adds it if it is not already there (because this is the first use), and accounts
for the current use (e.g. subtracting the monetary amount and decrementing the
transaction count). When the remaining amount or the transaction count reaches
zero, or the token expires, the token is removed from the current multiple-use
database.
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4 Discussion

In this section, we discuss some security aspects of our proposed system.

4.1 Token Length

It would be desirable for security reasons to have tokens be longer than tradi-
tional credit card numbers. For example, 128-bit tokens (38 digits) would allow
the use of AES, together with a MAC, as the encryption function. However, our
interoperability and ease-of-use requirements suggest that our tokens must be
at most 16 digits, or as little as 11 digits if part of the credit card number must
be fixed.

There are several problems that arise if we restrict our tokens to be a specific
small number of digits, which we address in the following subsections. Most
encryption functions have a fixed, longer, block size, and it is not immediately
clear how to apply them in this case. Additionally, a small token makes the
tokens more susceptible to guessing attacks and causes collisions between tokens
created by different users with different restrictions.

One possibility for increasing the size of the token space without requiring
changes to merchants’ Web sites is to divide a longer token into several parts that
can be used in various parts of the name and address fields. While we think this
solution violates our ease-of-use requirement and possibly our interoperability
requirement, it may be necessary to maintain security.

4.2 Encryption of the Tokens

In our protocol, it is important that the tokens are authenticated so that the
credit card company knows that they were generated by a valid card holder and
that they have not been modified. The resulting token is used both to protect the
authenticity of the token and to convey the information in the token privately to
the card issuer, in as little space as possible. Authenticated encryption schemes
provide encryption and some authentication properties. Decryption returns ei-
ther the plaintext or an indication that the ciphertext is not a valid ciphertext
for the key that was used. Several methods involving encryption and MACs have
been proposed; many are analyzed by Bellare and Namprempre [1].

In our protocol, the output of the encryption is limited to the token space.
The credit card company server must be able to decrypt the token, so truncating
the encrypted token does not work. Furthermore, the token size will not typically
fall on the block boundary of most symmetric ciphers. Fortunately, Black and
Rogaway [2] describe several ciphers for arbitrary finite domains. In fact, their
motivating example is generation of unpredictable credit card numbers, closely
related to our application.
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4.3 Guessing Attacks

A potential problem with our proposal is that an attacker might be able to guess
a valid token and use it to make purchases. Since we include identifying informa-
tion in a transaction (i.e. the user’s name and billing address), the attacker must
guess a token that works both for a particular name and address (ID) and for
the purchase the attacker is making. That is, the attacker must find an ID and
token such that the token is the encryption under that card holder’s long-term
key of a set restrictions compatible with the current purchase. Note that it is
possible that two different settings of restrictions for different users with different
account numbers may encrypt to the same token. These potential collisions can
make an attacker’s job easier because a given token will have more valid uses.

Using the most limited set of possible restrictions will make guessing harder,
as there will be fewer tokens compatible with a given purchase. For example, one
might implement the system to always require tokens to contain the merchant
name, to have relatively short expiration dates, and to have only a small number
of uses. In addition to making guessing attacks harder, this also reduces the
usefulness of overheard tokens that an attacker might learn and try to reuse.

Even if there were exactly one valid token for a particular purchase, a token
space of size 1011 appears dangerously small, in that it takes only a few days
on a current computer to search the entire space, and an expected time of half
that to find a valid token. Note that the use of traditional long-term credit cards
results in a search space of size at most 1016 (less if some parts of the number
are fixed), and once a card number is guessed, it can be reused for additional
purchases until it is detected and revoked. Simply allowing non-case-sensitive
alphanumeric credit-card length tokens gives us a search space of 3611 ≈ 1017—
already a small improvement over current credit cards in the time required to
find a token valid for a particular purchase. Furthermore, in our case, subsequent
purchases will usually require a different token, so a new guessing attack will be
required.

More importantly, note that it is not sufficient for an attacker to simply guess
a token by enumerating it. In order to learn whether or not the token is valid
(without either already knowing the long term key or breaking the encryption
another way), the attacker must actually attempt to use the token. This exposes
the attacker to possible detection, as well as increasing the amount of resources
an attacker must use to perform the attack. If the attacker fixes a specific user
ID and attempts different tokens with it, the corresponding user’s account will
be suspended after a fairly small number of attempts, at least temporarily, and
the attack will be very unlikely to succeed. While this is an inconvenience to
the user, it is preferable to the alternative of allowing the attacker to succeed. If
the attacker instead tries different IDs, he is less likely to succeed because now
he also has to either guess valid IDs or find them through other means. Also,
whether using the same or different IDs, if the attacker tries his attempts with
the same (possibly collaborating) merchant, the issuer can temporarily suspend
the merchant, and also can ask for the merchant’s cooperation in tracing the
attacker through information such as IP addresses from the merchant’s Web
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logs. If the attacker tries to subvert detection by using multiple merchants, he
must spend more effort setting up his purchases (and finding desirable purchases
will be harder). Although multiple-merchant attacks are harder to isolate from
legitimate purchase attempts than single-merchant attacks, they still may be pre-
ventable and even traceable with the cooperation of Internet Service Providers
using various infrastructure-level tools that respond to denial-of-service attacks
(c.f. [8]). If most attacks will be detected before they succeed, and particularly
if the attacker will sometimes be identified and punished, attackers will be less
likely to even mount these attacks.

One might expect that if the use of limited-use tokens becomes common,
merchants might gradually change their Web forms to allow for non-numeric
and/or longer credit card numbers, which would allow the use of a larger token
space, providing more security against guessing attacks. Note that on-line so-
lutions have the advantage that a token can be validated only for a very short
period of time, so guessing attacks are less likely to succeed there, and they may
be the best solution unless, or until, the infrastructure changes. But with even
minor infrastructural changes such as allowing non-numeric or longer strings in
the credit card number field, the off-line setting offers sufficient security, and
provides other advantages for the user.

4.4 Collisions

A collision occurs when two different settings of restrictions encrypt to the same
token, either with the same key or with different keys. Clearly, collisions are more
likely to occur with a smaller token space. Provided the number of possible set-
tings of restrictions is smaller than the token space and the encryption function
is truly a permutation, there will not be collisions of tokens for the same user
(i.e. with the same key). Since timestamps are also used as part of the input
to the encryption function to create the token, it will be necessary for users to
change keys from time to time.

If desired, collisions between different users could be avoided entirely by using
sufficiently large tokens, divided into part that is fixed and unique to each user
and part generated by encryption as we have described. However, it should not
be necessary to avoid such collisions, since the card issuer always looks up the
appropriate long-term key from the ID, and so will not be confused by them.

4.5 Anonymity

As presented, our system is not anonymous, since the user’s name and address
is sent with every transaction. While we think anonymity is an important and
worthwhile goal, it is orthogonal to protection of the credit card number. We
chose to focus only on protection of the credit card number, rather than to cloud
the issue by also designing our system to be an anonymous payment system. If
desired, our system could easily be modified to provide anonymity to the user
from the merchant, for example by encrypting the identifying information for the
card issuer using a card issuer’s public key stored in the user’s device. Note that
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this would require merchant forms to be able to accept the resulting encryptions
in the user name and address fields or elsewhere. Further note that in the case
of physical purchases, some valid shipping address is required, so full anonymity
may be compromised in any case.

5 Calling Cards

The off-line protocol presented here can be modified for use with telephone
calling cards as well. It is often a problem that “shoulder surfers” see people
entering a calling card number into a public phone; the surfers then use the
calling card numbers themselves, or worse, sell them to a number of people with
instructions to make a single (usually lengthy and international) call with it in
a specified time window. The security of a calling card account lies exclusively
in the knowledge of the calling card number. If someone sees this number, that
person can, until detected, make virtually unlimited calls that are charged to the
account holder. This can go undetected until the end of the billing cycle. Since
many people now pay their phone bills automatically each month, rather than
in response to an itemized bill, they may not notice unusual activity in their
accounts until it reaches drastic proportions.

Limited-use tokens are also useful in this situation. In this case, restrictions
involve time of day, area code called, number of minutes, number of calls, which
numbers can be called, and so forth. For example, a parent might provide a child
with a calling card number (token) that only allows calls to home. To create a
limited-use token, the user enters the calling card number into the device, and
then picks a set of restrictions. The device then outputs the new limited-use
calling card number which is an encrypted token containing those restrictions.
The encryption key is derived from the calling card number. When a user places
a call with a token, the system asks for some identifying information, such as the
user’s home phone number and zip code, in addition to the calling card number.
This can be accomplished by having a different toll-free access phone number
for calls using limited-use tokens. When a user enters the token, the system uses
the identifying information to look up the user’s account number, derive a key,
and then decrypt the token to check the restrictions.

As with credit cards, the use of temporary limited-use tokens in calling cards
allows a user greater flexibility to manage risk and set parameters on a single
long-term account than is achieved by always reusing the traditional account
number.

6 Conclusions

We have presented a protocol for generating and using restricted credit card
or calling card numbers. At some cost in security, these numbers can be of the
same format as the traditional ones, allowing for easy layering of the protocol
on the existing e-commerce infrastructure. In our system, users can generate
limited-use tokens in an off-line manner, without requiring any interaction with
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the credit card company. We discussed the advantages of this scheme over cur-
rently deployed ones, and also discussed the security issues that may limit the
deployment of such schemes without some infrastructural changes.

While the protocol that we present in this paper is not ideal from a secu-
rity standpoint, it provides greater security than standard reusable credit cards
and represents a practical solution that can be accomplished under a strict yet
realistic set of assumptions about the current Web commerce infrastructure.
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Abstract. The legal framework provided by the Electronic Signature
Act, enacted to law as of October 1, 2000, has fueled the interest for dig-
ital signature-based payment transactions over the Internet. The bulk of
formalization and security analysis to date on such secure payments has
focused on creating new secure channels for existing credit or debit card
systems (iKP and SET). But there has been no formal modeling, or an
attempt to strengthen of the security of, the card systems themselves.
In this paper we present a simple but formal communication and se-
curity model for all card-based payments, encompassing credit, debit
and pre-paid cards, and proceed to propose CardSec, a new family of
card-based systems which can be proven secure under this model. In the
process we also analyze the security of existing credit, debit and pre-paid
card systems, both for Internet and for brick and mortar payments. We
then present an efficient implementation of CardSec in the form of the
InternetCashT M card system and analyze its security in detail. We take
the opportunity to describe the InternetCash Payment Protocol (ICPP)
which can be used for creating a secure channel between Transaction
Processor and Customer for all Internet-bound transactions, thus act-
ing as an alternative to iKP and SET, and offering more security than
systems utilizing limited-use credit card numbers. We conclude with a
discussion on pre-authorization, refunds and customer service issues.

1 Introduction

Card-based payments are the dominant method for Internet and phone transac-
tions and rival cash transactions for volume on the brick and mortar world. This
highlights the importance of a formal model for such payment systems, and a
security definition to aid as a roadmap for how the design of such systems can be
judged. In this paper we propose a model for all card-based payment systems.
This model is designed to be as generic as possible and encompasses credit, debit
and pre-paid cards regardless of whether they are distributed in physical or elec-
tronic form, whether they are eponymous1 or anonymous, or even whether they
utilize smart-cards or other security methods. The same model also covers other
types of card-based systems such as phone cards, metro cards, gift certificates
or physical access cards.

We take the opportunity to present an analysis of the most common card-
based payment systems, in particular credit cards, debit cards and anonymous
1 Eponymous: (GR) “With a name”. Anonymous: (GR) “Without a Name”.

P. Syverson (Ed.): FC 2001, LNCS 2339, pp. 210–231, 2002.
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pre-paid cards, based on the proposed model. The analysis extends to both brick
and mortar as well as electronic and other “card-non-present” transactions with
such cards. We conclude that the current systems do not satisfy the desired
security requirements, especially in card-non-present transactions.

We then proceed to present a family of systems, called “CardSec” for which
we can prove security based on the proposed model. CardSec is an easily un-
derstood and straightforward family of systems, based on two cryptographic
primitives: pseudorandom function families [GGM86] and existentially unforge-
able digital signatures [GMY83]. CardSec allows for either symmetric-key digital
signatures (message authentication functions) or public-key digital signatures to
be used at payment time, and it is defined independently of whether the end sys-
tem is credit based, debit based, or pre-paid. An analysis of CardSec’s security
is included. A concrete efficient implementation of CardSec is then presented,
in the form of InternetCash’s anonymous pre-paid cards. We proceed to present
the InternetCash Payment Protocol (ICPP) which is the way InternetCash es-
tablishes a secure connection over the Internet and can be used as an alternative
to iKP and SET. We take the opportunity to discuss ICPP versus iKP, SET
and limited-use credit card numbers. A discussion on preauthorizations, refunds
and customer-service issues is included. Last, we analyze the security of Internet-
Cash based on the assumption that HMAC [BCK96] is a pseudorandom function.

Organization: A formal model for card-based systems is presented in section
2. We overview credit, debit and pre-paid cards in section 3 and discuss their
security based on the proposed model. We proceed to propose CardSec in sec-
tion 4. Section 5 describes a sample implementation of CardSec in the form of
the InternetCash card, including details about the actual implementation of the
InternetCash Payment Protocol (ICPP) and comparison with iKP, SET and
limited-use credit card numbers in section 5.1. Pre-authorization, refunds and
customer service issues are discussed in section 5.2, and an extensive security
analysis based on the actual security parameters used by InternetCash is pre-
sented in section 5.3. The paper is concluded in section 6 with a discussion of
applications and open problems.

2 Modeling of Card-Based Systems

We lay the foundation for discussing the security of card-based systems by defin-
ing a concrete communication and security model.

A card-based system consists of three parties, a bank (also called “Issuer”)
B1, users (cardholders) U and merchants M1, and three main procedures: is-
suing, payment and clearing. A user U obtains a “card number”2 by engaging

2 The “card number” is not necessarily a number; it includes all the information
identifying a card. In the case of credit cards for example it includes the cardholder’s
name, issuer’s name, expiration date and in some cases the cardholder’s address
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in the issuing protocol with the bank. U makes a purchase by participating in
a payment protocol with a merchantM1.M1 then performs a clearing protocol
with the bank B1, to clear the transaction; as part of the clearing protocol the
bank debits the user’s card and credits the merchant’s account. The system is
on-line if a purchase is guaranteed only after the clearing protocol is performed;
i.e., if the bank has to be on-line at all times, so that the merchant can clear
each payment transaction before sending the goods to the user.

Remark: Note that the definition makes no reference to credit, debit, or pre-paid
cards; in fact it encompasses all such concepts as these are handled at the time
of “funding” of the user’s card. Such funding can be part of the issuing protocol
(pre-paid cards), part of the clearing protocol (debit cards), or be performed in
a batch form at the end of every month (credit cards).
We must also stress that the model originates from the standard electronic cash
model [Fra93] and concentrates on the payment protocol itself. In order to keep
the model simple, we chose to keep procedures such as the shipping of goods,
customer service, but also refunds and pre-authorizations outside the scope of
this model, although any practical system must be designed to address these as
well. However, in section 5.2, we do show how the model is easily extended to
cover pre-authorizations, refunds and customer service related issues.

We now proceed to define security for card-based systems.

Definition 1. (Security) An on-line card-based payment system with security
parameter k is secure if it satisfies the following conditions with overwhelming
probability in k:

1. Unforgeability: For any positive number N , no probabilistic polynomial
time Turing Machine (p.p.t. TM) can, from the views of merchants of N
distinct payment and clearing protocols, perform an additional (N +1), dis-
tinct from the first N , successful payment or clearing protocol.

2. Unexpandability: No probabilistic polynomial time Turing Machine
(p.p.t. TM) can, from the views of users and merchants of arbitrarily many
issuing, payment and clearing protocols, perform a successful payment or
clearing protocol for which none of the cards that are included in the users’
and merchants’ views is debited.

The use of a p.p.t. TM in the definition is used to model user collaboration as
views to the TM. Thus, in establishing security, we prove that a collaboration of
users and/or merchants still cannot break the scheme. Informally, a p.p.t. TM is
a machine that can make random choices (“flip coins”) and it is used to model
randomized algorithms. All current computing devices (excluding exotic and as
of this writing impossible to construct devices, such as quantum computers) can
be modeled under the p.p.t. TM model.

(referred to as “billing address”). The terminology “card number” is used for ease
of reference.
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The security parameter is controlling the security of the system; typically it
equates to the size of the secret keys used in the system.

Note that unforgeability guarantees that payment transactions cannot be
forged or altered by the merchants or any other third parties - since these third
parties would have no more information than the merchants do. Unexpandability,
on the other hand, guarantees that card numbers cannot be forged or guessed
by cardholders, even in collaboration with merchants or other third parties.

3 Background and Current Systems

In this section we describe the most common card-based systems and their se-
curity. We first discuss credit cards, debit cards, and anonymous pre-paid cards
which use the existing credit-card numbering scheme. Then we discuss some ex-
isting proposals aimed at enhancing the security of such systems, namely iKP
and S.E.T.

3.1 Credit Cards

Credit cards conform to the banking standards which dictate that the card
number consists of 12 to 19 decimal digits. All credit cards (Visa, MasterCard,
American Express, Discover, Diners, JCB, etc) consist of 19 digits, of which
either 15 (American Express) or 16 (all others) are clearly displayed on the front
and the back of the card. Of those 15 or 16 digits the first 6, called the Banking
Identification Number (B.I.N.) signify the issuing bank, while the last is a “check
digit” whose purpose is to identify typing mistakes and to form a first (weak)
authorization of the card number. The remaining 4 (for American Express) or
3 (for all others) digits, called the CVV2 or CVC, are usually a cryptographic
authentication (typically a 3-digit portion out of a DES [ANS] output) of the
first 15 or 16 resp. digits and are printed either on the front or the back of the
card, but are usually not required for a purchase.

Credit cards have barely adequate levels of security for Brick and Mortar
(“card present”) purchases, mainly due to the requirement for hand-written sig-
natures for each purchase. The card number itself offers minimal security, since
it is visible at every payment and therefore can be copied and reused. At pay-
ment time, the presentation and verification of a hand-written signature against
the signature on the back of the card and, if available, the cardholder’s photo-
graph on the card, guarantee unforgeability of the payment protocol. In practice,
however, it is all too easy to conduct a payment transaction with a forged hand-
written signature since few merchants closely verify that the signature is the
same as the one appearing on the credit card itself. Additionally, the clearing
protocol cannot be considered complete until the user’s signature has been pre-
sented and cleared by the issuing bank. In practice this verification takes place
usually only after a dispute over a particular transaction. Unexpandability on
the other hand is achieved mostly by physical means, i.e., via the presence of a



214 Yiannis Tsiounis

hologram in the card facia and other standard physical features. Unexpandabil-
ity is slightly aided by the fact that valid transactions require a valid credit card
number and expiration date – although this data is all too easy to steal.

In practice “card present” credit card transactions experience some amount
of fraud, allegedly less than 1% of transactions, mainly due to inadequate signa-
ture verification at payment time and because some transactions are not on-line
but are verified in batch mode – thus leaving a window of opportunity for pre-
sentation of a canceled or otherwise invalid card (e.g., a card whose purchase
limit has been reached).

Credit cards on the other hand have, both in theory and in practice, inade-
quate security levels for electronic or over-the-phone purchases, collectively called
“card non-present” transactions by the credit card associations. On the average,
Internet credit card fraud seems to be at about the 4% mark [Int00,Com00],
although reliable data are usually hard to obtain, since information about fraud
is usually regarded by corporations as confidential. It is relatively easy to see
why “card non-present” credit card transactions are forgeable:

Transactions are cleared based on the card number, expiration date, card-
holder’s name and billing address (billing address check (AVS) is only available
in the U.S.) and potentially other data, such as CVV2/CVC, etc. However, the
data required for each purchase are the same, and there is no binding of amount,
merchant information, or other information to that data. Therefore it is straight-
forward for a merchant or any other entity that possesses the card data (such
as a Brick and Mortar merchant) to forge or alter the data in a purchase. Thus
unforgeability is not guaranteed, and in fact there are everyday examples of
fraudulent (forged) credit card transactions over the Internet or over the tele-
phone. Theft of credit card purchase information also impacts unforgeability,
exactly because the data available to the merchant at payment is sufficient to
create new purchase information. Several instances of such theft have recently
been reported [San00,Lem00].

Furthermore, it is impossible to distinguish, solely from the payment data,
whether the forging was performed by a user or by a merchant; therefore the bank
cannot determine the fraudulent party since all it has to work with is the payment
information. By default, credit card associations assume (in the U.S.) that the
fraudulent party is the merchant,3 unless the merchant can prove otherwise;
the merchant however has no way of providing such proof! The immediate and
significant implication is that a legitimate merchant cannot guarantee that s/he
will not experience fraudulent transactions, and there have been examples of
merchants who have experienced very high costs of fraud [Per00,Ber00]. For
example, sites such as Register.com report a 2% reserve on total sales to cover
expected chargebacks [Ang00], whereas studies indicate that fraud costs the
average Internet merchant about 4% [Int00,Com00].

3 In countries other than U.S. the consumer is by default assumed to be the fraudulent
party. The security implications are the same, with the only difference being on who
shoulders the fraud.
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On the other hand, for U.S. transactions, unexpandability is less of an issue,
since most card issuers provide, as a service to U.S. merchants, the ability to
check the cardholder’s name and billing address together with the card number
(Address Verification Service, or commonly referred to as “AVS check”; however,
AVS is only available within the U.S.). Therefore an adversary needs to guess a
valid card number and the corresponding valid cardholder’s name and address.

3.2 Debit Cards

By debit cards we refer to “on-line” debit cards, i.e., those that do not in-
clude the VisaT M or MasterCardTM logo. Transactions with such debit cards
are cleared directly by the issuing bank, whereas transactions with “off-line”
(Visa/MasterCard based) debit cards whenever a PIN is not used are cleared
by Visa or MasterCard and are transferred to the issuing bank in batch form.
In terms of transaction clearing, and therefore as far as we are concerned in this
paper, off-line debit cards are equivalent to credit cards, unless they are used
in combination with a PIN in which case they are equivalent to debit cards.
On the other hand, credit cards are sometimes also assigned a PIN; PIN-based
credit card transactions are, again for transaction clearing purposes and for the
duration of this paper, equivalent to debit-based transactions.

Debit cards conform to the same standards as credit cards; although debit
card numbers are anywhere from 12 to 19 digits in length. The main differences
from credit cards however are that (1) debit cards can only be used in combina-
tion with a Personal Identification Number (P.I.N.) and (2) banking standards
currently require that the PIN is encrypted in hardware at the point of sale
(POS),4 thus prohibiting “card non-present” transactions (over the Internet or
over the telephone) without some type of tamper-resistant hardware at the client
side.

The presence of a PIN which is encrypted at the POS and the requirement
of a handwritten signature offer adequate unforgeability protection for “card-
present” debit card transactions. Unexpandability also benefits from the presence
of the PIN, since this is an additional variable which needs to be guessed by the
adversary.

It is important to note, however, that unforgeability requires a signature;
otherwise the merchant can substitute the purchase data and thus forge the
amount of the purchase or even the entity that gets paid. This is usually not a
problem off-line, where the retailer would have to go to great efforts to intercept
and alter the card information, since its infrastructure is typically provided by a
third party and requires no servicing. In addition a fraudulent Brick & Mortar
merchant is easy to track and prosecute. But in card-non-present transactions,
such as debit-based Internet transactions, the e-merchant typically owns its in-
frastructure and records all information transmitted through its website. The
merchant can also be physically located outside a local jurisdiction, and in fact

4 The regulations state that the P.I.N. can never be in the clear, i.e., it has to be
encrypted at the point of entry with a hardware device.
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its locale may prove extremely difficult to trace. Therefore for such transactions
to be secure two requirements must be met: (1) PIN security, and (2) digital
signing of each transaction, verified at clearing time.

The current debit regulations reflect requirement (1) only, but they state that
the PIN must be encrypted in hardware, which means that hardware encrypting
devices (e.g., smart-cards or tamper-resistant Pin-pads) must reside at every
consumer desktop; a costly proposition. The approach we take in this paper
and CardSec is to enforce both requirements, but without requiring hardware
encryption – although if hardware encryption is available the added security
level is of course welcome.

3.3 Anonymous Pre-paid Cards

In this section we discuss anonymous pre-paid cards whose numbering scheme
follows the credit-card standards, as these are described in section 3.1. Epony-
mous pre-paid cards, also called “pre-paid credit cards”, that require authenti-
cation for their issuance and are bound to a cardholder’s name are, for purposes
of security and transaction processing, equivalent to credit cards, and therefore
we refer to section 3.1 for their analysis.

Anonymous pre-paid cards that have recently appeared by American
ExpressTM [Amea] utilize the same structure as credit cards. Therefore, intu-
itively, they are at least as insecure as credit cards. A short analysis, however,
shows that they are less secure than credit cards, both in card present and in card
non-present transactions. In fact, anonymous credit-card based pre-paid cards are
almost as insecure in card-present transactions as in card non-present transac-
tions:

– No unforgeability. Since the cards are anonymous, there is no hand-written
signature to which they can be bound and which can serve to provide non-
repudiation for each card-present transaction. Thus forgeability on brick and
mortar transactions requires nothing more than copying of the card number
on the card’s magnetic stripe. We note that this can be done without having
to manufacture a new card – but by simply swiping an existing card through
a mag-stripe encoder. Such encoders sell for less than USD $2,000 making
card copying cost-effective for a fraudulent merchant after less than 100
copies, considering that the average card value for such cards is $50 and
a copier can take advantage of the remaining amount of each copied card.
For card-non-present transactions no digital signatures are utilized either.
Therefore, in both card present and card non-present transactions, any party
in possession of the card number (such as any merchant that has accepted
the card for purchases, for example) can forge transactions. Worse, the card-
holder cannot prove such fraud and the fact that s/he is anonymous makes
repudiation by calling the issuing bank much more difficult [Amec, item 2].

– Minimal unexpandability. We will show how an adversary can emulate a
payment with a card that she does not possess:
Since the cards are not bound to a person’s name and address, the only thing
that an adversary has to do is guess a card number. But as we saw the real



A Security Framework for Card-Based Systems 217

entropy of a credit card, if one subtracts the 6 digit B.I.N. and the check
digit, is 9 decimal digits (8 in the case of American Express), or less than
30 bits (less than 26 bits in the case of American Express). In the best case,
i.e., where the issuer creates card numbers using a collision intractable hash
function (CIHF) [Dam88], the adversary has to produce 1,000,000,000 /N
card numbers before guessing a valid card number, where N is the number
of valid issued cards. For 1,000,000 valid card numbers in circulation (again,
in the case of American Express, for 100,000 cards in circulation) this means
that after 1,000 trials the adversary will guess a valid card number. These
trials can be check balances or payment transactions, or a combination of
these. At an assumed speed of 10 transactions per second (tps), which most
transaction processors need to satisfy to handle potential volume, it would
take 100 seconds to guess a valid card number. In fact this is only an upper
limit, because if the card numbers are created with a CIHF a collision is
expected after approx. 31,600 cards (1,000,000,0001/2) have been created;
i.e., after the 31,600-th card, there exists a p.p.t. TM that finds a card
number better than random guessing. Again, this number is 10,000 cards in
the case of American Express. In the case of mass generation of card numbers
an intelligent adversary can use this advantage and perform an attack much
better than random guessing.
It is important here to note that this attack is quite feasible and cannot be
easily stopped by simply monitoring the number of failed purchases. This
is because (a) the attacker can appear identical as multiple customers, by
using an IP anonymizer (proxy server); (b) the adversary attempts purchases
or check balances on different cards, so the attack looks the same as 1,000
customers typing an incorrect number; distributing the attack over time,
e.g., one day, can mask it relatively simply; and (c) one would think that
one counter-measure would be to limit the total number of failed transaction
requests over some time, in order to put an upper limit on the amount of
fraud (e.g., only one card number leaked per 1,000 faulty requests); however,
an attacker only needs to know whether a request succeeded or failed; if
the bank does not respond to incorrect transaction requests but responds
to true requests, then the attacker can still guess card numbers. Thus the
bank needs to completely shut down its service to prevent guessing of card
numbers. Otherwise an attacker would bombard the site with fraudulent
requests coming from distributed IPs; the bank would not know whether the
requests are legitimate or not; the bank can either reply and risk fraudulent
card generation or turn its transaction service off! We assume that limiting
such fraud potential is the reason why the “Check Balance” information on
American Express’ pre-paid card is currently disabled [Ameb].
It is obvious that once a card has been forged on-line, the only barrier pre-
venting its usage off-line (in a Brick and Mortar merchant) are the physical
properties of the card – which are neither extremely difficult to reproduce,
nor are meticulously verified by every merchant. In addition, as we men-
tioned in the unforgeability discussion above, it is financially feasible for an
adversary to imprint new card numbers on existing cards.
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4 CardSec: A Secure Card-Based System

After analyzing the shortcomings of existing card-based payment systems we
now define a card system for which we can prove security based on definition 1.
This card-based system can be used in a credit, debit, or pre-paid mode.5

Definition 2. (CardSec) CardSec is a card-based system with a security pa-
rameter k and the following properties:

1. Every card number contains a Public Identifier, used to uniquely iden-
tify the card. The public identifier may be revealed to third parties without
security implications.6

2. Every card number contains a Card Key of length k provided by the issuer.
The Card Key is derived from the Public Identifier with a pseudorandom
function family indexed by a secret key of the Issuer. Optionally, the Issuer’s
public-key digital signature of the Card Key is included.

3. Signing of each payment transaction by the user, using the card key
as the key itself or, if the signing key must have a specific structure, as
the random seed for the key’s creation. This signature is performed with an
existentially unforgeable secret key digital signature (message authentication)
[GMY83] or a public key digital signature algorithm [GMY83,GMR88].

The protocols of CardSec are defined as follows:

– The issuing protocol is nothing more than distribution of the Public Identifier
and the Card Key from the issuer to the user over an encrypted channel on
which the issuer is authenticated.7 Optionally, if a public-key digital signature
of the Card Key is included, the user may verify that signature.

– The payment protocol is the creation of a digital signature of the payment
data, including amount and identifying information for the merchant and
the particular transaction, based on the card key. This signature is sent to
the merchant together with the public identifier of the card used. In the case
of a public key signature the user’s certificate may optionally be included,
allowing the merchant to verify the signature. This certificate is provided by
the issuer at issuing time.

– At the clearing protocol the merchant sends a transcript of the payment pro-
tocol to the issuer over a mutually authenticated channel; the issuer verifies
the signature, clears the transaction and notifies the merchant.

Before we proceed with the proof, let us make a few remarks:
The structure above, although not the only one that can provide a secure card-
based system, is meant to imitate to a large degree the way credit and debit
5 Patent Pending.
6 The size of the public identifier has no security implications; it simply limits the
number of cards that can be issued, in the same way that, e.g., the size of a primary
key limits the size of a database table.

7 See section 5 for examples.
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cards operate right now. This results in a familiar construction that is simple for
the end consumers to use. A credit card, for example, contains a Public Identifier
(the 15 or 16 digit card number), and a Card Key (the CVV2 or CVC) - although
the key does not have enough entropy (length), is not adequately protected (it is
visible at card-present transactions and whenever used for Internet transactions)
and is not used to create a digital signature. A handwritten signature is used
for card-present transactions instead. A debit card uses the user’s selected PIN
as the card key, although again this is not used for signing but merely to verify
that the card is being used by its card-holder (who is the only entity, besides
the issuer and potentially a trusted transaction processor, who knows the PIN).

CardSec makes one implicit assumption about the issuer that allows for
greater efficiency by making public-key digital signatures optional rather than
mandatory at issuing time. This assumption is that the users trust the issuer
to not defraud them, i.e., to provide them with a valid card number (public
identifier and card key) and to not impersonate their transactions. This alle-
viates the necessity for a public-key based digital signature of the card key by
the bank. In theory this deprives users proof that a fraudulent issuer did not
provide them with valid card numbers or did not impersonate their purchases.
In practice, however, issuers have been giving out credit and debit card numbers
either through physical cards or over the Internet with no such signatures and
no case of fraud or user impersonation by the issuer has ever been reported.
This is easily justifiable: an issuer has no incentive to fraud its own customers or
else it will soon go out of business; furthermore, an issuer who has fraudulently
given out card numbers is easy to identify and incriminate whether it is signing
its own fraudulent transactions or not.

4.1 Sketch of Security Proof

We sketch the proof of security based on the security definition 1. We assume
that the digital signatures used at issuing and payment are secret-key based.
Obviously the proof carries along for public-key digital signatures as well.

– Unforgeability. Every payment transaction is signed with an existentially
unforgeable symmetric digital signature (message authentication), and a
clearing protocol requires verification of this signature. Thus, construct-
ing a (N + 1)-th successful payment or clearing protocol requires forging
a signature by looking at N previous signatures or obtaining a new public
identifier/signing key pair. The first attack contradicts the definition of exis-
tential unforgeability of digital signatures; while the second contradicts the
properties of the pseudorandom family used by the issuer.

– Unexpandability. For a collaboration of users and merchants to obtain an
additional card, they need to obtain a public identifier/card key pair which
they do not currently hold. But note that, by definition, the card key is
(i) a secure message authentication of the Public Identifier based on the is-
suer’s secret key (a pseudorandom function family results in secure message
authentication [GMY83]), and (ii) computationally indistinguishable from a
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string of the same length chosen uniformly at random (the output’s com-
putational indistinguishability from a string chosen uniformly at random is
also a property of a pseudorandom function family). The attack therefore
contradicts the properties of the pseudorandom function family used by the
issuer.

5 A Sample Implementation: InternetCashT M

Now that we have presented a general framework for a secure card-based pay-
ment system, we proceed with a concrete implementation that exemplifies the
feasibility of the concept. A slight variation of the system described here is used
by InternetCash Corp. for its anonymous pre-paid Internet cards, thus we refer
to this system as the “InternetCashTM card system” or simply InternetCash.

InternetCashTM cards are comprised of the following three components, con-
forming to definition 2:

– The Card ID (CID), also called the Card Index, which is the public part
of the card number, i.e., the Public Identifier for each card. The CID of
current InternetCash cards is 9 alphanumeric (base 32) digits.

– The Card Secret Code (CSC), which is the key used for card transac-
tions. Currently the CSC is 11 alphanumeric (base 32) digits. The CSC is
an HMAC [BCK96] based on SHA-1 [SHA93] of the CID truncated to the
necessary length, where the HMAC is keyed by an InternetCash secret key:
CSC = [HMAC − SHA1ICKey(CID)]{bits 1−55}

– A secret Personal Identification Code (PIN), which is not modeled
under CardSec, but is used for additional security in case the CID and CSC
are compromised.

The concatenation of CID and CSC is called the “InternetCash card number”
and it is 20 alphanumeric digits long.

Base 32 uses the alphabet {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, G, H, J, }
{K, L, M, N, P, R, S, T, U, V, W, X, Y } (0−9 and A−Z except I, O, Q, Z) and of
course it means that every character can be represented with 5 bits (32 = 25).

The system’s protocols are as follows:

– The Issuing Protocol consists of the following two steps:
1. The user is given an InternetCash number over an encrypted channel

with only the InternetCash server being authenticated (i.e., the user can
remain anonymous). This can happen either online, e.g., through SSL
or TLS, or via physical means, i.e., by purchasing a physical card at an
authorized InternetCash retailer.

2. The user selects a PIN for the given InternetCash number, again over
an encrypted channel with only the InternetCash server being authenti-
cated. In practice this takes place over SSL or TLS.
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– The Payment Protocol consists of a secret-key digital signature (message
authentication) of the payment information, based on the CSC and the user’s
PIN. The generated signature is called the Payment Authentication Number
(PAN). Again, HMAC-SHA1 is used as the pseudorandom function family
to perform the digital signature. Multiple cards can be used for a single
payment; here we show a PAN created when i cards are used for payment:

PAN = HMAC − SHA1CSCi||f(PINi)(HMACCSCi−1||f(PINi−1)(. . .
(HMACCSC1||f(PIN1)(Amount, Date/Time, Merchant ID,
Transaction ID, Payment Info)) . . .) ,

where f can be a one-way function (such as SHA-1). If a one-way function is
used, only a hashed version of the user’s PIN need be stored, for additional
security.
The user’s CIDs and the PAN are sent to the merchant. Notice that the use of
a secure channel is not necessary for payment security, although encryption
may be used to prevent third parties from viewing the payment information
and creating profiles for the user and merchant.

– During the Clearing Protocol the merchant simply forwards the payment
data (amount, date/time, etc), the CIDs and the PAN to InternetCash over
a secure and authenticated channel. InternetCash recreates the PAN (it is
easy to see that all the information can be recreated given InternetCash’s
secret key) based on the payment data and CIDs provided, and compares it
with the received PAN; if they match the transaction is cleared, the user’s
card(s) are debited and the merchant’s account is credited.

5.1 The InternetCash Payment Protocol (ICPP)

Before proceeding with the security analysis of InternetCash, we describe the
actual implementation of the InternetCash Payment Protocol (ICPP). This im-
plementation is important for a number of reasons:

– The payment protocol as described above requires computation at the client
(customer) side. Here we describe a way to lift that requirement with no
security implications.

– Details of the implementation can make the difference between a secure or
an insecure end system. E.g., in some payment-system implementations it is
possible for an adversary to change the price of an item, thus bypassing any
theoretic advantage offered by the more secure cryptographic protocols.
Here we describe how the implementation of the InternetCash Payment Pro-
tocol prevents such attacks and thus maintains the security offered by the
underlying algorithms.

– The ICPP is important in its own right, since it establishes a secure channel
directly between the customer and InternetCash and can facilitate the secure
processing of additional payment types, such as credit cards or debit cards –
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where InternetCash acts as the trusted third party that receives the cus-
tomer’s sensitive information. Unfortunately, space limitations do not allow
us to elaborate on the details of such processing.

To prevent the use of client software, InternetCash takes a server-based ap-
proach. At payment time, the customer is redirected by the merchant to an
InternetCash-serviced SSL or TLS secure web site which performs the payment
computation (1) on behalf of the customer. Note that InternetCash already
knows all the information that the customer uses to create the signature (PAN),
namely the Card Secret Code (CSC) of the card and a function of the customer’s
PIN, f(PIN). In fact as part of the clearing protocol InternetCash has to be
able to recreate that signature. Therefore, creating the PAN on behalf of the
customer at payment time does not reduce the security of the protocol. Instead,
it adds more convenience for the customer, because it allows InternetCash to
check the balance and status of a particular card in real time before creating
the PAN, so that the customer is notified of typos or other issues (such as no
balance left on the card) at the beginning rather than at the end of the payment
process.

The only entity which needs to add software for InternetCash processing
is therefore the Internet merchant. This software is provided pre-compiled by
InternetCash for any requested merchant platform.

The payment process therefore proceeds as follows:

1. The customer visits an InternetCash enabled website. After selecting the
goods to buy, consumer selects InternetCash as payment method.

2. Merchant redirects customer to an “InternetCash payment window” served
over 128 bit SSL or TLS by InternetCash. All the required payment infor-
mation is sent to InternetCash at this time (merchant ID, Transaction ID,
description of goods, etc.)

3. Customer enters payment information (InternetCash card number and PIN)
and authorizes payment.

4. InternetCash verifies the selected cards have enough funds and creates the
Payment Authentication Number (PAN).

5. PAN is forwarded to on-line merchant.
6. Merchant verifies that the payment information (amount, transaction ID, de-

scription, etc.) have not been altered, signs the payment information (includ-
ing the PAN) and submits a payment request to InternetCash. The merchant
signature is using HMAC-SHA1 with a 160 bit key. The communication to
InternetCash is (optionally) SSL encrypted.

7. InternetCash transfers funds from the card to the merchant account in an
atomic transaction and sends a signed response back to the merchant. This
signature is again using HMAC-SHA1 with a 160 bit key. If InternetCash
sees the same PAN twice, it sends a positive response to the merchant but
does not transfer funds again.

8. Customer informed of successful payment.
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Observe the following properties of ICPP:

– Security against parallel attacks. If a customer tries to use the full
amount of a card on two different web sites at the same time (i.e., double-
spend) only one transaction will succeed, based on the atomicity of step 7
above.

– Guarding against adversarial changes of payment information. An
adversary cannot alter the payment information because the merchant will
capture the changes and abort the transaction at step 6 above.

– Immunity against replays. The payment request from Merchant to In-
ternetCash in step 6 above can be replayed either legitimately (say, if the
communication failed the first time) or by an adversary without resulting in
duplicate charges, since if the PAN is seen twice no payment action is taken
in step 7 above.

– Creation of secure channel between InternetCash and customer.
This secure channel, created by the redirection of the customer to an In-
ternetCash served secure web site in step 2 above, can be used to facilitate
additional payment methods over the same secure channel, such as credit
card or debit card payments.

iKP and SET. Unfortunately we do not have the space to present a formal
security analysis of ICPP, but we briefly compare it with iKP and SET as its
scope is similar to those systems.

Recognizing the shortcomings of the existing credit card infrastructure for
Internet processing, a group of IBM researchers proposed iKP [BGH+95], a fam-
ily of systems intended to provide secure credit card processing over the Internet.
iKP is defined in three different stages, each providing additional security, with
the minimum requirement being customer-generated encryption of the payment
information, to prevent exposure of the credit card number. iKP is intended
to keep the same card numbering structure that credit cards already have, and
add a layer of security for Internet use. Without going into details we note that
iKP is more relevant to ICPP (see section 5.1) than to CardSec (section 4) or
InternetCash (section 5). ICPP provides security similar to iKP v.3 (most se-
cure iteration), under the assumption that InternetCash is a trusted third party
(TTP) for the customer and merchant, since the signatures used by all parties
are symmetric instead of asymmetric.

SET [SET] is a proposal for secure credit card payments that evolved from
merging the SEPP proposal from MasterCard and the STT proposal from Visa.
In turn, SEPP roots to iKP. SET is very similar to iKP v.3 in terms of security
and scope, and therefore it is more relevant to ICPP than to InternetCash or
CardSec. The security of SET is, as with iKP v.3, similar to ICPP under the as-
sumption that InternetCash is a trusted third party (TTP). However, the actual
implementation and certification for SET is quite complex. An important char-
acteristic of SET is that all parties involved in a transaction, namely customer,
merchant, transaction processor and banking institution, must change their in-
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frastructure or install specific SET software. We believe that this is directly
related to the slow rate of adoption of SET for Internet transactions.

Disposable Credit Card Numbers. Recently several banks have released
client-based solutions aimed at enhancing payment privacy and convenience,
by substituting an interim credit-card number valid only for one purchase, and
by potentially automatically filling the billing information on behalf of the cus-
tomer. Examples of these systems are American Express’ “Private PaymentsSM ,
MBNA’s Shop SafeSM , and others. For details on the architecture of such sys-
tems refer to [RW01,Sha01]. Although ICPP is slightly different in scope than
such systems, we briefly compare its security with these systems.

In the current commercial disposable credit card number systems the interim
credit card numbers are either generated by the consumer on the bank’s web
site, or are generated for the user automatically by a client-side software that
the user has previously installed into his/her computer. These disposable credit
card number systems are similar to the generation of a digital signature at the
time of purchase, with the following crucial differences (for security purposes):

– The full payment data such as amount, merchant name, transaction ID, may
not be available at the time of generation of the credit card number, therefore
this number does not constitute a signature of the transaction.

– The credit card number offers limited entropy, in which it is difficult to
incorporate a true digital signature. In fact, card numbers are reused over
time.

– The generated card numbers are valid only for a short period of time.

Given that the payment information is not truly signed, even with enough
available entropy, the scope of such systems is more towards user privacy than
security. In other words, a few very simple attacks are for the merchant to
substitute a different amount and over-charge the user; or change the transaction
ID and send different products; or change the merchant ID/Name and forward
the transaction to a different merchant (man-in-the-middle attack). Nevertheless,
these systems do offer higher security than conventional credit-card purchasing,
due mainly to the time limitation of the generated numbers - since the actual
credit card number is too small to provide adequate security. However, they do
not provide the same security level and non-repudiation as a digital signature,
and are therefore inferior to ICPP in this respect, since ICPP guarantees both
user and merchant security and non-repudiation.

An issue is also the way refunds are processed. Since clearing and refunds/pre-
authorizations happen through the existing credit card systems they are refer-
enced by credit card numbers. These numbers are reused over time, however,
therefore there is the possibility of referencing the wrong transaction for refund.
ICPP resolves these issues by issuing refunds based on the PAN (see section 5.2
below), which is unique for every transaction.

Last but not least, such systems may be incompatible with certain heuristic
or knowledge-based systems for credit card fraud control such as eFalcon or
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CyberSource. These fraud control systems may assign a high score to these
one-time credit card numbers and cause rejections of valid transactions. This
incompatibility may end up in the merchant having to tune their system to
treat these one-time credit card numbers differently, thus introducing a merchant
component into the system architecture.

5.2 Pre-authorization, Refunds, and Other Extensions

We briefly discuss how InternetCash deals with pre-authorizations, refunds and
customer service issues. We chose to not include these functions in the formal
model in order to keep the presentation simple. Security arguments for each
additional functionality are included here but are kept brief due to space limi-
tations.

An important attribute that facilitates all functions related to a transaction
is that the PAN is guaranteed to be known by all parties, i.e., InternetCash,
merchant and customer: the customer is both emailed the PAN at purchase
time and can access it using her/his card number in a “transaction history” web
page, while the merchant and InternetCash save the number in their database
and associate it with the payment information.

InternetCash pre-authorization includes three message types: pre-authoriza
tion request, release and cancellation. The pre-authorization request is similar
to a payment transaction, with the addition of defining a default cancellation
time for the pre-authorization. Funds are subtracted from the user’s card(s)
and are kept in escrow until the pre-authorization is cancelled or released. A
pre-authorization is automatically canceled at the specified time and the funds
transferred back to the consumer’s card(s), unless explicitly released by the mer-
chant. A pre-authorization release or cancellation refers to a specific PAN, can
be applied on the full or only part of the order, and is comprised of a signed mes-
sage exchange between the merchant and InternetCash, in effect using mostly
the same protocols as steps 6 and 7 of ICPP. A refund is similar to a pre-
authorization cancellation, except that it does not need to be preceded by a
pre-authorization request. All messages here are mutually signed and therefore
are non-repudiable assuming that InternetCash is a TTP; asymmetric signa-
tures, such as certificate-based SSL, can be added modularly to alleviate the
TTP requirement.

For customer service inquiries InternetCash asks the user for the first 12
(twelve) digits of their card. This includes the 9 digit CID and 3 digits of the
CSC. No customer care agent is authorized to ask for the user’s PIN. The security
in this case is the first 3 digits of the CSC, or 15 bits. An attack on this part
would require 215/2 = 16, 384 attempts on the average, after an adversary has
guessed or obtained a CID. But 16,000 customer service requests will raise a
flag even in the largest of International organizations, so this security is deemed
adequate. An InternetCash customer care agent on the other hand, which is
treated as a semi-trusted party, has an advantage of 15 bits over in breaking
a card which, by looking at the analysis in section 5.3 below, is still sufficient,
especially in view of the fact that only a limited number of customers will have
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revealed the first 12 digits of their cards, therefore it is easier to trace an attack
of this type to the fraudulent customer care agent.

5.3 Security of InternetCash

It is straightforward to see that, if HMAC is a pseudorandom function fam-
ily, then the InternetCash card system is secure with security parameter K
for card generation (unexpandability), where K = min{Size of HMAC output,
Size of InternetCash’s secret key, Size of Card Key} =
min{160, Size of InternetCash’s secret key, 55} = 55; and secure with security
parameter
k = min{Size of HMAC output, Size of Card Key plus PIN} = min{160, 55 +
n} = 55+n, where n is the randomness provided by the user’s PIN, for unforge-
ability. This is because a pseudorandom function is a secure message authenti-
cation function [GMY83], and therefore both conditions (2) and (3) of definition
2 are satisfied. The purpose of the PIN is to (1) add security to the CSC, and
(2) provide some level of security in case the CSC is compromised, e.g., if the
card number is lost or revealed to a third party during a physical transaction.
In this case the security parameter for unforgeability is equal to n.

We now proceed to discuss the adequacy of the security parameters. In this
discussion we also take into account the actual implementation of InternetCash’s
system, by looking at ways the attacker can, e.g., “split” the attack against the
CSC and PIN into two separate attacks, first attacking the CSC, then the PIN.

First we observe that 55 bits are more than enough for unexpandability
because the adversary’s attack cannot be off-line as in the case of unforgeability,
but has to be against InternetCash as an attempt to activate a card – therefore it
would take 255 web hits to guess a single card key. A web hit for card activation
requires at least one database access, an operation which is difficult to scale to
more than a few hundred per second. We skip further formulation since this
is clearly an infeasible attack: it would take more than a year at 115 million
web hits per second. In addition, InternetCash cards are not valid until a PIN is
selected and they are invalid until bought – therefore the window of opportunity
for the adversary for guessing a Card Key is between the time a card is sold and
the time it is “PIN-activated”.

In terms of unforgeability, the InternetCash anonymous cards offer security
of 55 + n bits for the consumer, where n is the entropy of the user’s PIN. We
need to discuss here why this level of security is adequate. As in all systems, the
goal of the designer is to make the attacker’s effort disproportionate to the gains
obtained by breaking the system. Or, put in fudiciary terms, to make the cost
of breaking the system higher than the potential gains of breaking it, with some
margin for future unanticipated attacks. Under the assumption that HMAC is
a pseudorandom function, the only way to “break” InternetCash, i.e., to forge a
single payment or clearing transaction or to obtain a user’s card number, is via
a brute force attack at guessing a correct HMAC signature. Thus, what we need
to show is that:

Cost of Brute Force attack on HMAC signed PAN > Value of an IC card (1)
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The “brute force attack” here occurs by the adversary obtaining a payment
signature (PAN) and then performing (off-line) 2k HMAC operations where every
time s/he is guessing the secret key, which is comprised of the CSC and the user’s
PIN.

We need to mention here that, in theory, an attacker can break the attack
in two separate attacks: one requiring 255 web hits to the “activation” page for
guessing the CSC, and an off-line attack to guess the user’s PIN using a PAN.
However, as we saw this is clearly infeasible. Also, an attacker could theoretically
first guess the PIN from InternetCash’s site and then guess the CSC off-line.
However, InternetCash does not verify the PIN before verifying the CSC first,
i.e., it uses the hardware-performed CSC computation as a “security layer” to
protect its Database – so this attack is again not feasible. Since neither of these
two attacks is feasible, we thus discuss the possibility of success of an off-line
attacker which tries to guess the CSC and PIN given a PAN.8

In our calculations we make the following assumptions for the parameters
that influence the financial feasibility of an attack:

1. Value of InternetCash cards, V. For our results we assume that an average
InternetCash card holds $10,000 USD, even though the average value of an
InternetCash pre-paid card today is well below $100.
Our motivation for this difference is to show that InternetCash card numbers
can be used as-is to provide security for credit cards or other situations that
result in larger amounts, such as reloading of cards. We note that reloading
of InternetCash cards is allowed today over the Internet: users can transfer
funds from one or more InternetCash cards to another card.

2. Entropy of User’s PIN, n, in bits. We assume for concreteness that the
entropy is at least 20 bits, i.e., 4 characters base 32 (alphanumeric, case
insensitive). Simple techniques for enforcing good PINs, such as selecting
both a number and a character, can be used to help users create PINs with
sufficient entropy. A base 32 PIN can be used as-is in physical Debit card
readers in the US, all of which contain, by regulation, a keypad that can
accept entries in both letters and numbers.
We note that InternetCash PINs are between 4 and 8 characters in length
and they are not base 32, but base 128: they include all printable characters
and are case-sensitive.
Thus InternetCash allows much higher entropy for the security-conscious
user.

3. Computational Cost of the Attacker, P. This variable is expressed in USD
per HMAC operation.

4. Years of Security Required, Y. Here we assume that the Moore’s law governs
the computational power of the attacker (i.e., its power doubles every 18
months) to help us compute for how many years will the level of security be
sufficient. Again, for concreteness, we define Y = 20.

8 Possession of multiple PANs gives the adversary no advantage, based on our security
model, i.e., on the assumption that HMAC is a pseudorandom function family.
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5. Average Lifetime of Hardware (Depreciation factor), D. We assume that
D = 5, i.e., that an average lifetime for the adversary’s hardware equipment
is 5 years; this assumption compares favorably to Moore’s law, since the latter
implicitly assumes that the adversary must change or update hardware every
18 months. This assumption also implies that the adversary will break-even
on her/his original investment after 5 years of constant machine operation.

6. Cost of an HMAC calculator. We assume that a machine that computes
(“cracks”) HMAC is at least as costly as a machine that computes DES
[ANS]. We justify this assumption as follows: although HMAC-SHA1 is much
faster in software than DES, the fastest computations will happen in hard-
ware; since DES was designed to be fast in hardware there are several spe-
cialized hardware chips performing up to millions of DES operations per
second, thus evaporating HMAC’s theoretical speed advantage.

We now calculate P based on our assumptions, i.e., the required maximum
computational cost in USD per HMAC operation to make it financially feasible
for an adversary to break the system:

P ≤ Avg $ on IC card ∗ Power of H/W in Y years/# of codes to crack
≤ V ∗ 2(Y ∗12/18)/2(55+n)

= 2Y ∗2/3−55−n ∗ V

For n = 20, V = $10, 000, Y = 20 we have:

P ≤ 220∗2/3−55−20 ∗ 10, 000
≤ 213.34−75 ∗ 10, 000
≤ 213.34−75 ∗ 213.3

= 2−48.3(USD)

Now we discuss whether this value of P is realistic. We perform two separate
analyses.

The first uses as guideline the specialized EFF DES cracker machine [EFF]
which took 3 days to crack a 56 bit DES key and cost $250,000 in 1998. With
this attack we model an adversary who is willing to put a large initial investment
into the attack. We do not use the latest attack which took 23 hours because
(a) this was a distributed attack and we assume that only collaborative research
attempts, vs. attempts to steal cash, will achieve such wide academic collabo-
ration; and (b) because the second attack only searched 1/4 of the key space,
thus taking half of the expected time to execute. What we do, however, is adjust
1998’s attack with Moore’s law. Under the assumption that an HMAC cracker
can be constructed at a cost similar to the EFF DES cracker, we calculate P to
be:

P = EFF cost/[ # operations to break DES ∗# days in 5 years
∗adjust EFF speed/# days it took to break DES ] =

= $250, 000/[ 256 ∗ 5 ∗ 365 ∗ 22∗12/18/3 ] ≈ 2−48.65
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where 22∗12/18/3 is used to calculate the effect of Moore’s law after 2 years
(1998 to 2000) on the 3 days that it originally took to break DES, and 5 is our
assumption on the number of years the cracking machine would be operational
(again, even though we assume a doubling of computational power every 18
months and we factor no maintenance or upgrade costs for the course of 5 years).

This analysis shows that by investing $250,000 the adversary barely breaks-
even in 5 years, by cracking 25 InternetCash cards worth $10,000 (each) on the
average. Again, note that the average value of an InternetCash card today is
well below $100.

Our second analysis is based on third party performance results of HMAC-
SHA1 in optimized software [Rog00]. Our goal here is to model an attacker with
less initial capital, to give a concrete description of a cracking machine, and to
explore the feasibility of attacking the problem solely in software.

The fastest machine analyzed in [Rog00] is a Pentium III at 700 MHz.
The speed of HMAC-SHA1 in [Rog00] is expressed in terms of machine cycles

per byte. Reportedly, it takes 50.3 machine cycles per byte to process one HMAC-
SHA1 computation, when the input is 43 bytes, or 50.3 ∗ 43 = 2, 162.9 cycles
for a complete HMAC-SHA1 computation. We will adjust this value favourably,
based on the following observations: first, the natural input of SHA-1 is in 20
byte blocks, hence an input of 43 bytes may result in an unfavourable speed;
second, the input that the adversary has to feed into HMAC-SHA1 can be,
based on equation (1), less than 40 bytes (but never as small as 20 bytes) in the
best scenario, i.e., when the description field is small and only one InternetCash
card is used for the purchase. We will perform our computation using the best
terms for the adversary, namely:

– The input value for the PAN computation (1) is less than 40 bytes,
– The speed of HMAC-SHA1 increases linearly with the number of input

blocks, i.e., an HMAC-SHA1 computation with a 21-40 byte input takes
two-thirds (it is 50% faster) than a 41-60 byte input, and

– An HMAC-SHA1 computation at a Pentium 4 at 1.4 GHz, representing
today’s state of the art, takes one-third (it is 200% or three times faster)
than the same computation in a Pentium III at 700 MHz.

Based on those assumptions, a candidate PAN computation would take (2/3 ∗
2, 162.9)∗1/3 = 481 machine cycles. Therefore a 1.4 GHz Pentium 4 can perform
1, 000, 000, 000/481 = 2, 081, 165 PAN computations per second. Assuming a cost
of $1,000 for a Pentium 4 with minimal peripherals, we can now compute the
cost of a single PAN computation:

P = P4 cost/[# days in 5 years ∗ PAN computations per day] =
= $1, 000/[5 ∗ 365 ∗ 2, 081, 165 ∗ 3, 600 ∗ 24] ≈ 2−38.22USD

Since the value of P that we are seeking is 2−48.3 USD, this attack is therefore
completely uneconomical, by a factor of 210 = 1, 000.

In conclusion we have shown that, assuming an HMAC cracking machine is
of similar complexity to a DES cracking machine, the security parameters used
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for today’s InternetCash cash cards are secure for the next 20 years, even if the
average amount of each card is USD $10,000.

6 Conclusion

We have presented a formal communication model for all card-based systems,
encompassing current credit, debit and pre-paid cards. We have also presented
a concrete definition of security for such systems, and a family of systems which
satisfies that definition. An efficient implementation from that family, the In-
ternetCash pre-paid card system, was presented and its security analysed based
on the assumption of HMAC [BCK96] being a pseudorandom function family.
The InternetCash Payment Protocol (ICPP) was overviewed and its relevance
to iKP and SET was briefly discussed. Pre-authorizations, refunds and customer
service issues were also discussed.

Although the current model can be applied to both physical (brick and mor-
tar) and electronic transactions and our discussion includes security of the PIN,
an interesting direction for further research would be to extend the model to
clearly distinguish between these two types of transactions and include com-
mon assumptions such as the exposure of the card number at physical locations
and the security of the user’s PIN. A more formal treatment of refunds and
pre-authorizations would also be an interesting additional direction; we do not
formalize them here in an attempt to keep the model simpler.
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e-commerce.
Keywords: e-commerce, payment system, disposable credit card num-
bers.

1 Introduction

The problem of developing a secure payment system for the internet had at-
tracted an enormous amount of interest in recent years, both in academia and
among companies. Hundreds of possible solutions had been proposed, but most
of them failed in the marketplace, or remained untested (an excellent compila-
tion of about 130 proposals with descriptions and links can be found at [P]). In
fact, almost all the web shopping conducted on the internet today is done with
old fashioned credit card payment systems. These systems were not designed to
handle web payments, but they are widely deployed and have a lot of inertia due
to the billions of dollars which were spent on their infrastructure.

The problem of web shopping security has both a real and a psychologi-
cal element. There are frequent press reports about hackers stealing credit card
numbers and customers suffering from devastating identity thefts, and as a re-
sult most surfers do not shop on the internet. In one survey conducted in April
2000 (see [C]), 64% of internet users said that they are “very concerned” about
the security of their credit card transactions online, 79% said that they would
be “much more likely” (37%) or “somewhat more likely” (42%) to shop online
if they were convinced that their credit card information was secure, and 65%
say they would spend “much more” (19%) or “somewhat more” (46%) money
online if they didn’t have to give out their credit card information when making
a purchase. While it is true that most shoppers do not encounter any difficul-
ties, the web tends to be a more dangerous environment, and fraud rates in
online transactions are more than ten times higher than fraud rates in normal
transactions.

Over the last few months, several companies have announced new web pay-
ment systems based on the intuitively appealing concept of disposable credit

P. Syverson (Ed.): FC 2001, LNCS 2339, pp. 232–242, 2002.
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card numbers (in the sense that they can only be used to pay once a partic-
ular amount to a particular web merchant). A major seal of approval for this
approach was provided by American Express, which announced in September
2000 that they will offer a similar Private Payment system to their customers
within a few months (see [AMEX]). This approach uses the existing credit card
verification and clearance infrastructure, but solves the “stickiness” problem of
regular credit card transactions, since any other use of these numbers (if they
are later stolen from the merchant’s web server) will be rejected by the issuer. It
is interesting to note that this disposability idea had been very successfully used
to solve the related stickiness problem of passwords, by changing the password
required to login into a remote computer system every few seconds in a pseudo-
random way (e.g., with the widely used SecureID token). I believe that payment
systems based on disposable credit card numbers have major advantages over
existing and other proposed systems, and that over the next few years they will
become a popular alternative to regular credit card payments on the web.

In this paper I’ll describe the design philosophy and general architecture of
one of these proposals, SecureClick from Cyota.com, with which I was involved
as a security consultant. The company started developing this system in 1999,
and publicly introduced it in May 2000. Further information can be found at
the company’s web site [C].

2 Design Criteria

The goal of the project was to develop a truly practical system which is easy
to deploy on a small scale in a matter of months, and easy to scale up into a
universal web payment system. It should address real rather than hypothetical
security concerns in today’s systems, in a way which is easy to explain to non-
technical surfers in order to overcome their psychological reluctance to shop on
the web. In addition, it should be easy to use, without burdening the parties
with unreasonable costs or intolerable complexity (as happened in the case of
the SET protocol, for example).

The first decision one has to make is whether to use a classical or novel pay-
ment paradigm. People are very conservative about using new types of payment
systems, and it can take 10-20 years before a new concept (such as a debit card
or an ATM machine) becomes popular. A standard payment paradigm is one
which is already widely deployed, such as a coin, a banknote, a check, or a credit
card. These are known entities to most users, and thus they do not require a
lengthy and expensive educational process. Novel paradigms such as beenz and
probabilistic payments may be very appealing theoretically, but they are not
intuitive and thus cannot become a widely deployed solution in the short term.

When we try to migrate a standard payment paradigm to the web, we should
try to keep its “look and feel” by using either the same paradigm (e.g., in the
case of a credit card payment) or by modifying only its hidden technical elements
(e.g., in the case of an electronic coin). This can make the new system easier to
explain and to understand, and thus speed up and smooth the transition period.
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If the real version and web version of the payment paradigm are sufficiently
similar, we can even use the same infrastructure for handling both types of
payments. Electronic coins are so different from physical coins that we cannot
use the same vending machine or payphone mechanisms, but web-based credit
card payments can easily use the enormous networks built at great expense over
a long period of time to authorize and clear physical credit card payments.

The main disadvantage of using a classical payment paradigm is that we are
bound by all kinds of annoying constraints imposed by the legacy systems, which
are either irrelevant or counterproductive in the web environment. In the case
of credit cards, one of these restrictions is that a customer is associated with a
single semi-secret number which is valid for many years. This makes sense in an
environment in which a new plastic card has to be issued and securely delivered
to the customer whenever he needs a new number, but not in a web environment
in which the customer/number association can be made much more dynamic.

Another design consideration is whether we would like to have a limited or
universal system. A limited system in which “funny money” can be exchanged
only among members of a small group, or in which micropayments can be used
only in order to buy low-value items is worth studying, but is not our goal here.

One of the hardest problems in deploying a new universal system is how to
handle the transition period, due to the chicken and egg problem: until suffi-
ciently many people start using the system, banks and merchants will be reluc-
tant to adopt it, and vice versa. This is the main reason that smart cards had
not been adopted in the US so far, in spite of their obvious security advantages.
To break this vicious cycle, one party can try to subsidize the initial deployment
of the system until it becomes self sustaining. This was tried in several local
electronic wallet experiments (e.g., in the Mondex pilot program in Swindon,
UK), but it proved to be both expensive and unattractive. One way to spread
the expense and associated risk is to convince many parties to support a single
new standard. However, it takes a lot of time and effort to go through standards
committees, get governmental approval, and win against competing proposals
and entrenched interests. A classical example of a standard setting effort was
the SET protocol, which was severely handicapped in the process and ended up
as a bloated compromise which is seldomly used nowadays.

The ideal web payment system is thus a universal system which has the
same “look and feel” as some widely deployed payment system, and can share
with it the same infrastructure. A single party (such as a bank or a credit card
issuer) should be able to launch it quickly without waiting for the approval of
other parties, and the system should be attractive at any size and thus scale
up without subsidies. It should be designed primarily for payments in the range
of $1 to $1,000, which represent the vast majority of current web payments.
Finally, it should offer higher security (both real and perceived) compared to
today’s payment mechanisms, even though it is unrealistic to expect it to be
perfectly risk-free.

All these considerations indicate that the best short term universal solution
should be based on the credit card paradigm, but adapted to the unique require-
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ments and capabilities of the web. This is the philosophy behind the SecureClick
system, which is described in the next section.

3 The SecureClick System

The credit card was originally developed in order to enable guaranteed payments
in real world transactions. Many of its security mechanisms were based on the
assumption that a human sales clerk will be able to check the correct physical
appearance of the card, look at its hologram, compare its recorded signature to
the actual handwritten signature, and verify the name against a second form
of identification. All these mechanisms are absent in the web shopping context,
and the only security elements which survived the transition are the semi-secret
16 digit credit card number itself (which is kept unchanged for many years) and
the 4 digit expiration date (which changes in a predictable way every two years)
1. If someone had proposed this as a new web-based payment system today, it
would have been considered totally inadequate, but this is what we have today
due to the huge inertia of existing payment systems.

Since web payments are considered as higher risk “card not present” trans-
actions, they are almost always checked in real time with the card issuer before
the transaction is completed. The issuer can check that the card had not been
canceled or stolen, that its credit bound had not been exceeded, and that the
transaction does not look suspicious (based on its previous pattern of use).

This authorization approach has many security risks. If a card is physically
stolen, it can take several hours before it is reported missing. If a card number is
copied by a sales clerk or downloaded from a web server, the owner is completely
unaware of this fact. An illegally obtained card number which is used in a prudent
way will not raise an alarm, and the false transactions will only be discovered
when the card owner gets his bill a month later.

In the context of web shopping, the problem of outside hackers grabbing IP
packets containing credit card numbers is almost non-existent, since the shop-
ping forms are almost always protected in transition by strong SSL encryption,
and it is not cost effective to work very hard in order to gain access to a single
card number. The real problem is that these numbers are “sticky”, and may be
kept in insecure databases in the merchant’s web server long after the transac-
tion is completed. There are many reported cases of hackers stealing and then
distributing thousands of card numbers from such servers. The problem is par-
ticularly serious among small or new merchants, who do not install elaborate
security mechanisms and do not keep them up-to-date with security patches,
but even in a well protected site an insider with valid access to the database
can be bribed to sell its contents to outsiders, and in case of bankruptcy the
database can fall into the wrong hands. In a sense, once a credit card number

1 New cards also contain a 3 digit cryptographic checksum of the card number which
is called CVC (card verification checksum). It is printed on the back of the card but
completely ignored in most web transactions.
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is sent to the web merchant, the customer has no control over how it will be
handled and who will see it months or years later.

The result of all these published security incidents is that most surfers feel
uneasy about web shopping with their credit cards. The risk is not just the
actual threat of losing money (which is limited to $50 in the US), but the psy-
chological aggravation involved in canceling cards, fighting charges, and clearing
credit records. The problem is particularly acute at web sites without established
reputations, since most surfers feel that saving a few dollars by shopping with
a small and unknown merchant is simply not worth the risk. This greatly limits
the potential of the web as a global marketplace which provides instant access
to a huge number of merchants. The right way to fight this fear is not to say
“trust me, its secure”, but to visibly add to the shopping experience simple and
intuitive security mechanisms which would convince the customer that he is not
at risk if he fills this shopping form from that unknown web site.

Each credit card transaction involves three parties: a customer, a merchant,
and a card issuer. The most substantial relationship is between the customer and
issuer, since the issuer knows the customer, his credit history, and his buying
habits, and the relationship typically lasts many years. The merchant/issuer
relationship is weaker since the issuer may not know the merchant, but there are
fewer merchants than customers, and they tend to be larger entities which satisfy
stricter criteria. The weakest link is between the customer and the merchant,
since neither one of them typically knows or trusts the other, and they may have
a single transient interaction.

All three parties must be made aware of each transaction. The way it is done
today on the web is to use two 2-party protocols based on the customer/merchant
and merchant/issuer links, which are the two weakest relations. This is again a
legacy decision, since in the real world it is cumbersome to ask a customer to
contact the card issuer in real time to complete each transaction. However, on
the web all the parties can communicate with equal ease, and thus it would make
more sense to include the potentially strongest customer/issuer link in a tighter
3-party approval process.

The recommended sequence of events is thus the following: When the cus-
tomer is ready to complete a web transaction, he should first inform the issuer
about the identity of the merchant and the (approximate) value of the trans-
action, and then send the shopping form to the merchant. Upon receiving the
order, the merchant should contact the issuer in the usual way, but the issuer
will only approve transactions about which he had already been directly noti-
fied by the customer. Note that the additional customer/issuer interaction does
not create major new communication bottlenecks in web shopping, since such
transactions already require real-time customer/merchant and merchant/issuer
communication, and thus they add only a small additional overhead.

The customer/issuer interaction is new, and requires new software at both
ends, accompanied by a strong form of authentication. The customer/merchant
and merchant/issuer parts of the protocol can be either new or traditional. There
are several alternative mechanisms:
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1. The customer can send his regular credit card number to the merchant.
The purpose of the customer/issuer interaction in this case is to ask the
issuer in effect to activate his card number for a short period of time. This
is insecure if the same card number can also be used in other transactions
which do not require real time approval, or if a hacker can sneak additional
transactions into the card activation period. To reduce this vulnerability, the
activation period should be made very short, but this can be problematic
for merchants who request real-time transaction approvals, and then settle
their daily transactions as a single batch. In addition, it makes it more
complicated to handle communication difficulties, customer queries, split
shipments, recurring purchases, or chargeback situations.

2. Instead of sending his credit card number, the customer can send to the mer-
chant a unique transaction number (known in the cryptographic literature
as a nonce) which is generated during the customer/issuer interaction. How-
ever, most merchants would reject an empty or invalid value in the credit
card field in the shopping forms. This situation may change if this approach
becomes universally accepted, but it will make it impossible to roll out an
attractive system by a single issuer, since initially its customers will be able
to shop at very few web sites.

3. The best approach is to use a nonce which has the same “look and feel” as a
standard credit card number, and thus can be placed in the card number field
of the merchant’s form without causing any legacy problems. The issuer can
easily recognize these incoming authorization requests if their numbers come
from a batch of credit card numbers which are used only for this purpose.
However, the merchant is unaware that the credit card number he is given
is just a transaction number, and can use his standard customer/merchant
and merchant/issuer protocols to complete the transaction.

The SecureClick solution is thus based on the following three simple princi-
ples:

1. Each web transaction requires an additional real-time preapproval protocol,
and thus follows the path customer −→ issuer −→ customer −→ merchant
−→ issuer.

2. Each web transaction is characterized by a nonce which is generated during
the customer/issuer preapproval protocol.

3. Each nonce has the form and functionality of a regular credit card number,
and thus the existing customer/merchant and merchant/issuer protocols can
remain unchanged.

In this solution the credit card payment paradigm, the existing protocols,
and the installed infrastructure elements remain unchanged. The system can be
adopted by a single issuer, and its customers can shop anywhere on the web.
They can intuitively understand that they are not risking long term consequences
by sending a disposable credit card number to a party they do not know or trust,
provided that their preapproval communication with the card issuer (whom they
usually trust) was secure.
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An interesting benefit of the SecureClick approach is that card issuers can get
an almost instantaneous warning when hackers break into merchants’ databases
and start using the stolen card numbers. Such a database is likely to contain both
regular and disposable credit card numbers, and most hackers will not be able
to distinguish which is which. Misuse of a regular credit card number is usually
detected only when the customer contests a transaction weeks later, and it is
not easy to identify the source of the problem. However, any attempt to reuse
a stolen disposable credit card number at another merchant will immediately
raise an alarm, pinpoint the compromised database, and make it easy to stop
the misuse of other numbers (even regular ones!) which were stored in the same
database.

It is important to note that the SecureClick system is not anonymous with
respect to the issuer, since he learns about the transaction from both the cus-
tomer and the merchant, and links the disposable credit card number to the
customer’s real credit card account. It can be made more anonymous than stan-
dard credit card transactions with respect to the merchant if the issuer allows
the customer to fill incorrect details (such as name and address) in the shopping
form, but this can conflict with the AVS security mechanism which allows phys-
ical shipments only to the registered address of the credit card owner. Shoppers
who would like to use the credit card paradigm but keep the transaction anony-
mous from both the issuer and the merchant can use an alternative payment
system in which customers buy at a supermarket (with cash!) a secret credit
card number that contains a fixed prepaid value. Consecutive transactions with
such a card are linkable, but the owner of the card can remain anonymous, as
in the case of prepaid payphone and GSM cards. This is ok for small or par-
ticularly sensitive transactions, but such a system cannot be used as a general
replacement for regular credit cards on the web since considerable amounts of
money have to be prepaid, unspent money may be difficult to retrieve, a lost or
stolen card is equivalent to losing cash, and a card number grabbed by hackers
in one transaction can be used to quickly max out the card.

The Private Payment system developed by American Express seems to follow
a strict policy in which each disposable card number is associated with a single
transaction during its lifetime. However, our analysis of actual payment patterns
indicate that such a policy is too rigid, and one should consider additional trade-
off points between a system based on a single long term number and a system
based on one disposable number per transaction. For example, some web mer-
chants use a registration process for first time customers, and automatically reuse
the same memorized card number in later transactions. The only way to change
this number is to go through a reregistration process, which is very inconve-
nient. A reasonable compromise in this case is to allow disposable card numbers
to be reused, but only when they involve the same customer and merchant, and
follow a specific customer/issuer preapproval process for each transaction. An-
other example involves a split shipment, in which the customer buys two books
and authorizes a single payment. If one of the books can be sent immediately
while the other has to be reordered from the publisher, the merchant often splits
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both the shipment and the credit card payment. A reasonable compromise in
this case is to allow the merchant to report several transactions with the same
disposable number, provided that they involve the same merchant and customer
and their total value does not exceed the amount declared in the original preap-
proval process. Another common example involves recurring payments, in which
the merchant splits a single transaction into several monthly payments, and au-
tomatically uses the same card number in all of them. A rigid system such as
the AMEX solution will not function well in these common situations, whereas
Cyota’s SecureClick system uses a flexible approach called Intelligent Card Tech-
nology, which allows some disposable card numbers to be reused under carefully
controlled circumstances. I believe that such flexibility will be necessary in any
practical system, and will have a major impact on its commercial success.

4 Some Technical Details

The SecureClick approach is conceptually simple, but its secure implementation
and seamless integration with existing issuer and customer systems requires a
lot of care and hard work.

One of the most important security issues is the way customers authenticate
themselves to issuers during the preapproval protocol. Due to the close relation-
ship between these parties it is possible to handle this problem by a variety of
known methods such as a time-dependent password, a digital signature, a bio-
metric device, or any other method which is agreed between the parties when the
customer joins the system. Note that there is no need to standardize the same
authentication technique across the whole system, and each issuer can choose
the point on the cost/security tradeoff curve which best fits his needs.

The recommended implementation of the SecureClick approach is based on a
small browser plugin, which is provided (along with the authentication informa-
tion or device) by the card issuer to the customer when he first joins the system.
It is automatically invoked whenever the customer clicks on the “pay” button in
a web shopping form. Most of the details in this form are filled in the usual way,
but the credit card fields are left empty. The plugin intercepts this form before it
is sent to the merchant, and initiates the customer/issuer protocol in which the
parties are authenticated, the details of the proposed transaction are sent to the
issuer, and a disposable credit card number and expiration date are generated.
The customer can then copy these numbers to the relevant fields in the shopping
form, and then the plugin forwards the form to its original destination.

Perhaps the most interesting technical issue is how to choose the disposable
credit card numbers. Visa and Mastercard numbers have 16 decimal digits, but
the first digit is used to identify the card type and the last digit is used for error
detection purposes, and thus there are only 14 usable digits which represent one
hundred million million possible cards numbers. Clearly, there is no shortage of
regular card numbers, but if we want to issue disposable and unpredictable num-
bers for each transaction we have to consider the possibility of reusing previously
issued numbers.



240 Adi Shamir

Issuers obtain exclusive rights to batches of consecutive credit card numbers,
which are called bins. There are bins of various sizes: The smallest bins contain
100,000 numbers which start with a particular value at the 10 most significant
digits, and the largest bins contain 100,000,000 numbers which start with a
particular value at the 6 most significant digits. Issuers can buy additional bins
(for several thousand dollars) as their business grows.

The SecureClick approach makes it possible to consider the expiration date
as an extension of the nonce, but due to the existence of legacy systems this
4-digit number must look like a valid date in the next three years, so at most
36 out of the 10,000 possible values can be used. In addition, some merchants
do not properly report this number to the issuer, even though it is defined as a
mandatory field. It is thus both risky and of marginal value to use the expiration
date as an extension of the actual card number.

Each transaction number should be kept unique for several months in order
to enable the parties to refer to the transaction, answer queries about it, and
perform a chargeback if necessary. After this period the issuer can reuse the card
number, unless it is flagged as an unresolved case, which is extremely rare. If
a medium size issuer has 1,000,000 customers, each one of them makes 5 web
transactions per day, and the numbers should be kept unique for 200 days, the
total number of credit card numbers required is 1,000,000,000. This number is
large but feasible, since it represents only 1/100,000 of the space of numbers
allocated to either Visa or Mastercard.

The simplest way to reissue the bounded set of available numbers is to use the
cyclically increasing order 0, 1, 2, 3, . . . , 0, 1, 2, 3, . . .However, this makes consecu-
tive transaction numbers highly predictable to hackers, which is undesirable. The
issuer can randomize the order of the issued numbers, but if they are repeated
with the same permuted order 3, 1, 2, 0, . . . , 3, 1, 2, 0, . . . a hacker can watch the
numbers issued in one round and then infer the numbers which will be issued in
the next round.

A different approach is to issue all the available numbers in some pseudoran-
dom order, and then to reissue them in the next round in a new pseudorandom
order. This makes the numbers highly unpredictable, except towards the end
of each round where fewer and fewer numbers remain available. To solve this
problem, we can stop each round prematurely after distributing only 90% of
the available numbers. A more serious problem with this approach is that with
high probability, some numbers will be used twice within a short period of time
(towards the end of one round, and again near the beginning of the next round).
This violates the assumption that each transaction number is uniquely associ-
ated with one customer throughout its active lifetime, and lead to procedural
complications and possible errors.

The problem can be mathematically stated in the following way: Let m be the
number of available card numbers, let n >> m be the number of transactions,
and let r ≤ m be the smallest distance we can tolerate between two consecutive
occurrences of the same transaction number. Our goal is to find an efficient
algorithm for generating random large distance sequences x1, x2, . . . , xn where
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each xi is an integer in 0 ≤ xi < m, such that whenever xi = xj and i �= j,
|(i− j)| ≥ r.

When r = m, the only sequences of this type start with an arbitrary per-
mutation of {0, 1, . . . , m − 1}, followed by repeated occurrences of the same
permutation. When r = m − 1, consecutive blocks of length m − 1 are almost
identical, except that arbitrary nonoverlapping blocks in it can be cyclically left-
shifted by a single step, and one number missing from the previous block can be
reintroduced at an arbitrary position. This slow evolution of the permutations
represented by the various blocks can lead to first and last blocks which are
completely different.

We can extend this structural analysis to any smaller value of the dis-
tance r. The basic observation is that for any i > r, xi can be chosen as
any value which does not occur among the r − 1 previous sequence elements
xi−r+1, xi−r+2, . . . , xi−1. Since these values must be distinct, there are exactly
m − r + 1 possible values for each xi with r < i ≤ n. The first r values can be
chosen as any ordered sequence of distinct values from {0, 1, . . . , m−1}, and thus
the total number of large distance sequences with parameters m, n, r is exactly
(m− r + 1)(n−r)m!/(m− r)!.

This characterization makes it possible to sample the space of large distance
sequences with perfectly uniform probability distribution. However, this gener-
ation algorithm is inherently sequential, and thus it is difficult to map i to xi

and xi to i (in a particular round) without generating all the previous sequence
elements by repeatedly searching large databases which contain all the transac-
tion numbers issued in the last few months. What we really want in practice is
an algorithm which relates i to xi by applying a small number of pseudorandom
functions, and generates (for r ≈ m) sequences whose numbers are reasonably
hard to predict by hackers who know only a relatively small number of previously
issued numbers.

A simple solution to this practical problem is to pseudorandomly partition
the m available values into c disjoint groups S1, . . . , Sc of size m/c. The output
sequence consists of an arbitrary pseudorandom permutation of the values in
S1, followed by an arbitrary pseudorandom permutation of the values in S2, and
so on in cyclic order over the c groups. The internal permutation in each Si is
different in each one of its occurrences. The closest possible distance between
two consecutive occurrences of the same value is r = ((c− 1)/c)m, which can be
made arbitrarily close to m.

A more sophisticated solution uses dynamic set partitions in which we merge
and then resplit consecutive pairs of sets after each round. In other words, we
choose disjoint pairs of sets Si, Si+1, and then pseudorandomly split each union
Si

⋃
Si+1 into a new pair of equal sized sets S

′
i , S

′
i+1 for the next round . This

reduces the shortest possible distance to r = ((c−3)/c)m. By choosing c ≈ 20, we
can make sure that transaction numbers start repeating only in the last 15% of
each cycle, without overly restricting the number of possible sequences. While it
is possible to use more complicated strategies to create large distance sequences
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whose elements can be pseudorandomly generated, it is not clear that we need
this extra margin of security.

Payment systems based on disposable credit card numbers (like anything else)
are not perfectly secure. In particular, a successful attack on the issuer’s com-
puting system can be catastrophic, but this is true even for regular credit card
payments, and as a result these systems tend to be exceptionally well protected.
Similarly, a Trojan horse planted at the customer’s computer can compromise
the security of his transactions, but this is again true for any PC-based web
payment system. In the long term, customers can overcome this vulnerability by
using dedicated computing devices such as smart cards, or by getting at least
part of the disposable number from the issuer through an alternative path such
as an SMS message to the customer’s cellular telephone.

5 Conclusion

In this paper I described the overall design of the SecureClick web payment
system. Similar systems were simultaneously and independently developed by
several other companies, including American Express. This practical approach
addresses real problems, is easy to explain, easy to use, and easy to launch on
a small scale. I believe that it will play an important role in the development of
e-commerce in the next few years.
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Abstract. This work reports on a Financial Cryptography 2001 panel
where we concentrated on the emerging business of electronic voting.

1 Preliminaries

The problems associated with traditional voting machines in a national elec-
tion, their unreliability, inaccuracy and other potential hazards, were put in
the public limelight, after the last USA presidential election (especially in the
state of Florida). At the same time, but less conspicuously, an industry centered
around electronic voting (national, boardroom, company wide, and otherwise)
has started to emerge, offering various solutions. Therefore, it seems to be an
emerging area where cryptography is crucial to industrial progress, which, in
turn, makes it a proper subject within the area of “financial cryptography.”

Indeed, for about 20 years, the cryptographic research community has dealt
with issues related to security and robustness of e-voting as a fundamental pro-
tocol problem. Numerous election protocols with many provable properties have
been designed and some have been prototyped as well. This research developed
insight, and some of its results will surely influence future systems. However,
here we concentrate on issues regarding to “real life” aspects of actual imple-
mentations of voting systems.

Obviously, the e-voting problem possesses some of the integrity and secrecy
issues that underly many protocol problems in the area of financial transactions.
Yet, the problem has certain requirements and characteristics which are unique
and perhaps harder to achieve.

The discussion in this report includes the panelists’ views of basic require-
ments and problem specifications, their views of major challenges in the field,
their opinions regarding technical and social feasibility and their approaches to
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possible solutions. Then the notion of building “businesses” around electronic
election is discussed as well. The basic issues are centered around technology,
yet legal, social, financial, market and policy issues play important roles in in-
vestigating the reality of electronic voting business. The report consists of this
preliminary section and a summary section by the moderator (M. Yung) and
sections contributed by each of the panelists.

The original issues and problems which the panelists were directed to were:
(1) reliability, (2) fairness, (3) scalability (does one solution fit all situations), (4)
how much security is actually required? (5) is e-voting for real? (6) how far are
we from “real” voting? (namely, is the technology ready?) (7) is the Internet the
arena for voting? (8) is there interaction between the technology and its quality
and the business success? (9) is it a business at all (namely, is there money to
be made and how?) (10) what are e-voting’s social and legal implications?

The rest of the paper includes the panelists’ sections. Each panelist is fully
responsible for his own contribution and each contribution has its own personal
characteristics and its own level of optimism. The contributions reflect faithfully
the positions expressed in the panel discussion. In section 2 Ron Rivest presents
perspectives on electronic voting where he reviews some of the history of voting
machines, some of the basic problems with systems and his personal views of
the subject. In section 3 Andy Neff presents the difference between general e-
voting and Internet-voting, he then presents basic requirements and practical
considerations and challenges. In section 4 Avi Rubin considers the feasibility of
remote voting, especially when taking into account the current state of the art
of platform and Internet security (or, more accurately, insecurity). In section 5
Ed Gerck presents a general background related to the notion of trust and to
secure and trustworthy election systems; he then reviews basic requirements for
e-voting scheme. The summary then tries to report some of the discussion which
followed the presentations by the panelists.

2 Ronald L. Rivest:
Perspective on Electronic Voting

2.1 Introduction

Over the years, with varying degrees of success, inventors have repeatedly tried
to adapt the latest technology to the cause of improved voting.

For example, on June 1, 1869 Thomas A. Edison received U.S. Patent 90,646
for an “Electric Vote-Recorder” intended for use in Congress. It was never
adopted because it was allegedly “too fast” for the members of Congress.

Yet it is clear that we have not reached perfection in voting technology, as
evidenced by Florida’s “butterfly ballots” and “dimpled chads.”

Stimulated by Florida’s election problems, the California Institute of Tech-
nology and MIT have begun a joint study of voting technologies [CTM00], with
the dual objectives of analyzing technologies currently in use and suggesting
improvements. This study, funded by the Carnegie Foundation, complements
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the Carter/Ford commission [FER01], which is focusing on political rather than
technological issues. Electronic voting will be studied.

Among people considering electronic voting systems for the first time, the
following two questions seem to be the most common:

Could I get a receipt telling me how I voted?
Could the U.S. Presidential elections be held on the Internet?
The first question is perhaps most easily answered (in the negative), by point-

ing out that receipts would enable vote-buying and voter coercion: party X
would pay $20 to every voter that could show a receipt of having voted for party
X’s candidate. Designated-verifier receipts, however, where the voter is the only
designated verifier—that is, the only one who can authenticate the receipt as
valid—would provide an interesting alternative approach to receipts that avoids
the vote-buying and coercion problem. See [JSI96] for a discussion of this idea.

The second question—can we vote remotely over the Internet– is more prob-
lematic.

We start by noting that “electronic voting” includes a wide range of possible
implementations. The California Internet Voting Task Force [Ca00] distinguished
between (a) voting at a supervised poll-site using electronic equipment, (b) vot-
ing at an unsupervised electronic kiosk (say, in a shopping mall), and (c) “remote
voting”— voting from home or business using the voter’s equipment.

Before proceeding to comment on the security of electronic voting systems,
we should at least pause to consider the desirability of such systems. Is remote
electronic voting over the Internet desirable? Why bother?

“Because we can” and “for increased voter convenience” are arguably insuffi-
cient justifications for electronic voting. “For increased confidence in the result”
might be acceptable, if a convincing case could be made. Political scientists claim
that the best justification is “to increase voter turnout.”

In the remainder of this note, I discuss the “secure platform problem” as a
key impediment to remote voting, and then provide a list of personal opinions
regarding the security of electronic voting systems.

2.2 The “Secure Platform Problem”

There is a fundamental problem we must face when trying to design remote
electronic voting systems: the “secure platform problem.”

Cryptography is not the problem. Indeed, many wonderful cryptographic
voting protocols have been proposed; see [Gr00] for a sample bibliography.

The problem is interfacing the voter to the cryptography.
Almost all proposed cryptographic voting protocols assume that a voter (e.g.

Alice) has a secure computing platform that will faithfully execute her portion
of the protocol. The platform (e.g. a PC) will correctly display to Alice her
intended vote, and cryptographically submit her vote during the protocol. The
platform acts as Alice’s “trusted agent” during the voting protocol.

In essence, the platform is Alice as far as the voting protocol is concerned.
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In reality, the current generation of personal computers running Windows or
Unix are not sufficiently secure to act as trusted voting agents. These operat-
ing systems and their applications are far too vulnerable to viruses and Trojan
horses. A hacker could easily write a virus that would cause Alice’s computer
to display her voting for one candidate while actually voting for another. If
thousands of PC’s are similarly infected, an election could be rigged. This is an
unacceptable risk.

Other studies and reports have reached similar conclusions that current tech-
nology is not secure enough to support electronic voting from home. In particu-
lar, I note the report of the California Task Force on Electronic Voting [Ca00],
Avi Rubin’s note [R00], and the Internet Policy Institute Report on Internet
Voting[IPI00].

Of course, the secure platform problem is not the only significant security
problem that needs to be addressed regarding the possibility of electronic voting
from home over the Internet. The Internet itself, while remarkably useful and
reasonably robust, is all too vulnerable to flooding and denial of service attacks.
The possibility that a foreign power could bring down the Internet on U.S.
election day is all too real. For this reason alone, remote electronic voting from
home over the Internet would be at best an available alternative, and it would be
reasonable to expect existing poll-site voting systems to be prepared to handle
everyone should the Internet be taken down.

2.3 Some Personal Opinions

E-Voting Is not Like E-Commerce. Electronic voting is unlike electronic
commerce in several important ways, so it is insufficient to argue that secure
electronic voting is merely a corollary to secure electronic commerce and that
the same security mechanisms should apply.

For example, in electronic commerce there is always time to dispute a trans-
action if something hasn’t worked correctly. With voting, there is a deadline that
must be met.

Also, in an electronic commerce transaction, the buyer typically gets a receipt
that can be used later to resolve disputes. In contrast, it is important, as noted
earlier, that voters do not get receipts showing how they voted, since this may
enable the voter to sell his vote.

In electronic commerce, transaction records identify the parties involved.
In electronic voting, the ballots cast should not identify the voters who cast
them, as this might violate the voter’s privacy and subject them to coercion.
(For example, if election officials could see how each voter voted, then the lead
election official could see how his employees voted.)

It is more important that no one “has their thumb on the scale” than
having a scale that is easy to use or even very accurate. The primary
purpose of a voting system is to correctly determine the will of the voters. Given
human nature, the likelihood of getting an incorrect result is much higher if
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there are significant security vulnerabilities than if the vote-counting is a bit
inaccurate. Fraud can be a problem in any election; counting errors affect only
close elections. Ease of use is relevant only inasmuch as it affects voter turnout
or introduces systematic biases.

Electronic voting from home runs the risk of allowing an adversary to put a
“big thumb” on the scale, since the adversarymay be able to automate his attack.
For example, he could bring down the Internet in Democratic neighborhoods, or
create a virus that affects computers with certain characteristics (e.g. those with
“.edu” suffix). Such risks threaten the primary purpose of the voting system,
and suggest exceptional caution in moving forward with such systems.

The voting system must be simple to understand and operate. Elec-
tronic voting systems are often complex. Voting systems must be certified
before they are used. Election officials must have confidence that the voting
system will prevent fraud and perform reliably.

Complexity is the enemy of security. Complex systems are difficult to under-
stand and debug. Asking an election official to certify that thousands of lines of
code provide a secure and trust-worthy election system is an entirely different
matter than asking him to certify a set of procedures for managing a collection
of paper ballots. Electronic voting systems place a substantial burden on the
election officials who must certify the systems, and may weaken the credibility
of the entire process in the voters’ minds.

Even with poll-site electronic voting, the complexity of electronic voting sys-
tems may also challenge the election officials (who are often volunteers) who
must install and operate the election equipment. The failure to educate both
election officials and voters to use new equipment properly is a major source of
election problems.

Physical ballots can provide better audit trails than purely electronic
systems. The integrity and trust-worthiness of a voting system is greatly en-
hanced by having an audit trail recording each ballot cast. Many states require
voting systems to have such audit trails.

Audit trails with very high integrity can be obtained when the audit trail is
created directly by the voter, as with a paper ballot. Electronic voting systems
are indirect—they interpose a layer of mechanism between the voter and the
audit trail, risking the possibility that the mechanism is not faithfully capturing
the voter’s preferences.

Nonetheless, paper ballots are not perfect either, and Shamos [Sh93] gives
interesting arguments in favor of electronic audit trails. Saltman’s classic work
[Sa88] discusses in some detail audit-trail requirements for electronic voting sys-
tems.

County-level decisions on voting technology has benefits. There are
clear and probably compelling advantages to specifying and purchasing voting
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systems on a state-wide basis rather than county by county, as is currently the
case in the U.S. But we should not lose sight of two arguments to the contrary.

First, just as a woodland’s diverse variety of plants can provide better resis-
tance to pathogens than the farmer’s single crop, so too can a variety of voting
technologies provide resistance to an adversary’s attack, as there is no common
point of vulnerability for the whole system.

Second, we need ways to gain experience with new voting systems. One good
way is to allow individual counties to experiment with techniques that are dif-
ferent than the state-wide norms.

The ability to handle disabled voters will become increasingly impor-
tant. Existing voting systems tend to be poor at accommodating the needs of
disabled voters. For example, blind voters have had to trust election officials to
read the ballots and enter their votes. Electronic voting systems are capable of
supporting a diversity of interfaces to the voter.

Our largest security problem is likely to be absentee ballots. Absentee
voting has increased dramatically over the past decade. Indeed, some states, such
as Oregon, vote entirely by mail. Remote electronic voting can be viewed as a
version of absentee voting.

In my opinion, however, by allowing such an increase in absentee voting
we have sacrificed too much security for the sake of voter convenience. While
voters should certainly be allowed to vote by absentee ballot in cases of need,
allowing voting by absentee ballot merely for convenience seems wrong-headed.
I would prefer seeing “Voting Day” instituted as a national holiday to seeing the
widespread adoption of unsupervised absentee or remote electronic voting.

2.4 Summary

Some paper-based voting technologies, such as optical scanning, offer reasonable
balances of security, ease of use, cost, simplicity, and reliability. (Other paper-
based technologies, such as punch cards, should definitely be phased out.)

Electronic voting systems promise benefits in terms of ease of use, especially
for disabled voters. Because of the software-based and indirect character of elec-
tronic voting systems, these benefits come at the cost of increased complexity
and at the risk of decreased security.

While electronic voting from home should perhaps forever remain too risky a
fantasy, electronic poll-site voting may provide, even in the near term, worthwhile
improvements to paper-based voting technologies. Cryptographic techniques will
certainly be essential in any electronic voting technology, as will better methods
for addressing the “secure platform problem.”
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3 C. Andrew Neff:
E-Voting: Proceed with Caution

3.1 Introduction

Election 2000 has shown the need for a well-defined audit process that can be
independently verified – at very least by multiple parties with disparate interests
in the outcome of the election; better yet, by anyone who cares about the results.
There is a growing groundswell of opinion that computers could be used to
make elections more accurate and efficient, but they bring with them their own
pitfalls. Since electronic data is so easily altered, simple-minded electronic voting
systems cannot produce an audit trail that is as strong as a paper audit trail.
Further, limitations on the reliability of the supporting electronic hardware and
software are also an important concern. However, it would be both naive and
unscientific to conclude that it is impossible to implement an electronic voting
system which meets or exceeds the integrity standards of our best conventional
systems. If designed properly, an electronic voting system can actually produce
an audit trail that is even stronger than conventional ones – including paper
based systems. This is exactly what was needed in the 2000 U.S. Presidential
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Election to avoid the costly and time consuming dispute process that ensued; a
system that is automated and indisputable, while preserving ballot secrecy.

3.2 Fundamentals – E-Voting vs. I-Voting

In any discussion of “high-tech” voting solutions, it is important to make a
distinction, from the start, between systems which use digital data to capture
the original voter selections and/or act as official record thereof – “e-voting”
systems – and systems which use the remote connectivity of the Internet, or
other public network to cast, collect and tabulate ballots – “i-voting” systems.
Clearly the class of e-voting systems includes all i-voting systems, but there are
e-voting systems already in use today – so called DRE equipment – which are
obviously not i-voting systems. Unless one is careful, it is easy to lose track of
this distinction in the arguments for and against either one of them.

Assuming that all systems must meet certain standards for integrity and
dependability, i-voting clearly presents a much greater set of problems than e-
voting alone. However, the problems associated simply with e-voting are already
challenging ones. To be sure, electronic computers can manage election data far
more easily and efficiently than physical methods, the trouble is that computers
are inherently only as trustworthy as the people who administer them. They
are also completely opaque, unlike the physical paper ballot box that can be
watched at all times; and electronic data is far more easily altered or destroyed
than physical ballots – especially in large quantities.

The key to building systems that do not suffer these problems is to leverage
the strengths of digital data, rather than trying to employ the same procedures
that are used to protect conventional systems. Attention must be focused on ways
to guarantee integrity of the election data itself, rather than on the custody of
machines that are handling it. If a complete record, or transcript, of all election
data – from who has voted to the specific computation steps used to arrive at
the final tally – can be collected and represented in such a way that not one bit
of it can be altered without creating intrinsic inconsistency, then the goal of an
indisputable electronic election can be achieved. This is really the only way an
e-voting recount makes any sense at all. Running a count over and over on the
same machine, or set of machines, proves nothing about the true election results.
It only proves that the software that is running can display the same numbers
repeatedly. Of course, the transcript must also not compromise voter privacy.

An election transcript provides a tool for better election audit than ever.
Without the power of modern electronic systems, a central audit of this scope
was out of reach. With conventional systems, each election participant – voters
and candidates – have to trust parts of the audit that are only enforced by
local procedural requirements. There is no way to verify after the fact that these
procedures have been sufficiently implemented, or if they have been subverted.
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3.3 Requirements Must Be Scientific and Unbiased

As new election systems are proposed, it is important to keep the debate from
sinking to unscientific levels. New systems should not be shoehorned to fit old
ones simply because we are used to the old ones. A good example of this is the
debate over media. Paper ballots have many desirable qualities, but the require-
ments for new systems should be phrased in terms of the fundamental qualities
that should be maintained, rather than artificially insisting that they continue
to use paper for ballot recording. For example, a reasonable storage requirement
might be that the storage media have “99.99% chance of surviving a 8.0 Richter
scale earthquake”. An example of an unreasonable, biased requirement is “the
system should be capable of printing paper ballots for hand recount.”

Once a suitable set of fundamental system requirements is agreed upon, the
unsettling vulnerabilities of our conventional election systems become apparent.
In this light, the benefits of moving to new election system technology may begin
to outweigh the risks. Typically, the definition of specific requirements are the
responsibility of legislative, or administrative bodies. However, VoteHere’s expe-
rience with technology and its capabilities can be a source of useful information
to legislators. To that end, we suggest an outline for the general requirements
decisions that must be made at the highest level.

1. Fairness. Only votes from distinct, eligible voters should be counted in the
final tally.

2. Accessibility. No eligible voter should be prevented, or “deterred” from
casting his/her vote, either by malicious or accidental forces.
– The difference between “deterred” and “inconvenienced” will be diffi-
cult to pinpoint. Many voters already feel that the voting process is an
inconvenience.

3. Accuracy. The final published election results should be, mathematically,
an exact “count” (i.e. sum, or in general, aggregation when using more com-
plex tabulation rules) of the collection of intended choices made by all the
participating voters. This requirement breaks into two pieces:
3.1. The results should be an exact “count” of the ballots recorded in the

“ballot box”, or on the “ballot media”.
3.2. Each vote in the “ballot box” should be an accurate representation of

the voter’s intended choice.
– As with accessibility, a requirement of this type can only be specified
with “reasonable precision”. No system is capable of preventing all
types of voter errors.

4. Privacy. The contents of each ballot should be known only to the voter who
cast it. This is simple, but there are subtleties that can only be addressed
with a complete threat model. For example
4.1. No system can protect a voters ballot secrecy from a collusion of all the

other voters.
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4.2. Current “mail in” absentee voting does not protect privacy against all
threats. In fact, privacy can be broken by a collusion of two at the time
that envelopes are opened. Given this, is cryptographically protected
privacy sufficient, especially if only the voter has the corresponding key?
There are many ways to spy on voter choices that are easier and less
expensive than breaking RSA, for example.

5. Receipt Freeness. To discourage both vote buying and coercion, it is
important that a voter not be able to prove how he/she voted.
– Cooperative vote selling will never be prevented by legislation or by
any election system. The best that can be done is to significantly limit
the attractiveness of such activity, a goal that is accomplished when a
prospective buyer, or coercer, can not be sure of the success of his/her
efforts. (It should be noted, however, that current “mail in” absentee
voting does nothing to address this problem.)

Specific requirements imposed on election systems should be chosen so as to
most effectively implement the general considerations above. They should not
be imposed as a means of a priori design or engineering.

3.4 Practical Considerations

In addition to the general considerations of the previous section, there are prac-
tical issues that any new voting technology must take into consideration.

Integration with other systems. It would be unreasonable to expect that
conventional voting systems will disappear overnight, even in isolated pre-
cincts. It will take time for voters to gain comfort with new systems, and for
counties to migrate to them. As a result, new voting systems must be able to
fit as part of an aggregate system – the way that, in many jurisdictions, “mail
in” voting fits together with poll site voting. This, then, requires some care
to be sure that overall election integrity remains in tact – voters shouldn’t
be able to vote once with each system, for example.

Lack of PKI. For i-voting especially, it is crucial to be able to associate eligible
voters – people – with digital credentials. For now, an infrastructure to sup-
port this which is both widely used, and robust is missing. This may change
in the near future, but for now, election systems will need to build custom
solutions. This means some integration with voter registration systems.

Mechanism of verification. Election systems in the theoretical literature gen-
erally fall into two categories – those that are universally verifiable and those
that are voter verifiable. The former produce election transcripts that allow
complete verification of election integrity by any independent entity, while
the latter require that voters check the validity of their vote in the ballot box
to be sure that data has not been changed. The integrity of a voter verifiable
system is based on the premise that “enough” voters will verify their ballots.
In practice, these systems are undesirable for two reasons
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1. Some voters will be mischievous, or forgetful. There is then no good
mechanism for deciding whether the system has been compromised, or
if just some group of voters wishes to make the system appear compro-
mised.

2. It is hard to get a large fraction of voters to vote in the first place. It
will be much harder still to get them to verify their ballots.

Redundant infrastructures not viable. A brute force attempt at assuring
election integrity is through redundancy. The idea is that each voter submits
multiple copies of her ballot to multiple, independent tabulation authorities.
Results are then determined by way of “majority rule”, or some variant. In
practice, such solutions are seriously flawed.
1. From a business perspective, how will the authorities be maintained in

a truly independent manner? It is not cost effective, competitive, or
interesting to each of the replicated authorities. We could propose that
the government subsidize them all, but isn’t this even worse?

2. Dispute resolution is complicated and potentially costly.
3. Voters now have a new mode of malicious behavior – submit conflicting

votes to the various authorities.
4. Network reliability problems go up exponentially with the number of

authorities.
In this respect, the right model for e-voting comes from the conventional poll
site model itself: One poll site, lot’s of observers, leads to One tabulation
center, lot’s of crypto keys.

Client trust. Theoretical voting protocols presume that the voter does “her
own” computation. In fact, the computation is done by a computing device,
which may itself not be trusted. Supervised e-voting systems may be able to
prevent this threat through careful procedure, but it is much more difficult
to address in the situation of i-voting.

Network weaknesses. Even if all election data can be protected from com-
promise, there is still the practical problem of getting it from one place to
another. The Internet is vulnerable to Denial of Service attacks, and these
must be taken seriously. However, the criteria put on e-voting systems for
reliability should be reasonable. All systems are subject to some risk of DoS.
Conventional poll sites can be forced closed for several reasons, such as earth-
quake, fire, or bomb threat. Voters can be prevented from getting to them
by something as common as a traffic jam. As long as voters using an e-voting
system as “first choice” can use other systems as a fall back, the standards
for reliability should not be absurdly high.

3.5 VoteHere Philosophy

The philosophy at VoteHere, Inc., is to build systems completely transparent
to public review and scrutiny. Our ambition is to achieve this by way of pub-
lished and accepted protocol, thereby eliminating the need for trusted, audited
or otherwise independently inspected software and hardware. Where components
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cannot clearly meet this goal, they must be ”sun lighted” by careful, independent
certification. This combination of open cryptographic protocol and component
review creates the requisite level of trust and dependability vital to any public
election system.

4 Avi Rubin:
The Feasibility Of Remote E-Voting

The feasibility of remote electronic voting in public elections is currently being
studied by the National Science Foundation by request of the former President of
the United States (see http://www.netvoting.org/). Remote electronic voting
refers to an election process whereby people can cast their votes over the Internet,
most likely through a web browser, from the comfort of their home, or possibly
any other location where they can get Internet access. There are many aspects
of elections besides security that bring this type of voting into question. The
primary ones are:

coercibility. the danger that outside of a public polling place, a voter could be
coerced into voting for a particular candidate.

vote selling. the opportunity for voters to sell their vote.
vote solicitation. the danger that outside of a public polling place, it is much

more difficult to control vote solicitation by political parties at the time of
voting.

registration. the issue of whether or not to allow online registration, and if so,
how to control the level of fraud.

The possibility of widely distributed locations where votes can be cast changes
many aspects of our carefully controlled elections as we know them. The relevant
issues are of great importance, and could very well influence whether or not such
election processes are desirable. However, in this paper, we focus solely on the
security considerations as they relate to conducting online public elections. In
particular, we look at remote online voting, as opposed to online voter registra-
tion, which is a separate, but important and difficult problem. We also focus
solely on public elections, as opposed to private elections, where the threats are
not as great, and the environment can be more controlled.

4.1 The Platform

On the platforms currently in the most widespread use, once a malicious payload
reaches a host, there is virtually no limit to the damage it can cause. With
today’s hardware and software architectures, a malicious payload on a voting
client can actually change the voter’s vote, without the voter or anyone else
noticing, regardless of the kind of encryption or voter authentication in place.
This is because the malicious code can do its damage before the encryption and
authentication is applied to the data. The malicious module can then erase itself

http://www.netvoting.org/
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after doing its damage so that there is no evidence to correct, or even detect
the fraud. To illustrate, let’s look at a program that exemplifies the level of
vulnerability faced by hosts.

The program we describe, Backorifice 2000 (BO2K) is packaged and dis-
tributed as a legitimate network administration toolkit. In fact, it is very useful
as a tool for enhancing security. It is freely available, fully open source, extensible,
and stealth (defined below). The package is available at http://www.bo2k.com/.
BO2K contains a remote control server that when installed on a machine, en-
ables a remote administrator (or attacker) to view and control every aspect of
that machine, as though the person were actually sitting at the console. This is
similar in functionality to a commercial product called PCAnywhere. The main
differences are that BO2K is available in full source code form and it runs in
stealth mode.

The open source nature of BO2K means that an attacker can modify the
code and recompile such that the program can evade detection by security de-
fense software (virus and intrusion detection) that look for known signatures of
programs. A signature is a pattern that identifies a particular known malicious
program. The current state of the art in widely deployed systems for detecting
malicious code does not go much beyond comparing a program against a list of
attack signatures. In fact, most personal computers in peoples’ houses have no
detection software on them. BO2K is said to run in stealth mode because it was
carefully designed to be very difficult to detect. The program does not appear
in the Task Menu of running processes, and it was designed so that even an
experienced administrator would have a difficult time discovering that it was on
a computer. The program is difficult to detect even while it is running.

There can be no expectation that an average Internet user participating in
an online election from home could have any hope of detecting the existence of
BO2K on his computer. At the same time, this program enables an attacker to
watch every aspect of the voting procedure, intercept any action of the user with
the potential of modifying it without the user’s knowledge, and to further install
any other program of the attackers desire, even ones written by the attacker,
on the voting user’s machine. The package also monitors every keystroke typed
on the machine and has an option to remotely lock the keyboard and mouse. It
is difficult, and most likely impossible, to conceive of a web application (or any
other) that could prevent an attacker who installs BO2K on a user’s machine
from being able to view and/or change a user’s vote.

4.2 The Communication Infrastructure

A network connection consists of two endpoints and the communication between
them. The endpoints here are a user’s host and an elections server. While it is
in no way trivial, the technology exists to provide reasonable protection on the
servers. This section deals with the communication between the two endpoints.

Cryptography can be used to protect the communication between the user’s
browser and the elections server. This technology is mature and can be relied

http://www.bo2k.com/
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upon to ensure the integrity and confidentiality of the network traffic. This sec-
tion does not deal with the classic security properties of the communications
infrastructure; rather, we look at the availability of the Internet service, as re-
quired by remote electronic voting over the Internet.

Most people are aware of the massive distributed denial of service (DDOS)
attack that brought down many of the main portals on the Internet in February,
2000. While these attacks brought the vulnerability of the Internet to denial of
service attacks to the mainstream public consciousness, the security community
has long been aware of this, and in fact, this attack was nothing compared
to what a dedicated and determined adversary could do. The February attack
consisted of the installation and execution of publicly available attack scripts.
Very little skill was required to launch the attack, and minimal skill was required
to install the attack.

The way DDOS works is that a program called a daemon is installed on
many machines. Any of the delivery mechanisms described above can be used.
One other program is installed somewhere called the master. These programs are
placed anywhere on the Internet, so that there are many, unwitting accomplices
to the attack, and the real attacker cannot be traced. The system lies dormant
until the attacker decides that it is time to strike. At that point, the attacker
sends a signal to the master, using a publicly available tool, indicating a target
to attack. The master conveys this information to all of the daemons, who si-
multaneously flood the target with more Internet traffic than it can handle. The
effect is that the target machine is completely disabled.

We experimented in the lab with one of the well known DDOS programs
called Tribe Flood Network (TFN), and discovered that the attack is so potent,
that even one daemon attacking a Unix workstation disabled it to the point
where it had to be rebooted. The target computer was so overwhelmed that we
could not even move the cursor with the mouse.

There are tools that can be easily found by anyone with access to the web
that automate the process of installing daemons, masters, and the attack signal.
People who attack systems with such tools are known as script kiddies, and
represent a growing number of people. In an election, the adversary is more
likely to be someone at least as knowledgeable as the writers of the script kiddy
tools, and possibly with the resources of a foreign government.

There are many other ways to target a machine and make it unusable, and
it is not too difficult to target a particular set of users, given domain name
information that can easily be obtained from the online registries such as Reg-
ister.com and Network Solutions, or directly from the WHOIS database. The
list of examples of attacks goes on and on. A simple one is the ping of death,
in which a packet can be constructed and split into two fragments. When the
target computer assembles the fragments, the result is a message that is too
big for the operating system to handle, and the machine crashes. This has been
demonstrated in the lab and in the wild, and script kiddy tools exist to launch it.

The danger to Internet voting is that it is possible that during an election,
communication on the Internet will stop because attackers cause routers to crash,
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election servers to get flooded by DDOS, or a large set of hosts, possibly targeted
demographicly, to cease to function. In some close campaigns, even an untargeted
attack that changes the vote by one percentage point could sway the election.

4.3 Conclusions

A certain amount of fraud exists in the current offline election system. It is
tolerated because there is no alternative. The system is localized so that it is
very unlikely that a successful fraud could propagate beyond a particular district.
Public perception is that the system works, although there may be a few kinks
in it here and there. There is no doubt that the introduction of something like
remote electronic voting will, and should, come under careful scrutiny, and in
fact, the system may be held up to a higher standard. Given the current state
of widely deployed computers in peoples’ homes and the vulnerability of the
Internet to denial of service attacks, we believe that the technology does not yet
exist to enable remote electronic voting in public elections.
A full paper on this topic is available at
http://avirubin.com/e-voting.security.html.

5 Ed Gerck:
Voting System Requirements

This section presents a set of voting system requirements that are consistent,
technologically neutral, can be applied to paper, electronic and network (Inter-
net) voting, and exceed the current requirements for paper-based ballots and
electronic voting DRE (Direct Recording Electronic) machines. The require-
ments are based on the principles of “Information Theory” and of “trust as
qualified reliance on information.” The principles favoring multiple, indepen-
dent channels of information over one purportedly “strong” channel. However,
adding multiple channels can also decrease reliance if the design principles laid
out in these requirements are not followed.

5.1 Background

As defined by Alan Turing some fifty years ago, a mathematical method is ef-
fective if, loosely speaking, it can be set out as a list of instructions which a
human clerk who works obediently with paper and pencil can follow, for as long
as is necessary, but without insight or ingenuity. Together with Alonzo Church,
Turing, in fact, argued that every effective mathematical method can be carried
out by a sufficiently powerful computer (represented by the universal Turing
machine).

The above mentioned Voting System Requirements were born out of the
desire to create products that would allow modern computer-based technology
to automate and truly emulate the secure desirable properties motivated by what

http://avirubin.com/e-voting.security.html
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has been collected throughout centuries of public voting. Put differently, we ask:
can we use a perfect clerk in elections—one who works obediently with paper and
pencil, for as long as is necessary, but without insight or ingenuity?

Indeed, if perfect clerks were to conduct an election using paper-ballots, this
would provide the best model we have for a public election. Such an election
would be, for example: anonymous (avoiding collusion, coercion), secret (all cast
votes are unknown until the election ends) and yet correct (all votes are counted)
and honest (no one can vote twice or change the vote of another participant),
oftentimes also complete (all voters must either vote or justify absence). In such
an election system, if we know the voter (e.g., in voter registration) we cannot
know the vote and if we know the vote (e.g., in tallying) we cannot know the
voter. After an election, all votes and all voters are publicly known—but their
connection is both unprovable and unknown.

But: real-life clerks are not perfect! Neither are computer systems! Thus, we
need to introduce the concept of qualified reliance on information in terms of pro-
viding proofs (e.g., proof of voting, proof of correctness) that can be objectively
evaluated and not just subjectively accepted or taken at face value.

To discover and rate such proofs, the requirements employ the idea that one
should favor multiple, independent communication channels over one “strong”
channel. Such an idea was successfully used by the Moguls in India some 500
years ago in the context of combating corruption [1], and was mathematically de-
scribed by Claude Shannon some 50 years ago in the context of combating noise
when he introduced his Information Theory [2], a well-known general theory of
communication processes.

Thus, for example, how can a voting system prove that the vote received
at the ballot box is the same vote seen and cast by a voter? This question
is not easier to answer if the voter is close to the ballot box then if he is far
away. Distance plays no role, contrary to what one might think at first. The
fundamental problem of voting is that the voter cannot see his tallied vote, hence
the voter has no way of knowing if information sent through the communication
channel (which may be very short) equal that which was received and tallied.
This problem is oftentimes called the “vote-gap problem” by the author.

To solve this question in electronic voting, some advocate printing a paper
copy of the ballot, which the voter can see and verify that it is identical to the
ballot she intended to cast, and then sending the paper copy to ballot box A
while an electronic copy of that same ballot is sent to ballot box B. The idea
is that ballot box B can be tallied quickly while ballot box A will be used as a
physical proof for a manual recount. Such a suggestion is oftentimes advanced
as the sine qua non solution to voting reliability in electronic voting.

But what makes the introduction of a paper ballot special is not the fact that
it is paper instead of bits. It is the fact that the voter is actually casting his vote
twice. We now have two independent channels of information for the ballot, one
from the terminal as source B, the other one from the printer as source A. We
denote the multiplicity of such channels N (In our case N = 2).
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In other words, this design provides for two outputs: ballot A and ballot B.
However, in the event of a discrepancy between the two, no resolution is possible
inside the system. The situation can thus be summarized:

– N = 1: If the system is always similar to a perfect clerk then N = 1 (one
channel) suffices, whether paper or electronic. But if we use a system with
N = 1, we cannot define any level of reliance on the final result except that
which was assigned a priori.

– N = 2: If we add one independent channel (e.g., the paper ballot) to a
system that already provides one channel (e.g., electronic ballot), this creates
a system with N = 2. However, this additional channel makes the system
indeterminate and still incapable of, by itself, defining any level of reliance
on the final result except that which was assigned a priori (e.g., paper is
more trustworthy).

Clearly, before considering other well-meant suggestions (which might be
similarly ill-fated), what is necessary is to seek a logically provable solution to
reliability problems caused by imperfect communication systems.

Such a solution needs to consider not only machine-machine communication
channels but also human-machine communication channels because the voter
can act as a source and as verifier in more than one part of the system. Further,
human-human communication channels must be considered because we do not
want machines to have the potential to “run amok”, unchecked.

Information Theory [2] can be used to describe such communication channels
and, as previously noted, the concept of qualified reliance on information can be
introduced as a formal definition of trust [3] in order to rate such channels in
terms of providers of proofs.

As a result, the only provable solution to increased reliability in communica-
tions (e.g., the communication between the voter as a sender and the ballot box
as a receiver) turns out to be increasing the number/capacity of independent
channels until the probability of error is as close to zero as desired (direct appli-
cation of Shannon’s Tenth Theorem in Information Theory [2]). To be complete,
the solution should consider not only machine-machine communication channels
but also human-machine and human-human ones. Thus, if an electronic system
is able to provide N proofs (human and machine based), these N proofs for some
value of N larger than two will become more reliable than one so-called “physical
proof”—even if this one proof is engraved in gold or printed on paper.

An undefined system also presents opportunities for fraud (e.g., someone can
change and/or delete some paper ballots after the election in order to cast doubt
on the integrity of the entire election). It is also open to attacks (e.g., a group
of voters might agree beforehand to call out a “discrepancy” after they vote and
thereby disrupt an election, which is similar to a “denial of service” attack).

Thus, we need a real-world voting system—not one that is based
on perfect parts (N = 1) or one that produces an undefined result in
the case of a single error (N = 2). In order to provide for qualified
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reliance on information, such a voting system needs to have multiple
independent channels.

In plain English, the greater the number of independent channels for the
verification of a result, the greater trustworthy the result is.

However, suppose the terminal where the voter enters his choices changes
them to something else and then sends this information over N different channels,
what difference does it make if it is N = 1, 2 or 500?

None! In such a case N would still be 1 for the ballot channel. The 2 or 500
channels are not independent for the ballot because they all originate as copies of
that single stored potentially corrupted ballot. So, it does not make a difference
in terms of ballot reliance. This would, however, make a difference in terms of
communication reliance, in which there are now different transmission channels,
2 or 500 channels for which each channel could behave as a correction channel
for the others. Namely, in this case the ballot box would more probably receive
the right ballot (even though it may have been corrupted before transmission)
and more so for N = 500 than for N = 1.

What is needed is therefore a requirement to include several truly indepen-
dent ballot, transmission and audit channels—whether or not electronic trans-
actions are used. These channels should be employed in rating the reliance on
each node of an end-to-end balloting system, even during the election and in real
time. There should be several ways to implement this requirement and channels
could be added also in time and context, not just in space. Channels can also
transport information by reference, not just information by value.

What is also needed is a way to allow the voter to verify results, for example
the presence/absence of her ballot at the ballot box and whether her ballot at the
ballot box is a valid one. This is useful because sufficient indirect verification does
produce trust. “Trust but verify” is a mode typically preferred by our collective
wisdom and it is definitely applicable here. It is important to note that even
if just a fraction of the voters (e.g., 5%) do verify the results, the capability
of verification is already a deterrence to fraud because a cheater has no way of
knowing who will verify, or not.

Another characteristic of a good voting system is that the only person whom
you prove the vote to is the voter. If the proof can be shown to someone else,
then the vote can be coerced or sold. Therefore, when using multiple channels
of information, they either have to be deniable by the voter or else temporary
so that the voter cannot be threatened or hurt as a result of the vote.

Regarding the use of paper, it is important to note that the reason to distrust
a paper/electronic voting system with N = 2 is not based on distrust in paper.
Paper is just another communication channel. The reason is that adding paper
does not solve the problem and, in fact, makes the problem indeterminate. This
is so, since we need N larger than 2. Certainly, paper can be one of the channels,
if desired, because the channel make-up is irrelevant. But a cost-benefit analysis
might result in the use of non-paper channels.

Next, another question that must be addressed is the possibility of
all-electronic voting systems. Should we trust them and why?
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Nowadays, all-electronic systems and computers are used in flying commer-
cial and military jets. And yet, no one in the public is afraid that a terrorist
will introduce a virus in the system and will down all commercial jets world-
wide, or all U.S. military jets. Why? Because there is a designed redundancy
at many levels in the system. For example, there are three independent laser
inertial navigation sensors and any decision on the plane’s position depends on
the agreement of at least two of them, which decision is further verified by a
GPS system, as well as flight time and speed calculations.

Thus, voting systems—like any other type of systems—derive their trust-
worthiness from the fact that they work consistently, both conceptually and
perceptually. However, in the absence of an easy conceptual understanding of
the system (e.g., a laser inertial navigation sensor) that the average user is able
to grasp, a sufficiently coherent perceptual understanding (e.g., observing that
the system works) is enough to eventually build trust in the system.

Trust may also be denied by the design itself, because disasters may occur
at any time if the principles of communication reliance (i.e., trust itself) are
not taken into account. To visualize this, imagine a plane that would be flown
with just two navigation sensors, one compass-based and the other electronic—
we would then have an idea of the disastrous consequences of using a paper/
electronic voting system with N = 2, even though a physical channel is used
(compass, paper).

Thus, we can conclude that the deciding factor in trusting a system is not
whether it includes one or even two sources of information that can be touched
or seen in physical form (e.g., a paper in your hands, a paper behind a screen, a
compass needle behind a screen).

A factor that mitigates against an all-electronic voting system is the fact that
although paper and electronic records are both vulnerable to subversion, it is a
lot easier to change what is in an electronic record than it is to change what is
on paper.

Thus, electronic records need to be bound to other references in a manner
that is demonstrably inaccessible to an attacker, both through physical access
controls and through cryptographic protocols.

Moreover, there really needs to be a step-by-step description of the voting
process, so that when someone asks, “What if the intruder succeeds in breaking
into the system to change X?” this can be clearly answered, for example, by:

(i) to change X would cause a subsequent binding failure, thus it would
be detectable except with parallel access to Y and Z, which are indepen-
dently inaccessible, or
(ii) knowledge of an alternate (and attacker-desirable) value for X is
insurmountably difficult to achieve, and the effort could not be leveraged
to any other X.

Put most plainly, people know that ordinary voting systems can be subverted
by someone who can bribe enough individuals to collude, but the physical fact
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of several tons of paper ballots still represents somewhat of an obstacle to an
“easy subversion” in the eyes of many.

In contrast, people are well aware that electronically one can modify a million
records with as little as a few keystrokes. This is the “fear” that needs to be
addressed in an all-electronic system. Further, such a subversion can be massive
and rapid, executed from the safety of a remote laptop, etc. so that it would be
unavoidable.

Of course, one alternative to reduce fear would be education. To educate
voters regarding the very nature of distributed cryptographic assurances and at
a level where the concepts are not hidden behind excessive abstractions.

But cryptography is not, by itself, the critical issue, nor is it the silver bullet.
Further, no amount of education will stop attackers, on the contrary, it may aid
them.

Instead, voting systems can use the concept of multiple independent commu-
nication channels to make it as impossible as desired to tamper with the electronic
ballot both before and after it is cast.

Here, the question is not how many copies of paper or bits one has, but
how many independent channels the attacker needs to subvert versus how many
independent correction channels one has available during such an attack. Of
course, if the attacker is able to subvert the correction channels while attacking
the other channels, then they will not be independent.

Therefore, the same mechanism that protects the casting of a ballot must
also be used to protect presenting the ballot. And this needs to be given as a set
of requirements which work together in an end-to-end design.

These requirements are therefore general principles, valid for any physical
implementation of a “ballot”—whether as print marks on paper, pits on a CD-
ROM surface, electrons hitting a video screen (electronic ballot), modulated
electromagnetic waves, bits in a network protocol or any other form of infor-
mation transfer to and from the voter. They also apply to any form of voting,
including majority voting and single transferable votes. The requirements may
be applied in their entirety or merely a subset may be used.

To achieve these goals, the requirements should be able to handle voting
rules of any type and should apply to voting systems anywhere in the world.
However, the main objective here is for the requirements to be as complete and
as independent from one another as possible, without sacrificing consistency. It is
understood that “completeness” is an elusive goal that might never be reached
when we consider the diversity of election needs [4], while “consistency” is a
necessary feature for the requirements to work together in a particular election.
In short, this was the reason to stop after 16 requirements. Increasing the number
of requirements can risk decreasing their consistency, in general [4]. Of course,
other requirements may be added, or deleted, as needed.

Some of the words used in the requirements may have different (and equally
valid) meanings in other contexts (e.g., “voter privacy”). Therefore, the require-
ments also include the operational definitions of the main words used. Three
words are, however, used without a definition even though they could also be
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misunderstood. These words are “trust” [3], “manifold” and “meshwork” [5], as
defined in the references.

5.2 Summary of Requirements

A voting system of any type and media needs to satisfy various requirements
which are summarized in the following 16 points.

1. Fail-safe voter privacy. Definition: “Voter privacy is the inability to link
a voter to a vote.” Voter privacy MUST be fail-safe—i.e., it MUST be assured
even if everything fails, everyone colludes and there is a court order to reveal all
election data. Voter privacy MUST be preserved even after the election ends, for
a time long enough to preserve backward and forward election integrity (e.g., to
prevent future coercion due to a past vote, which possibility might be used to
influence a vote before it is cast).

2. Collusion-free vote secrecy. Definition: “Vote secrecy is the inability to
know what the vote is.” Vote secrecy MUST be assured even if all ballots and
decryption keys are made known by collusion, attacks or faults (i.e., vote se-
crecy MUST NOT depend only on communication protocol and cryptographic
assumptions, or on a threshold of collusion for the keyholders).

3. Verifiable election integrity. Definition: “Election integrity is the inability
of any number of parties to influence the outcome of an election except by prop-
erly voting.” The system MUST provide for verifiability of election integrity for
all votes cast. For any voter the system MUST also provide for direct verifiability
that there is one and only one valid ballot cast by the voter at the ballot box.

4. Fail-safe privacy in verification. If all encrypted ballots are verified, even
with court order and/or with very large computational resources, the voter’s
name for each ballot MUST NOT be revealed.

5. Physical recounting and auditing. We MUST provide for reliability in
auditing and vote recounting, with an error rate as low as desired or, less strictly,
with an error rate comparable or better than conventional voting systems [8]. The
auditing and vote proofs MUST be capable of being physically stored, recalled
and compared off-line and in real-time during the election, without compromising
election integrity or voter privacy, and allowing effective human verification as
defined by election rules.

6. 100% accuracy. Every vote or absence of vote (blank vote) MUST be
correctly counted, with zero error [8].
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7. Represent blank votes. We MUST allow voters to change choices from
’vote’ to ’blank vote’ and vice-versa, at will, for any race and number of times,
before casting the ballot.

8. Prevent overvotes. As defined by election rules. We MUST provide au-
tomatic “radio button” action for single-vote races. If overvoting is detected in
multiple-vote races, we MUST warn the voter that a vote has to be cleared if
changing choices is desired. This warning MUST be made known only to the
voter, without public disclosure.

9. Provide for null ballots. As defined by election rules, we MAY allow voters
to null races or even the entire ballot as an option (e.g., to counter coercion;
to protest against lack of voting options). Overvoting, otherwise prevented by
requirement #8, MAY be used as a mechanism to provide for null ballots.

10. Allow undervotes. As defined by election rules, the voter MAY receive
a warning of undervoting. However, such a warning MUST NOT be public and
MUST NOT prevent undervoting.

11. Authenticated ballot styles. The ballot style and ballot rotation (changes
between individual ballot representations) to be used by each voter MUST be
authenticated and MUST be provided without any other control structure but
that which is given by the voter authentication process itself.

12. Manifold of links. We MUST use a manifold [5] of redundant links and
keys to securely define, authenticate and control ballots. We MUST avoid single
points of failure—even if improbable. If networks are used, we MUST forestall
Denial-of-Service (DoS) and other attacks with an error rate comparable or
better than conventional voting systems [8].

13. Off-line secure control structure. We MUST provide for an off-line se-
cure end-to-end control structure for ballots. We MAY use digital certificates un-
der a single authority. Ballot control MUST be data-independent, representation-
independent and language-independent.

14. Technology independent. We MUST allow ballots and their control to
be used off-line and/or in dial-up and/or in networks such as the Internet, with
standard PCs or hand-held devices used to implement their components in hard-
ware or in software, alone or in combination for each part.
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15. Authenticated user-defined presentation. We MUST enable the bal-
lots to dynamically support multiple languages, font sizes and layouts, so that
voters can choose the language and display format they are most comfortable
with when voting as allowed by law and required by voters with disabilities,
without any compromise or change to the overall system, from an authenticated
list of choices defined by the election rules.

16. Open review, open code. We should allow all source code to be publicly
known and verified (open source code, open peer review). The availability and
security of the system must not rely on keeping its code or rules secret (which
cannot be guaranteed), or in limiting access to only a few people (who may col-
lude or commit a confidence breach voluntarily or involuntarily), or in preventing
an attacker from observing any number of ballots and protocol messages (which
cannot be guaranteed). The system SHOULD have zero-knowledge properties
(i.e., observation of system messages do not reveal any information about the
system). In fact, only keys MUST be considered secret.

5.3 Comments

Implementations and examples [9] are discussed in the full paper, available
in [10].

These requirements include comments and references from Tony Bartoletti,
Thomas Blood, Netiva Caftori, Gordon Cook, Hal Dasinger, Hugh Denton,
Rosario Gennaro, Jason Kitcat, Brook Lakew, Elaine Maurer, Don Mitchel, Erik
Nilsson, Michael Norden, Marcelo Pettengill, Roy Saltman, Bernard Soriano,
Gene Spafford, Einar Stefferud, Arnold Urken, Eva Waskell, Thom Wysong,
the IVTA tech WG (http://www.mail-archive.com/tech@ivta.org/), the
CPSR-activists list, several cryptography lists, contributions from comments col-
lected at Safevote’s website, and from articles published in The Bell
(http://www.thebell.net).

5.4 References

[1] “... one of the earliest references to the security design I mentioned can be
found some five hundred years ago in the Hindu governments of the Mogul period,
who are known to have used at least three parallel reporting channels to survey
their provinces with some degree of reliability, notwithstanding the additional
efforts.” Ed Gerck, in an interview by Eva Waskell, “California Internet Voting.”
The Bell, Vol. 1, No. 6, ISSN 1530-048X, October 2000. Available online at
http://www.thebell.net.

[2] Shannon, C., “A Mathematical Theory of Communication.” Bell Syst. Tech.
J., vol. 27, pp. 379-423, July 1948. Available online at
http://cm.bell-labs.com/cm/ms/what/shannonday/paper.html.
Shannon begins this pioneering paper on information theory by observing that
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http://cm.bell-labs.com/cm/ms/what/shannonday/paper.html
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“the fundamental problem of communication is that of reproducing at one point
either exactly or approximately a message selected at another point.” He then
proceeds to thoroughly establish the foundations of information theory, so that
his framework and terminology have remained standard practice. In 1949, Shan-
non published an innovative approach to cryptography, based on his previous
Information Theory paper, entitled Communication Theory of Secrecy Systems.
This work is now generally credited with transforming cryptography from an
art to a science. Shannon’s Tenth Theorem states (cf. Krippendorf and other
current wording): “With the addition of a correction channel equal to or exceed-
ing in capacity the amount of noise in the original channel, it is possible to so
encode the correction data sent over this channel that all but an arbitrarily small
fraction of the errors contributing to the noise are corrected. This is not possible
if the capacity of the correction channel is less than the noise.”

[3] “When we want to understand what trust is, in terms of a communication
process, we understand that trust has nothing to do with feelings or emotions.
Trust is that which is essential to communication, but cannot be transferred in
the same channel. We always need a parallel channel. So the question is having
redundancy. When we look at the trust issue in voting, it is thus simply not pos-
sible to rely on one thing, or two things even if that thing is paper. We need to
rely on more than two so we can decide which one is correct. In this sense, the
whole question of whether the Internet is trusted or not is simply not defined.
The Internet is a communication medium and whatever we do in terms of trust,
it is something that must run on parallel channels.” Ed Gerck, testimony before
the California Assembly Elections & Reapportionment Committee on January
17, 2001, in Sacramento. Assemblyman John Longville (D), Chair. For an ap-
plication of this model of trust to digital certificates, see “Trust Points” from
http://www.mcg.org.br/trustdef.txt excerpted in “Digital Certificates: Ap-
plied Internet Security’ by J. Feghhi, J. Feghhi, and P. Williams, Addison-Wesley,
ISBN 0-20-130980-7, p. 194-195, 1998.

[4] This is similar to the situation found in Goedel’s incompleteness theorem.
The requirements form a logical system of some complexity and thus we do not
expect such a system to be both complete and consistent.

[5] “Manifold” means a whole that unites or consists of many diverse elements
and connections, without requiring these elements and connections to depend
upon one another in any way. “Meshwork” is used to denote a manifold in
the context of the Multi-Party protocol designed by Safevote to implement the
requirements. A meshwork builds a meta-space in relationship to a space—a
meshwork describes relationships about a space, not the space itself.

[6] “We say that information-theoretic privacy is achieved when the ballots are
indistinguishable independent of any cryptographic assumption; otherwise we will
say that computational privacy is achieved.” In Ronald Cramer, Rosario Gen-
naro, Berry Schoenmakers, “A Secure and Optimally Efficient Multi-Authority
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Election Scheme,” Proc. of Eurocrypt’97. (available online at
http://www.research.ibm.com/security/election.ps).

[7] E. Gerck, “Fail-Safe Voter Privacy”, The Bell, Vol.1, No.8, p. 6, 2000. ISSN
1530-048X. Available online at
http://www.thebell.net/archives/thebell1.8.pdf.

[8] Accuracy and Reliability are used here in the sense of standard engineering
terminology, even though these different concepts are usually confused in non-
technical circles. Lack of accuracy and/or reliability introduces different types
of errors:

(i) Reliability affects a number of events in time and/or space, for exam-
ple, errors in transfers between memory registers. We know from Shan-
non’s Tenth Theorem [2] that reliability can be increased so that the
probability of such an error is reduced to a value as close to zero as de-
sired. This is a capability assertion. It does not tell us how to do it, just
that it is possible. This is the realm of requirements #12 and also #5,
where one can specify an error rate as low as desired or, less strictly, an
error rate “comparable or better than conventional voting systems”.
(ii) Accuracy affects the spread of one event, for example whether a vote
exists. Here, requirement #6 calls for 100% accuracy. The requirement is
that no “voter-intent” or “chad” or “scanning” issue should exist—which
is feasible if, for example, each voting action is immediately converted to
a standard digital form that the voter verifies for that event. Accuracy
error can be set to zero because 100% accuracy is attainable in prop-
erly designed digital systems that (e.g., by including the voter) have no
digitization error.

For an illustration of the above definitions of accuracy and reliability, see the
four diagrams in http://www.safevote.com/caltech2001.ppt.

[9] “Contra Costa Final Report” by Safevote, Inc. Available upon request. Sum-
mary available at http://www.safevote.com.

[10] “Voting System Requirements”, The Bell newsletter, ISSN 1530-048X,
February 2001, archived at
http://www.thebell.net/archives/thebell2.2.pdf.

6 Summary

Given the presentations above and the relative popularity of the subject, a large
numbers of questions and remarks were raised by the conference participants. We
thank the participants for their active role and contributions to the usefulness
of our panel. Since many opinions were expressed it is hard to report on all of
them (and surely important comments are omitted herein).

Many shared the caution expressed by some of the panelists. The paraphrased
comment “I am not sure what the next election technology is going to be, but
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the next to next such technology will definitely be a paper technology” (by
Matt Blaze) perhaps best represents this healthy skepticism. Specific concerns
about the Internet reliability and immunity to attacks were raised by many
participants. A doubt was raised (by Stefan Brands), claiming that the current
theoretical work does not provide a sufficient level of privacy. The specific concern
was that votes can be revealed if administrating machines collaborate, even in
the most advanced protocols.

Social concerns regarding the suitability of modern technology to running
democracy were discussed. The fear that aggressive modernization may generate
a “voting divide” between those who use computers and those who do not, was
expressed. The idea that politicians may not like the technology and will oppose
its introduction, was raised as another potential hurdle to technological progress
in political processes like voting.

Some more optimistic views were also expressed. They pointed out the prob-
lems of current systems on the one hand, and on the other hand they reminded
us that electronic voting was somewhat successful in trials in the USA and in
actual votings in countries like Brazil. Also noted is the fact that the current
technology cannot remain forever the technology of choice for election, since this
technology, even though it has been evolving very slowly, has been nevertheless
evolving.

Overall, the panel represented the current state of the art of the business of
electronic voting. We covered the commercial possibilities of supplying modern
technology with sufficient levels of privacy, security, reliability and flexibility. We
covered the basic requirements and the challenging issues that we need to cope
with before the adoption of the new technology. We heard various opinions and
interesting remarks regarding the diversified aspect of electronic voting. Natu-
rally, e-voting industry researchers were more optimistic than their colleagues.
The mix of opinions and variety of perspectives were instrumental in understand-
ing the basic issues and problems regarding the reality of nation-wide e-voting,
especially through the Internet. In fact, due to its popularity, the discussion cen-
tered around national (political) voting, and ignored other potential applications
of the technology: e.g., inter-organizational small scale voting.

It is obvious that since there is quite uneasiness with the current election
technology, the opportunity for using more modern technology exists. The ac-
tual adoption of electronic voting within electronic government and electronic
democracy is going to stay a “hot issue” in the coming years. What technology
is going to be adopted, and what level of cryptographic support will be used for
the election itself and in securing election platforms, are open issues. Regardless
of the differences of opinions and the various points of view, during the panel
we learned about new angles to look at voting problems. We realized what are
the burning issues in the area; issues of all kinds (social, business, systems, tech-
nology, policy and politics, etc.). Our hope is that we have stimulated further
thinking, research and technological development which will motivate further
studies of new subjects in all the relevant research areas.
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Abstract. We investigate the problem of performing Stock Market op-
erations, such as buying or selling shares of a certain stock, in a private
way, which had recently been left open.

We present a formal definition for a private stock purchase protocol,
addressing several privacy and security concerns on usual on-line stock
market operations. According to our definition, a client would not reveal
how many shares she is buying or selling (not even which of these two
cases is happening), and what price she is offering for those. We then
present an efficient protocol meeting this definition, based on the hard-
ness of the decisional Diffie–Hellman problem. Our protocol requires no
interaction between the clients, can be executed in a constant number
of rounds between the clients and the server, and requires several tech-
nical contributions, such as a new and efficient zero-knowledge protocol
for proving sum-related statements about encrypted values, which is of
independent interest.

1 Introduction

The overwhelming expansion of the internet is today being accompanied with
a large increase of financial activities and transactions that are conducted on-
line. A few minutes navigation on the internet allows to realize the existence of
electronic cash systems, payment protocols, auctions, lotteries, digital casinos
and gambing systems. The sometimes crucial importance and often large inter-
est around such transactions raises several concerns about the security and the
privacy of the information that users and organizations are willing to use on a
network.

In this paper we consider a important financial transaction: buying and selling
shares of a particular stock on the Stock Market. Such transactions seem to have
received not enough attention from the security and privacy literature, and, in
fact, an assessment of the privacy problems deriving from these transactions and
the construction of a protocol which addresses them had been left as an open
problem. We present a formal definition for what it means for a stock purchase
protocol to be secure and private, and present an efficient protocol which allows
to privately purchase and sell shares of a certain stock.
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Our Model and Definition. We consider a model composed of several clients
who intend to purchase or sell shares of a particular stock, and a server, taking
care of such operations and of the current share price and current share amount.
While the server is assumed to behave honestly (or, more precisely, as a honest-
but-curious party), the clients may behave in a malicious way. Therefore, we ask
that clients are allowed to perform their operations without revealing to all other
clients private information such as how many shares they are buying or selling,
which prize they offer for those, and not even whether they are buying or selling.
In fact, even the server cannot derive any information about these operations
other than what he needs to update the current share amount (namely, the sum
of all shares bought/sold) and the current share price (namely, some prespecified
function of external information and all private inputs of the clients). Still, at the
end, each client who behaves honestly should obtain from the server a certificate
for that particular transaction, despite the behavior of all dishonest clients.

Our Results. We present a protocol that satisfies all the mentioned proper-
ties and can be implemented in a constant number of rounds. In the important
case in which the function that updates the share price is linear in the private
amounts of the clients, our protocol has an efficient implementation based on
the hardness of the Decisional Diffie Hellman problem. We also present a general
solution for arbitrary functions, which uses any 2-party secure function evalu-
ation protocol for computing the same function. Even in this case our solution
can be implemented in a constant number of rounds; moreover, a variant of our
solution also keeps the function private from the client. Some technical contribu-
tions include novel and efficient zero-knowledge protocols for proving sum-related
statements about encrypted values, that may find applications somewhere else.
In particular, we show a protocol for proving in zero-knowledge that given three
ciphertexts, encrypted according to the El-Gamal cryptosystem, the first plain-
text is the modular sum of the remaining two. Although we only present an
efficient implementation of it, we note that our protocol can be implemented by
only assuming the existence of any oblivious transfer protocol.

Related Results . Our model of a honest-but-curious server and several clients
who do not need to interact has been already used in several investigations on the
topic of auctions [9,4,23,24,16] (other related investigations on auctions which
do not use a trusted party have been done in [26]). In particular, the paper [16]
posed the open question of investigating privacy in stock market operations. The
problem of anonymity in stock market operations has been investigated in [18].
More generally, our model and solution can be considered as belonging to the
area of designing efficient protocols for specific multi-party private computation
problems (as, for instance, for threshold cryptography [7]).

Organization of the Paper. In Section 2 we present some background on
number theory and various cryptographic primitives. In Section 3 we present a
detailed definition of the requirements that a private stock purchase protocol
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has to satisfy, and a high-level description of our solution. The description of
the main two subcomponents of our private stock purchase protocol, is divided
into two sections: in Section 4 we present the capital update (sub)protocol and
in Section 5 we present the price update (sub)protocol.

2 Preliminaries

In this section we review some background notions and protocols as: oblivious
transfer (OT), zero-knowledge proofs, the El-Gamal encryption scheme and an
OT protocol based on it.

The El Gamal Public-Key Encryption Scheme [12]. Let p be a prime
such that p−1 has a large prime factor q, and let g be a generator of a subgroup
G of Zp of order q. The key generation algorithm of the El Gamal public-key
encryption scheme consists in uniformly choosing s ∈ Zp and computing h =
gs mod p, publishing (p, q, g, h) as a public key and keeping s as a secret key. The
encryption algorithm consists of uniformly choosing r ∈ Zp and returning (u, v),
where u = gr mod p and v = hrmmod p, and m is the message. The decryption
algorithm consists of outputting m, computed as m = v/ur mod p. The semantic
security of this proof system is equivalent to the difficulty of deciding the Diffie–
Hellman problem.

Oblivious Transfer. The notion of Oblivious Transfer (OT) protocol was in-
troduced by Rabin [21]. Informally, an OT protocol can be described as a game
between two polynomial time parties Alice and Bob, where Alice wants to send a
message to Bob in such a way that with probability 1/2 Bob will receive the same
message Alice wanted to send, and with probability 1/2 Bob will receive nothing.
Moreover, Alice does not know which of the two events really happened. There
are other equivalent formulations of Oblivious Transfer (see, e.g., [5]), such as
1-out-of-2 OT, in which Alice has two messages m0,m1, Bob has one bit c and
at the end Bob will receive mc, without receiving any information about m1−c

and without Alice guessing c. This primitive has found numerous implementa-
tions and applications in the cryptographic literature. For our constructions, we
can use any oblivious transfer protocol based on the difficulty of deciding the
Diffie–Hellman problem (a two-round protocol for this task appears in [19]).

Conditional Oblivious Transfer. The notion of conditional oblivious trans-
fer was introduced in [10], where applications were given to the problem of
timed-release encryption, or ‘sending information to the future’. Informally, a
conditional oblivious transfer protocol is the following generalization of ordinary
(1-out-of-2) oblivious transfer: Alice and Bob also have a private input (call those
xA and xB , respectively), and a public predicate ρ such that if ρ(xA, xB) = 1
(resp., ρ(xA, xB) = 0) then Bob receives m0 (resp., m1), without learning any
additional information about the message he has not received. In [10] a condi-
tional oblivious transfer was given for the predicate ‘greater than or equal to’,
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based on the intractability of deciding quadratic residuosity. We remark that
the same techniques used in [10] for this protocol can be used to construct an
implementation based on the difficulty of deciding the Diffie–Hellman problem.

Zero-Knowledge Proof Systems. Informally, zero-knowledge proof systems
[15] are interactive protocols allowing a possibly infinitely powerful prover to
convince a polynomial time verifier that a statement (e.g., the membership of
a string x to a language L) holds without revealing any additional information
that the verifier could not compute alone before running the protocol. Now
we expand on the definition of such protocols. First of all, an interactive proof
system for a language L is an interactive protocol satisfying the two requirements
of completeness and soundness. The completeness requirement says that if the
prover and the verifier follow the protocol, then the verifier has to accept with
probability very close to 1. The soundness requirement says that if the verifier
follow the protocol, then no matter which arbitrarily powerful strategy is used
by the prover, the verifier accepts with probability very close to 0. Then, a zero-
knowledge proof system for a language L is an interactive proof system for L
satisfying the additional requirement of zero-knowledge. This requirement states
that for any probabilistic polynomial time strategy used by the verifier, there
exists an efficient algorithm S, called the simulator, such that for all x ∈ L,
the following two distributions are “indistinguishable”: 1) the output of S on
input x, and 2) the messages seen by the verifier when interacting with the
prover on input x (including the verifier’s random tape). According to the specific
formalization of indistinguishability, we obtain different variants of the zero-
knowledge requirement, called computational, statistical and perfect. A zero-
knowledge argument [3] is a zero-knowledge proof system for which the soundness
is only required to hold under polynomial-time adversaries.

3 Private Stock Purchase Protocol: Definition and
Solution Sketch

In this section we present a definition and a high-level view of our solution for
the main protocol of interest in this paper: a private stock purchase protocol.

3.1 A Formal Definition

We start by presenting the players, the phases and the (sub)protocols involved in
an execution of such protocol, and then describe the requirements that a private
stock purchase protocol has to satisfy.

Players. The players involved in a private stock purchase protocol are the
clients, denoted as C1, C2, . . . , Cn and a server, denoted as S. A client Ci is any
individual that intends to buy stock shares. The server S is the machine (or the
individual) that takes care of handling the stock shares; including, for instance,
selling the shares, updating the number of shares, updating the share price.
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Connectivity. Although potentially all clients are connected among them and
to the server through some communication link, for practical purposes, we are
especially interested in protocols where each client only interacts with the server,
and not necessarily at the same time.

Phases. Generally speaking, the lifetime of a stock purchase payment protocol
is divided into a large number of time intervals of fixed and known length. In
each of these intervals, a set of clients registers with the servers, requests a
number of stock shares at a certain offered price, the share price is consequently
updated, the number of available shares is properly updated as well, and clients
are eventually given the requested number of shares. Since the execution of the
protocol is conceptually the same in each interval, from now on we concentrate
our study on a single, generic, time interval, and, for simplicity, refer to the
protocol executed in this interval as the private stock purchase protocol. In this
protocol we distinguish four phases. A first phase, called the registration phase,
consists of each individual registering herself as a client by committing to the
number of stock shares that she is willing to buy or sell and to a price they she
is willing to pay for each of them, which we will call the ‘offered price’. A second
phase, called the price update phase, contains an interactive protocol in which
each client interacts with the server; at the end the price of the stock shares is
updated as a known and polynomial-time computable function of the amounts
of shares and the offered prices that clients committed to in the first phase.
A third phase, called the capital update phase, contains an interactive protocol
in which each client interacts with the server; at the end the number of stock
shares is eventually updated by subtracting the number of shares bought and by
adding the number of shares sold; we call the resulting number the ‘new price’;
note that the shares for which the offered price was lower (higher) than the
new price are not sold to (bought by) the client. In the fourth phase, called the
certification phase, each client finally obtains from the server some certification
of the transaction, namely, a certificate that a certain number of shares (if any)
have been bought or sold by that client.

Protocols. Each phase contains an interactive protocol, where the interaction
is between all clients and the server only (i.e., there is no interaction between the
clients). Specifically, the registration protocol is executed between each client and
the server, and at the end returns some keys and parameters that will be used in
the rest of the payment protocol. The price update protocol is executed between
all registered clients and the server, and at the end the server knows the output of
the price updating function over the clients’ private inputs (namely, the number
of shares they want to buy and the intended prices) without learning any new
information about such inputs; such output will be the new share price of the
stock in the new time interval. The capital update protocol is executed between
all registered clients and the server, and at the end the server knows a partial
sum of all clients’ private inputs. Here, a private input contributes a positive
(resp., negative) amount if the client wants to buy (resp., sell) that amount of
shares at an offered price larger (resp., smaller) than the new price; note that
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clients intending to buy (resp., sell) shares at an offered price smaller (resp.,
larger) than the new price will contribute no value to this sum. The certification
phase is executed by the server who sends a single message to each client who
successfully executed the previous phases, containing a certification of the client’s
acquisition or deposition of shares (if any) for the amount committed to during
the registration phase, and the current share price, to later allow verification
that the purchase was valid.

Requirements. Let us denote by (bi, xi, opi), for bi ∈ {0, 1} and xi ∈ {0, 1}t,
the private input of client Ci, for i = 1, . . . , n, where bi = 0 (respectively, bi = 1)
means that the i-th client wants to buy (respectively, sell) xi stock shares at an
offered price opi. Also, let us denote by cp the current stock price per share, by
f the price updating function, by np the new stock price per share at the end of
the protocol and by k a security parameter. Finally, let us denote by certi the
time-stamped certificate eventually issued by S to client Ci at the end of the
protocol. A private stock purchase protocol for function f and for n clients has
to satisfy the following four requirements:

Correctness. If S and all clients C1, . . . , Cn follow their protocol then with prob-
ability 1 at the end of the private stock purchase protocol the following holds:
(1) np = f((b1, x1, op1), . . . , (bn, xn, opn)), and (2) each client receives a certifi-
cate certi containing its private input (bi, xi, opi) and the new price np, which
is verifiable to be valid by S.

Security against Clients. If S follows its protocol, then for all i and for all prob-
abilistic polynomial time algorithms C′

1, . . . , C
′
i−1, C

′
i+1, . . . , C

′
n, the probability

that at the end of the private stock purchase protocol the client Ci does not
output certi, a valid certificate associated with input (bi, xi, opi) and new price
np, is exponentially small (in k). Moreover, for any coalition of clients running
in probabilistic polynomial time, the probability that at the end of the private
stock purchase protocol, they are able to convince S to have a valid certificate
cert associated with an input different from all (bi, xi, opi), np, for i = 1, . . . , n,
is negligible (in k).

Privacy against Clients. Let i1, . . . , ij ∈ {1, . . . , n}; if S follows its protocol, then
for any probabilistic polynomial-time algorithms C′

i1
, . . . , C′

ij
, the distribution of

the view of such clients during an execution of the entire protocol is independent
from the value of (bi, xi, opi), for each i ∈ {1, . . . , n} \ {i1, . . . , ij}.

Privacy against the Server. Assume S follows its protocol; for any polynomial
time strategy s1 used by S at the end of the protocol, there exists a poly-
nomial time strategy s2 that can be used by S before the protocol starts,
such that the probability that s1 allows S to obtain some information about
(b1, x1, op1), . . . , (bn, xn, opn) differs by the probability that s2 allows S to do the
same before the protocol only by a negligible (in k) amount, where both proba-
bilities are conditioned by the fact that np = f((b1, x1, op1), . . . , (bn, xn, opn)).
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Remarks. We note that typically the first and the fourth phase of a private
stock purchase protocol would require standard registration, certification and
verification protocols to be executed, also varying according to non-cryptographic
issues deriving from the specific application setting; instead, the second and third
phases are supposed to contain the main cryptographic novelties of the proto-
col. We also note that private stock purchase protocols are very much related to
private multi-party computation [27,14], for which no agreement on the ‘right no-
tions’ of security or privacy has been reached yet, after several research efforts.
Finding the ‘right notions’ of privacy and security for private stock purchase
protocols is therefore beyond the scope of this work. Still, we believe that the
above definition (following most principles in the current best definitions of pri-
vate multi-party computation) describes a satisfactory notion of security and
privacy for the application of interest in this paper and that the protocol that
we present would essentially satisfy alternative notions, eventually claimed to
be the ‘right notion’. Let us point out however two main differences between
the setting considered here and private multi-party computation. In terms of
connectivity among the participants, here we only consider solutions in which
the clients only talk to the server, and do not need to talk to each other. In
terms of adversarial setting, here the server is assumed to be honest-but-curious
(rather than being possibly malicious); moreover, we require and achieve security
against arbitrary coalitions of up to all-but-one malicious clients (rather than
only bounded-size coalitions). These differences are motivated by practical con-
siderations and significantly differentiate our investigation from those in private
multi-party computation. In particular, as a consequence, protocols given in the
literature within the area of private multi-party computation do not solve the
problems considered in this paper (and vice versa).

3.2 A High-Level View of Our Solution

As done for the definition, we describe our solution as divided into four phases:
a registration phase, a price update phase, a capital update phase and a certifi-
cation phase. Recall that we are describing a generic interval of the lifetime of
the stock purchase protocol; therefore, we can assume that permanent informa-
tion such as the current share price and the capital (or the number of available
shares) are publicly available. Moreover, here and in the rest of the paper, for
simplicity, we will assume that the parties are connected through private chan-
nels (that can be implemented, for instance, using a non-malleable encryption
scheme).

Registration Phase. First of all the server publishes two public keys: one for an
encryption scheme, and one for a signature scheme. Now, a client that wants to
take part in the stock purchase protocol makes a commitment to its private input
(representing the amount of shares to be bought or sold and the offered price
for those) and sends this commitment to the server. Then the server signs such
a commitment and sends the resulting signature to the client. Now, the client
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publishes his commitment, the signature received from the server, a public-key
of an encryption scheme, and standard information such as his identity.

Implementation of this Phase. We require that the commitment by the client is
implemented as an El-Gamal encryption of the input to be committed to (this
choice is for efficiency and compatibility with the remaining protocols in the
paper). No particular implementation is required for the signature scheme.

Price Update Phase. In this phase the server and all clients who successfully
completed the previous phase run a protocol, called UPDATE, and described
in Section 5, which has the following properties. At the end, the server obtains
the value output by an evaluation of a known function over all private inputs of
clients, (such value being the new share price) but no other information about
all private inputs of the clients. Even for this protocol each client only interacts
with the server and is also guaranteed that no coalition of malicious clients can
receive any information about her private input. At the end of this phase, the
server publishes the new share price.
Implementation of this Phase. We note that the efficiency of the implementation
of this protocol may depend on how complicated the function for updating the
share price is. In the particular case in which the function is linear (which is
really an important case since it captures typical functions such as the average),
we can use a simple extension of the protocol SUM also used in the following
phase; the resulting implementation would therefore be efficient and constant-
round. In order to cover the more general case of an arbitrary (and therefore,
non-linear) function, in Section 5, we present an implementation for protocol
UPDATE, by reducing the private computation of a function in this model to
the private computation of a function in the two-party model (which is of inde-
pendent interest). We note two attractive properties of our solution: it can be
run in a constant number of rounds, and it reveals no information about func-
tion f to the clients (although we did not explicitly require this property in the
definition of previous section, we believe it may still be an interesting property
to achieve). The protocol UPDATE can be implemented under the assumption
of the hardness of deciding the Diffie–Hellman problem (or, more generally, of
the existence of any oblivious transfer).

Capital Update Phase. In this phase the server and all clients who suc-
cessfully completed the previous two phases run a protocol, called PSUM, and
described in Section 4, which has the following properties. At the end, the server
obtains a partial sum of the private inputs of clients. Specifically, clients who in-
tended to buy (resp., sell) shares contribute a positive (resp., negative) amount if
their offered price was larger (resp., smaller) than the new price. In this protocol,
each client only interacts with the server and is guaranteed that no additional
information about her private input is revealed to the server or to any coalition
of malicious clients (precisely, the server only obtains the partial sum of the
share amounts and the other clients obtain no information at all). At the end of
this phase, the server publishes the new capital (or amount of available shares).
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Implementation of this Phase. In Section 4 we present an efficient and constant-
round implementation for protocol PSUM, under the assumption of the hardness
of deciding the Diffie–Hellman problem.

Certification Phase. In this phase the server only interacts with all clients
who successfully completed the previous three phases and sends to each of them
another signature of her commitment, of the new price, and of a special message
indicating that she has completed her transaction.
Implementation of this Phase. No specific implementation for the signature
scheme is required.

Properties of Our Protocol. Given the simplicity of the registration and cer-
tification phase, and the stated properties of subprotocols PSUM and UPDATE,
it is not hard to verify that the protocol described in this section satisfies the
definition of Section 3.

4 A Private Stock Purchase Protocol: Capital Update
Phase

In this section we present the protocol that will be executed by the participants
in the capital update phase. At the beginning of this phase each client Ci has
already committed to her desired amount of shares to be sold and bought and
to the offered price for each of those shares. Then the goal of this phase is to
update the capital of stock shares, by transferring to the server S a partial sum
of these committed amounts of shares. Specifically, each client who intended to
buy (resp., sell) some amount of shares will contribute a positive (resp., negative)
amount to the final sum if her offered price opi was larger (resp., smaller) than
the new price. The new capital is then obtained by the server by subtracting the
final sum from the current capital.

More precisely, the protocol we would like to construct, called PSUM, is run
by a server S and n clients C1, . . . , Cn, where each client Ci has, as private input,
an integer xi, that may be positive or negative (let bi = 1 denote a negative sign
for xi and bi = 0 denote a positive one) and an integer opi. We require that at
the end of the protocol S obtains a partial sum of the clients’ committed amount
of shares (i.e., the value z =

∑
i∈T (−1)bixi, where T = {i : ((bi = 0) ∧ (opi ≥

np)) ∨ ((bi = 1) ∧ (opi < np))} ⊆ {1, . . . , n}). We also require that the server’s
view is independent on the values of the xi’s, given the value z of the final sum,
and that each coalition of clients, no matter how it behaves, receives a view that
is independent on the other clients’ private inputs.

The description of this construction is divided as follows. First, in Section 4.1
we describe a zero-knowledge protocol for proving a sum-related statement on
El-Gamal encryptions. Then, in Section 4.2 we show how to use this protocol in
order to obtain protocols for proving more elaborated statements. In Section 4.3
a protocol for privately computing the sum of several El-Gamal encryption, thus
solving a slightly simpler version of our problem. Finally, in Section 4.4 we extend
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the protocol of previous section to privately computing a partial sum, as defined
above.

4.1 A Novel Zero-Knowledge Protocol

In this section we present a zero-knowledge protocol for the language EG-SUM,
defined as follows. Given (p, q, g, h) such that p = 2q + 1, p, q are primes, g
generates a subgroup of order q, and h is a member of this subgroup, the lan-
guage EG-SUM is the set of tuples ((u1, v2), (u2, v2), (u, v)) for which there exist
r1, r2, r,m1,m2,m such that
1. u1 = gr1 mod p, v1 = hr1m1 mod p;
2. u2 = gr2 mod p, v2 = hr2m2 mod p;
3. u = gr mod p, v = hrmmod p, m1 + m2 = mmod p.

We now describe an efficient perfect zero-knowledge argument (A,B) for lan-
guage EG-SUM, where the soundness property holds under the assumption that
computing discrete logarithms is hard. The proof system is efficient in two ways:
first, it does not require reductions of the statement to be proven to an NP-
complete statement; second, the prover A, given values r1, r2, r,m1,m2,m, can
run in probabilistic polynomial time.

An Informal Description. The zero-knowledge protocol we propose uses the
cut-and-choose technique of [15,11]. A first idea in constructing our protocol
is that of combining the linearity of the equation to be proved (namely, that
m1 +m2 = mmod p) with the fact that the encryption function of the El-Gamal
cryptosystem satisfies some (weak) sum-homomorphism property (specifically, if
encryptions (u1, v1) of m1 and (u1, q2) of d1 are computed using the same ran-
domness, then the pair (u1, v1 + q2 mod p) is an encryption of (d1 +m1) mod p).
Using this idea alone, a (still incorrect) protocol could consist of showing that ei-
ther the equality d1 +d2 = dmod p holds, or the equality (m1 +d1)+(m2+d2) =
(m+d) mod p holds, for random values d1, d2. This protocol reveals the random-
ness used to encrypt d1, which is the same as that used to encrypt m1, and
therefore is not zero-knowledge. To solve this problem, we use the fact that
the encryption function of the El-Gamal cryptosystem is product-homomorphic
with respect to componentwise product modulo p, (specifically, given encryp-
tions (u1, v1) of m1 and (c, e) of a, then the pair (cu1 mod p, ev1 mod p) is an
encryption of am1 mod p). Using this property, we can modify the protocol so
that it consists of showing that either the equality am1+am2 = ammod p holds,
or the equality (am1 + d1) + (am2 + d2) = (am + d) mod p holds, where the en-
cryptions of d1, d2, d have to be computed using the same randomness as the
encryption of am1, am2, am, respectively. This modified protocol still does not
work since all these encryptions, when sent by the prover to the verifier, would
not be simultaneously secure. To solve this last problem, we hide the encryptions
by committing to them using a non-interactive commitment protocol that is also
sum-homomorphic (namely, given commitments com1 of m1 and com2 of m2,
it is possible to efficiently compute a commitment com of m). An example of a
commitment scheme that satisfies this property is the one in [20]; this scheme, in
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the honest-receiver version, can be implemented in one round of communication,
is perfectly-secure (namely, not even a computationally-unbounded receiver can
obtain any information about the committed value), and is computationally-
binding (namely, assuming that computing discrete logarithms is hard, the com-
mitter can reveal the committed value in a unique way). Moreover, given com-
mitments com1 of m1, com2 of m2, the value com = com1 · com2 mod p is a
commitment to m1 + m2 mod p. In the description of our proof system, we will
refer to this scheme as Pedersen’s commitment scheme.

A More Formal Description. We proceed by first describing an atomic protocol
(A,B), having soundness error 3/4.

1. A uniformly chooses r′1, r
′
2, r

′, a, d1, d2, d ∈ Zp such that d1 + d2 = dmod p;
A computes the following El-Gamal-encryptions:

an encryption (u′
1, v

′
1) of am1 using r′1 + r1 as randomness;

an encryption (u′
2, v

′
2) of am2 using r′2 + r2 as randomness;

an encryption (u′, v′) of am using r′ + r as randomness;
an encryption (p1, q1) of d1 using r′1 + r1 as randomness;
an encryption (p2, q2) of d2 using r′2 + r2 as randomness;
an encryption (p, q) of d using r′ + r as randomness;

A computes two commitments using Pedersen’s commitment scheme: com1

of (u′
1, v

′
1, u

′
2, v

′
2, u

′, v′) and com2 of (p1, q1, p2, q2, p, q);
A sends com1, com2 to B

2. B uniformly chooses b ∈ {1, 2, 3} and sends it to A
3. If b = 1 then

A decommits com1 as (u′
1, v

′
1, u

′
2, v

′
2, u

′, v′) and sends r′1, r
′
2, r

′, a to B;
using the above, B checks that (u′

1/u1, v
′
1/v1), (u′

2/u2, v
′
2/v2), (u′/u, v′/v)

are all encryptions of a;
if b = 2 then

A decommits com2 as (p1, q1, p2, q2, p, q) and sends r1 + r′1, r2 + r′2, r + r′;
using the above, B checks that com2 is correctly decommitted, decrypts

(p1, q1) as d1, (p2, q2) as d2, and (p, q) as d, and checks that d1+d2 = dmod p;
if b = 3 then

using com1, com2, A computes commitment com to (u′
1 + p1, v

′
1 + q1, u

′
2 +

p2, v
′
2 + q2, u

′ + p, v′ + q);
A decommits com as (u′

1 + p1, v
′
1 + q1, u

′
2 + p2, v

′
2 + q2, u

′ + p, v′ + q);
A computes z1 = am1 + b1, z2 = am2 + b2, z = am + b and sends

(z1, z2, z,1 +r′1, r2 + r′2, r + r′) to B
B checks that com is correctly computed from com1, com2, that com is

correctly decommitted, that u′
1 + p1 is an encryption of z1, u′

2 + p2 is an
encryption of z2, u′ + p is an encryption of z, and that z1 + z2 = z mod p.
if at least one verification is not satisfied then B returns: REJECT else B
returns: ACCEPT.

We now show that the above protocol satisfies the three properties of complete-
ness, soundness and perfect zero-knowledge.
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Completeness. Assume that the input is in the language; then, A, who is given
r1, r2, r,m1,m2,m, can meet B’s verifications with probability 1.

Soundness. Note that any tuple ((u1, v1), (u2, v2), (u, v)) can be written as a
triple of El-Gamal encryptions for some m1,m2,m. Therefore, if the input is
not in the language it must happen that m1 + m2 �= mmod p. Thus, let us
assume that the latter inequality holds. As a consequence either (a) the inequality
(am1 + d1) + (am2 + d2) �= (am+ d) mod p holds, or (b) the inequality d1 + d2 �=
dmod p holds, for any a, d1, d2, d ∈ Zp. By the binding property of the Pedersen
commitment scheme, we have that: in case (b), A cannot meet the question
b = 2, and, in case (a), A cannot meet at least one of the questions b = 1
and b = 3. Therefore the probability that A can cheat is at most 2/3 plus the
probability that he can cheat in any of the decommitment, which is negligible
(assuming the hardness of computing discrete logarithms); therefore, the overall
probability that A can cheat is at most, say, 3/4.

Perfect Zero-Knowledge. We construct a simulator S that, using a potentially
dishonest verifier B′, generates a transcript having distribution computationally
indistinguishable from that of a transcript generated after a real execution of
the protocol between A and B′. The algorithm S uses the usual trial-and-error
strategy, with rewinding. Specifically, S randomly chooses b′ ∈ {1, 2, 3} and
computed a simulated transcript assuming that the challenge b sent by B′ is
equal to b′; if yes, S outputs the computed transcript; if not, S rewinds B′ and
tries again. The computation of a simulated transcript for each value of b is done
as follows. In the case b = 1 it is easy to efficiently simulate the second message
from A and the commitment com1; the commitment com2 is simulated as a
commitment to a random value of the same length. The case b = 2 is analogue
to the case b = 1. In the case b = 3 it is easy to efficiently simulate the second
message from A and the commitment com; the commitment com1 is simulated as
a commitment to a random value of the same length, and the commitment com2

is computed as com/com1. By using the perfect security property of Pedersen’s
commitment scheme we can show that the simulation is perfect.

Remark. We remark that the soundness error of the above protocol can be
decreased to exponentially small by running several parallel repetitions of it,
and then having the verifier commit to his random bits by using a discrete-log
based information-theoretically secure commitment scheme (see, e.g., [2]) and
give a 3-round witness-indistinguishable proof of knowledge of the discrete log
of the message sent during the execution of Pedersen’s commitment scheme.
The resulting protocol is a perfect zero-knowledge argument for language EG-
SUM that has exponentially small soundness error and can be implemented in
a constant number of rounds.
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4.2 More Zero-Knowledge Protocols

We show how to use the protocol in previous section to obtain zero-knowledge
protocols for more elaborated statements, that will be used later, in the con-
struction of our capital update protocol.

Linear Equalities over El-Gamal-Encrypted Values. We note that in
the protocol in previous section, for simplicity, we have considered the case
of the equality between a value and two addends. However, the same tech-
nique naturally extends to the case of n addends, for any n. More generally,
the same technique can be used to give an efficient and constant-round perfect
zero-knowledge argument for the language n-EG-LIN1, defined as follows. Given
(p, q, g, h) such that p = 2q + 1, p, q are primes, g generates a subgroup of order
q, and h is a member of this subgroup, the language n-EG-LIN1 is the set of
tuples ((α1, u1, v1), . . . , (αn, un, vn), (α, u, v)) for which there exist r1, . . . , rn, r
and m1, . . . ,mn,m such that
1. ui = gri mod p, vi = hrimi mod p, for i = 1, . . . , n;
2. u = gr mod p, v = hrmmod p, α1m1 + . . . + αnmn = αmmod p.

We also note that by combining this protocol with techniques in [8], we obtain
a protocol for proving any monotone formula over membership statements to
language n-EG-LIN1.

Linear Equalities with Unencrypted Known Term. In our main construc-
tion we will need a zero-knowledge protocol for a language similar to language
n-EG-LIN1, the only difference being in that the known term of the linear equal-
ity is in clear (rather than encrypted). By simply encrypting the known term and
revealing the randomness used to compute this encryption, one can use the same
protocol, thus obtaining an efficient and constant-round perfect zero-knowledge
argument for the language n-EG-LIN2, defined as follows. Given (p, q, g, h) such
that p = 2q + 1, p, q are primes, g generates a subgroup of order q, and h
is a member of this subgroup, the language n-EG-LIN2 is the set of tuples
((α1, u1, v1), . . . , (αn, un, vn), α,m) for which there exist r1, . . . , rn,m1, . . . ,mn

such that
1. ui = gri mod p, vi = hrimi mod p, for i = 1, . . . , n;
2. α1m1 + . . . + αnmn = αmmod p.

Linear Equalities with Encryptions under Different Public Keys. An-
other variation over language n-EG-LIN1 that we will need in our main con-
struction is that in which the addends in the linear equality are decryptions of
El-Gamal ciphertexts computed according to different public keys (but using
the same parameters; namely, the same prime p and generator g). A protocol for
this variation can be obtained by using multiple applications of the protocol in
Section 4.1, as follows. For each ciphertext ci computed according to a different
public key, the prover computes a ciphertext c′i computed according to a single,
fixed, public key, and sends c′i to the verifier. Then the prover proves that the
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plaintext associated with c′i and the plaintext associated with ci are the same,
for each i (note that this can be proved by using a simplified version of the
protocol in Section 4.1). Finally, the prover proves that the linear equality holds
by using all ciphertexts c′i that are computed according to the same public key,
and therefore she can use the protocol for language n-EG-LIN2. This gives an
efficient and constant-round zero-knowledge protocol for language n-EG-LIN3,
defined as the set of tuples ((α1, u1, v1, h1), . . . , (αn, un, vn, hn), (α, u, v, h)) for
which there exist r1, . . . , rn, r,m1, . . . ,mn,m such that
1. ui = gri mod p, vi = hri

i mi mod p, for i = 1, . . . , n;
2. u = gr mod p, v = hrmmod p, α1m1 + . . . + αnmn = αmmod p.

4.3 Privately Computing the Sum of Encrypted Values

In this section we describe a protocol for privately computing the sum of all
share amounts committed by clients, regardless of whether their offered price
was larger or smaller than the new stock price. We call this protocol SUM.

Description of Protocol SUM. Let p be a prime given by S to each of the
clients, that is much larger than any of the xi’s (e.g., |p| > 2n|xi| for any i
would suffice). Assume that at the beginning of the protocol each client Ci has
published a public key pki generated using algorithm KG and an encryption ci

of private input (bi, xi, opi), and let yi = (−1)bixi mod p. Then protocol SUM
goes as follows:

1. Each client Ci writes his input as yi = si,1 + · · ·+ si,n mod p for si,j ’s chosen
randomly in Zp and such that the equality holds;

2. each client Ci encrypts each si,j according to algorithm E and using the j-th
client’s public key, thus obtaining encryptions ci,j , for j = 1, . . . , n;

3. each client Ci sends all ci,j to S together with a zero-knowledge proof that
the encryptions ci,1, . . . , ci,n have been correctly computed; that is, proving
that yi = si,1 + · · · + si,n mod p (using the zero-knowledge protocol from
Section 4.2 for language n-EG-LIN3);

4. for i = 1, . . . , n, server S verifies the proof from client Ci; if this proof is
rejected, client Ci is discarded and the computation continues with the re-
maining clients; if this proof is accepted, S sends all encryptions c1,j , . . . , cn,j

to client Cj , for j = 1, . . . , n;
5. for j = 1, . . . , n, client Cj decrypts all encryptions c1,j , . . . , cn,j as s1,j, . . . ,

sn,j and sends tj = s1,j + · · ·+ sn,j mod p to S along with a zero-knowledge
proof that tj has been correctly computed; that is, proving that tj = s1,j +
· · ·+ sn,j mod p (using the zero-knowledge protocol from Section 4.2 for lan-
guage n-EG-LIN2);

6. for j = 1, . . . , n, server S verifies the proof from client Cj ; if this proof
is rejected, client Cj is discarded and the computation continues with the
remaining clients;

7. S computes sum as the sum modulo p of all tj ’s corresponding to clients
Cj which have not been discarded from the protocol. If |sum| ≤ |x1| then S
returns (0, sum) else S returns (1, p− sum).
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Properties of Protocol SUM. We show that protocol SUM satisfies several
properties, such as correctness, security against clients, privacy against clients
and privacy against server (although we have not exactly defined such proper-
ties in this context, their semantic meaning is along the lines of the definition
of private stock purchase protocols and will be made clearer in the following
discussion). We also show that SUM can be implemented in a constant number
of rounds.

Correctness. First of all we note that it is possible to implement protocol SUM,
as described above, since it is possible to implement the zero-knowledge protocols
in steps 3 and 5 because of the protocols proposed in Section 4.2. Moreover, we
note that if all parties follow their protocol then the output of server S is exactly
equal to the sum of the clients’ private inputs.

Security against Clients. Here we consider the case of clients who may deviate
from the protocol and try to compromise the server’s final computation. We
see from the construction of protocol SUM that clients always have to provide
proofs of correctness of their computations to the server (specifically, in both
step 3 and step 5), or they are discarded from the execution. Therefore, at the
end of protocol SUM, the server is always able to compute the sum of the private
inputs of the clients who have not been discarded.

Privacy against Clients. Here we consider the case of clients who may deviate
from the protocol and try to obtain information from the other clients’ private
inputs. We see from the construction of protocol SUM that each private input
of a client is shared among all the clients using an n-out-of-n secret sharing
(implemented using sum modulo p of the n values) and therefore even a coalition
of n − 1 values does not obtain any information at all (namely, even if clients
are not computationally limited) from the values sent by the server in step 4.

Privacy against Server. Here we consider the question of whether the view of
the server reveals any information at all about the client’s private inputs (other
than their sum). We see that in step 3 of protocol SUM the server only obtains
encryptions of shares of the clients’ private inputs, along with zero-knowledge
proofs of correctness of the computation of such shares, and therefore, since the
encryption scheme used is assumed to be semantically secure, no information is
revealed to the server in this step. Then we note that in step 5 of protocol SUM
the server only obtains values t1, . . . , tn, along with a zero-knowledge proof of
correctness of their computation, and we can see that the distribution of such
values is that of n random values in Zp such that their sum modulo p is equal
to the sum of all the yi’s.

Round-Complexity. The number of rounds of protocol SUM is constant provided
the zero-knowledge proofs in step 3 and 5 can both be executed in a constant
number of rounds. This fact has been established already in Section 4.1.
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4.4 Privately Computing the Partial Sum of Encrypted Values

In this section we show how to extend the protocol of previous section for pri-
vately computing a sum of values into computing a ‘partial’ sum of values. The
resulting protocol can be directly used as a capital update protocol in our private
stock purchase protocol.

More specifically, recall that we denote by (bi, xi, opi) the private input to
client Ci, where bi ∈ {0, 1} is the sign denoting whether Ci wants to buy or
sell the share amount xi and opi is the offered price for each of these shares.
Moreover, by np we denote the new share price computed at the end of the price
updating phase. We note that the protocol SUM can be used by the server to
privately compute the value

∑n
i=1(−1)bixi; however, this value does not take

into account the offered prices committed by the clients. In other words, in our
capital update protocol, we would like the server to retrieve the sum of the xi’s
only for those clients whose offered prices are valid (i.e., larger than the new
price np if they are buying shares or smaller otherwise). Therefore, we need to
modify the protocol SUM into a protocol for computing a partial sum; namely, a
sum over all clients satisfying the above property (i.e., S will be able to compute
sum =

∑
i∈T (−1)bixi, where T = {i : ((bi = 0)∧(opi ≥ np)) ∨ ((bi = 1)∧(opi <

np))} ⊆ {1, . . . , n}).
Our protocol PSUM uses as a tool a ‘conditional oblivious transfer’ [10]. More

formally, this is a protocol used by S to transfer to client Ci one of two strings
s0, s1 such that client Ci will obtain s0 if opi ≥ np or s1 otherwise, without S
learning any information about the value of opi, including whether Ci received
s0 or s1.

Description of Protocol PSUM. This protocol is executed between each
client Ci and the server S. The basic idea of this protocol is that client Ci will
create two ciphertexts, one with plaintext equal to 0 and one with plaintext
equal to −xi. Server S will help Ci select one of the two based on the inequality
opi ≥ np and on the value of bi without obtaining any information about these,
so that later Ci can contribute to the final sum ciphertexts with associated
plaintexts xi, 0 if his offered price if valid (namely, if opi ≥ np and bi = 0 or
opi < np and bi = 1) or ciphertexts with associated plaintexts xi,−xi otherwise.
Note that effectively client Ci is contributing to the final sum her share amount
if her offered price is valid or zero otherwise. The actual protocol we describe
below has some additional technical complication for two reasons: first, an El-
Gamal encryption of 0 is not secure (therefore, we split it into two encryptions
of values which sum up to 0); second, we need to protect the server from possible
malicious behavior from the client.

We can assume that in the following description all encryptions and decryp-
tions will be computed according to the El-Gamal public-key cryptosystems.
Then the protocol PSUM goes as follows:

1. Client Ci uniformly chooses r1, computes z = −xi−r1 mod p and an encryp-
tion c1 of z, and sends c1, r1 to S;
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2. S uniformly chooses r2, s1, s2, computes r3 = r1 − r2 mod p, s3 = −s1 −
s2 mod p, encryptions dj of sj , for j = 1, 2, 3, and encryptions cl of rl, for
l = 2, 3;

3. S transfers to Ci strings a0 = (c1, c2, c3) and a1 = (d1, d2, d3) using a condi-
tional oblivious transfer based on the condition (opi ≥ np AND bi = 0) OR
(opi < np AND bi = 1).

4. let ab, for some b ∈ {0, 1}, be the string obtained by Ci at the end of the
execution of the conditional oblivious transfer subprotocol;

5. Ci decrypts the 3 ciphertexts in ab, encrypts the obtained plaintexts using
independently chosen random strings, thus obtaining triple v = (e1, e2, e3)
and sends it to S;

6. S sends a0, a1 to Ci;
7. Ci sends to S a zero-knowledge proof that the plaintexts associated with v

are either the same as the plaintexts associated with a0 or the same as those
associated with a1;

8. all clients and S run the protocol SUM, where client Ci contributes to the
final sum with the plaintexts associated with ciphertexts xi, e1, e2, e3.

5 A Private Stock Purchase Protocol: Price Update
Phase

In this section we present the protocol that will be executed by the participants
in the price update phase. We consider the sufficiently general case in which the
next share price can be a function of the previous share price and of the private
inputs of the clients in the most recent time interval.

Specifically, the protocol we would like to construct, called UPDATE, is run
by a server S and n clients C1, . . . , Cn, where each client Ci has, as private input,
an integer xi, that may be positive or negative (let bi = 1 denote a negative
sign for xi and bi = 0 denote a positive one). Both S and the clients have the
description of a circuit computing function f as a common input. We require
that at the end of the protocol S obtains the output of an application of function
f over the clients’ private inputs (i.e., the value z = f((b1, x1), . . . , (bn, xn)));
that the server’s view is independent on the values of the clients’ inputs, given
that z is the output of function f over those, and that each coalition of clients,
no matter how it behaves, receives a view that is independent on the other
clients’ private inputs. We note that if f is a linear function of the xi’s, then
protocol UPDATE can be constructed by performing minor modifications to the
protocol PSUM in Section 4. This would give a very efficient construction for the
entire private stock purchase protocol. In the rest of this section, we deal with
the case f is an arbitrary (and thus possibly non-linear) function. In achieving
generality, our construction loses the attractive efficiency properties of protocol
PSUM; in particular, our protocol builds over a general protocol for 2-party
secure computation [27].

The description of this construction is divided as follows. First, in Section 5.1
we recall a protocol for 2-party secure computation [27,6] and then in Section 5.2
we show how to adapt this scheme to our model.
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5.1 A 2-Party Secure Computation Protocol

The problem of 2-party secure computation, first considered by Yao in the influ-
ential paper [27], asks whether two parties Alice and Bob, having private inputs
x and y, respectively, can compute a value z = f(x, y), for some public func-
tion f , without revealing any additional information about their private input.
Recently, other protocols have been proposed (e.g., [25,6]); here we recall an
abstracted version of the protocol in [6], which makes our construction easier to
describe.

The 2-Party Secure Protocol in [6]. We describe the case in which both
Alice and Bob are honest since the case in which both can be malicious is dealt
with using well-known techniques from [14] (i.e., by compiling the honest case
with each party proving in zero-knowledge that the messages she is sending have
been correctly computed according to the protocol’s instructions). The honest
version of this protocol combines Yao’s construction [27] with oblivious transfer.
Yao’s construction consists of three procedures: an algorithm C that Bob uses to
construct an encrypted circuit, an interactive protocol T between Alice and Bob,
and an algorithm E that Bob uses to evaluate f(x, y). More precisely, algorithm
C outputs an encrypted version of function f(·, y), including a pair of k-bit
strings for each input bit xi. In order to compute f(x, y), one of these two k-bit
string is necessary for each bit xi of x (which one of the two strings it depends on
the value of xi). In [6] oblivious transfer is used by Bob to transfer to Alice the
appropriate k-bit string according to the value of xi, without Bob revealing to
Alice any information on the other string and without Alice revealing to Bob any
information on the value of xi. The rest of the computation proceeds as in Yao’s
protocol and will stay unchanged in our protocol as well. The oblivious transfer
protocol used by Bob to Alice could be the one given in Section 2, or even an
abstraction of it, as we now describe. We can consider an oblivious transfer as
the following protocol between a sender and a receiver. The receiver publishes
two channels such that he can read messages received over only one of them, but
the sender cannot tell which one; then the sender sends each of the two messages
through each of the channels.

5.2 The Adaptation to Our Setting

We now consider the possibility of adapting the protocol in [6,27] to our setting.
Recall that from a communication standpoint, in our setting we would like clients
not to talk to each other and that the server is assumed to behave honestly.
Moreover, clients want their inputs to be private not only against the server but
also against any coalition of other possibly malicious clients.

Description. We now describe the intuitions behind our adaptation. If we
could consider all clients together as a single participant Alice and the server as
participant Bob, then any 2-party secure protocol would be enough since Bob
does not obtain any information about Alice’s private input, and in the end Bob
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obtains the output of the function of Alice’s input. However, the setting at hand
is more complicated since Alice’s input is in fact distributed among the various
clients, who should not communicate. One fix to the lack of communication is to
ask help from the server; indeed, since the server is honest, he might as well help
the clients share their private inputs somehow. Even sharing the private inputs
has to be done carefully, since the privacy requirements that our protocol has to
satisfy ask that each client keeps her input private even if all other clients behave
maliciously. In our solution we have each client send to all other clients, through
the server, some information which is enough to allow other clients to play as
Alice but still does not reveal any information about all other client’s inputs.
Specifically, using the oblivious transfer abstraction at the end of Section 5.1,
they will send a channel that is readable (without sending the other, unreadable
channel); therefore, the other client will not be able to understand which private
bit this channel is associated with, but she will still be able to use it to run the
oblivious transfer protocol. Finally, an execution of the 2-party protocol has to
be executed for each client, and at the end the server checks that all outputs
received by these executions are the same. We note that each of these executions
can be run in parallel and therefore the resulting protocol can still be executed
in a constant number of rounds. The correctness, security and privacy properties
follow from the related properties of the 2-party protocol.
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Abstract. The recent successes of a number of nonprofit computing
projects distributed over the Internet has generated intense interest in
the potential commercial applications of distributed computing. In a
commercial setting, where participants might be paid for their contribu-
tions, it is crucial to define a security framework to address the threat of
cheating and offer guarantees that the computation has been correctly
executed. This paper defines and analyzes such a security framework
predicated on the assumption that participants are motivated by finan-
cial gain. We propose a scheme which deters participants from claiming
credit for work they have not done, and puts a high cost on attempts to
disrupt the computation. We achieve these two goals by integrating an
algorithm to assign computations to participants, an algorithm to verify
their work, and an algorithm to pay participants.
Keywords: Distributed computing.

1 Introduction

The Internet has created the possibility of cooperative computing on an un-
precedented scale. Connected computers everywhere may join forces to execute
in parallel tasks so computationally expensive that they were once reserved for
supercomputers.

Several projects have demonstrated with success the spectacular power of
distributing computations over the Internet. For example, the Search for Extra-
Terrestrial Intelligence project (SETI@home) [SETI], which distributes to thou-
sands of users the task of analyzing radio transmissions from space, has achieved
a collective performance of tens of teraflops. Another Internet computation, the
GIMPS project directed by Entropia.com, has discovered world-record prime
numbers.

Participation in these computations has so far been limited to volunteers who
support a particular project. But with the rapid growth of distributed comput-
ing applications, there is intense commercial interest in recruiting a lot more
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Internet users. Harnessed and marketed, the idle computer time of 25 million
AOL users, for example, has the potential to generate tremendous profit. There
are already a dozen companies [DC00] which have begun recruiting participants
for the next generation of distributed applications. A sample of these applica-
tions includes those to accelerate anti-HIV drug design research, simulate protein
folding, design and manufacture robotic lifeforms, produce digital entertainment,
and simulate economic models.

Nevertheless, a major obstacle to the widespread growth of commercial dis-
tributed computing is the absence of a security framework to verify the correct-
ness of the computation. Today, the results of computations are mostly taken on
faith. Bob Metcalfe, the inventor of ethernet said, “...people with serious com-
putations are not likely to trust results coming from unreliable machines owned
by total strangers” [R00].

This paper begins to address the difficult issues of security and reliability in
a commercial distributed environment. We define two security goals: prevent-
ing participants motivated by financial gain from claiming credit for work they
have not done, and raising the cost of attempts by malicious participants to dis-
rupt the computation. We propose a high-level infrastructure for administering
distributed computations in a way that deters and detects cheating. Our ap-
proach is based on integrating an algorithm for assigning tasks to participants,
an algorithm for checking their work, and a payment scheme.

The building block of our security schemes is the ability to verify the result
of a computation. Much work has been devoted to that goal in a variety of con-
texts, with an emphasis on making the verification process general and efficient.
While our security schemes build on these results, our focus is different. Rather
than considering verification at the level of individual computations, we propose
a high-level infrastructure for administering distributed computations. We as-
sume the existence of an algorithm for double-checking computations, and study
how best to integrate verification into the general organization of a distributed
computation.

In the rest of this section, we start by reviewing related work. Section 2
presents our security framework. In section 3, we introduce our basic scheme for
running secure distributed computations. In section 4 and 5, we discuss variants
of our scheme. The first variant addresses the issue of accommodating partic-
ipants with varying computational resources. The second variant improves on
the computational overhead of the basic scheme. We conclude in section 6.

1.1 Related Work

We start with a brief survey of results on verifying computations. We will then
review proposals on how to integrate the verification primitives into distributed
computations.

A general method to detect faulty execution is to incorporate a checksum in
the program, and execute the computation redundantly. If independent execu-
tions fail to produce the same checksum, a majority vote determines the correct
result. Ideally, checksums capture the whole execution of the computation and
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detect any accidental error with high probability. See [MWR99] for an example
of secure checksums for general Java programs.

For specific applications, it is possible to design checksums with a shortcut for
verification. Once produced, such checksums can be verified much more efficiently
than by doing the computation all over again. Program checkers [BW97,BK89],
proofs of work [GM00,JJ99] or uncheatable benchmarks [CLSY93] propose effi-
cient checksums for specific arithmetic applications, such as factoring or repeated
modular squarings. It is not known how to design efficient checksums for general
computations.

To guard against malicious errors, checksums may be combined with crypto-
graphic tools. Digital signatures guarantee the integrity of checksums, assuming
it is impossible to analyze the code of the computation to recover the secret
signing key. Thus, security against a malicious computing environment relies on
the impossibility to reverse-engineer the computation code to find the key.

Computation on encrypted functions provides one way of hiding the code
from the participant. Yao proved in [Y82] that any function may be computed
with an encrypted circuit, which leaks no information about what is being com-
puted, but encrypted circuits are too large for practical use. For restricted classes
of functions [F85], computing on encrypted data has been shown to be practical.
Code obfuscation is another approach to protect code from prying eyes. It is an
assortment of ad-hoc techniques to produce garbled assembly code. Given the
existence of efficient decompilation techniques, it provides short-lived security at
best. Hohl proposes in [H97] the use of dynamic code obfuscation in conjunction
with time restrictions.

We turn now to the problem of integrating the verification primitive into a
distributed computation scheme to make it secure. An idea common to many
schemes is to spot-check computations at random (see for example [GM00]). A
very complete framework for spot-checking arbitrary computation in the Java
environment is described in [MWR99]. [MRS93] proposes a scheme based on
replication and voting to achieve fault-tolerance in the setting of mobile agents.
The use of quorum systems has been proposed for the related problem of im-
proving the efficiency and availability of data access while still protecting the
integrity of replicated data.

Like these schemes, our approach is based on spot-checking work at random,
but our focus is specifically to tie the verification algorithm with the algorithm
for assigning tasks and the payment scheme.

2 Basic Framework

The supervisor of a distributed effort maintains a pool of registered participants,
who are willing to run computations for the supervisor. Participants may range
from large companies offering idle computer time at night to individual users with
a single machine. The supervisor advertises the computational power under her
control, and bids for large computations. Computations are divided into smaller
tasks, each of which is assigned to one or possibly several participants. Partici-
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pants execute the tasks independently and return the results to the supervisor.
The supervisor compares the results for consistency, distributes payment where
it is due and announces the result of the whole computation when it becomes
available. Formally, we define a scheme for organizing distributed computations
as follows.

Definition 1. A scheme for organizing distributed computations consists of:

– A protocol to register new participants.
– A probabilistic algorithm S for assigning tasks to participants. Given a task

T , the algorithm S specifies the set S(T ) of (one or more) participants to
whom T should be assigned.

– A payment scheme to reward participants. It is defined by a payment function
H which specifies how much a participant should be paid for executing a task.

– A protocol to take leave of participants who do not wish to be considered for
future computations.

In the registration step, participants signal their willingness to contribute to
distributed computations. In keeping with the state of things on the Internet, we
assume that participants do not necessarily reveal their physical identity to the
supervisor. An entity may register an arbitrary number of distinct participants
with the supervisor, and the supervisor can not track participants to the real
world. Consequently, the supervisor’s leverage over participants is limited to
withholding payment. It is impossible for example to take legal action against a
participant who failed to do the work, or who returned an incorrect result.

We assume that all the tasks distributed by the supervisor take approxi-
mately the same time to execute (say, one day) and are verifiable. A task T is
verifiable if there exists a task T ′ such that the output of T ′ indicates with high
probability whether T was executed correctly or not. We have presented in the
section on related work various techniques for verifying tasks. See for example
[MWR99] for a very general technique. From here onwards, we will ignore this
issue and make the assumption that T = T ′. In effect, we assume that if a task
produces the same output in two independent runs, it was executed both times
correctly. Observe that if randomized tasks are to be included in this model,
participants must agree on a random-number generator and use the same seeds.

We also assume for simplicity that all participants are equally capable of
handling any task, and of returning the result to the supervisor within the same
time bounds (say, every day). This is not to say that all participants have the
same computational resources. Faster participants will process more tasks within
one period, but all participants will return their results by the end of the pe-
riod. This model reflects reality: processor speeds are roughly comparable across
computers, but some participants have many more computers at their disposal
than others.

A participant may choose to take a temporary leave from the computation,
for example during the week-end or a vacation. But while executing a task for the
supervisor, the common rate of computation must be met and results returned
by the deadline, under penalty of expulsion from the computation.
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The computation proceeds as follows. Let us write Tt(J) for the ordered set
of tasks assigned to participant J at time t. A participant J unqueues one or
more tasks from Tt(J) at time t, executes them, and returns the result at time
t+1. For the purposes of this discussion we assume it is safe for participants to
observe and execute problem instances they are assigned.

Meanwhile, as new tasks are received, the supervisor assigns them to partici-
pants according to the algorithm S. A new task T is queued to the sets Tt(J) for
all J ∈ S(T ). The set S(T ) is only known to the supervisor, so that participants
do not know whether the tasks they are assigned have also been assigned to
someone else. The supervisor keeps track of who performs what computations.
If a participant is caught cheating, the past computations of that participant, as
well as dependent computations, can be rerun.

After returning a result, a participant may start executing a new task or
take a leave. If participant J takes a leave at time t, all the tasks in Tt(J) are
redistributed among active participants as if they were new tasks, taking care
however never to re-assign a task to a participant to whom it has already been
assigned.

2.1 Security Framework

We study the interaction between the supervisor and the participants in game-
theoretical terms. The supervisor assigns each task to one or several participants
according to the probabilistic algorithm S. We assume that the algorithm S is
public and known to all participants. The supervisor is trusted not to collude
with participants and to distribute payment where it is due.

A participant can either cooperate with the supervisor and execute the com-
putation correctly, or defect and return an incorrect result. In this paper, we
assume that all errors are malicious and do not consider the possibility of errors
for which the participant may not be responsible (hardware or software failures).
A simple variant of our results would allow participants to return occasional in-
correct results.

An adversary may control a potentially large number of distinct participants
without the supervisor’s knowledge, but me make the important assumption
that such alliances can only be created before a task is assigned. Once a task is
assigned, we assume that is is impossible for an adversary to find and corrupt
the other participants to whom the same task was assigned. We justify this
assumption as follows. In the limited time available, a low-scale effort to find the
participants to whom a particular task has been assigned is bound to fail, while
a large-scale effort would not go unnoticed and could be punished.

The following variables define the utility function of a participant:

– Payment received per task: H(J). This is the amount paid by the super-
visor to participant J for a task not known to have been incorrectly executed.
Observe that the function H is independent of the task executed, since we
assume that all tasks require the same computational effort.
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– Utility of (successfully) defecting: E. The variable E is the utility of
corrupting a computation. For example, E might be the reward paid by an
adversary to disrupt the computation of a competitor.

– Cost of getting caught defecting: L. This is the loss incurred by a
participant when the defection is detected by the supervisor. The cost L
reflects the resulting punishment, in terms of payment being withheld by
the supervisor for example.

With these variables, we can compute the expected utility of cooperating
and the expected utility of defecting for a participant. Let us write P for the
probability that cheating is undetected by the supervisor.

E[Cooperating] = H

E[Defecting] = (H + E) · P − L · (1− P )

In accordance with standard economic theory, we assume that all participants
are rational and either risk-averse or risk-neutral, but not risk-seeking. Let us
recall that for a non-risk-seeking agent, the utility function of money is concave.
Consequently, given two options with the same expected outcome, a non-risk-
seeking participant will always choose the option with the smallest standard
deviation.

Definition 2. Secure Computations. A computation is perfectly secure if no
rational risk-neutral or risk-averse participant ever cheats.

Proposition 1. A computation is perfectly secure if for every participant in-
volved E[Defecting] ≤ 0.

Proof. Recall the important assumption that participants are given the freedom
to take a leave from the computation at any time. The optimal strategy for
a non-risk-seeking participant is to execute the highest-paying task for which
E[Cooperating] ≥ E[Defecting], defect for all tasks for which E[defecting] ≥ 0,
and not take part in any other computation. Therefore to ensure that no rational
participant ever defects, it is enough to guarantee that E[Defecting] ≤ 0. ��

3 Probabilistic Redundant Execution

We describe in this section our basic scheme with perfect security. New par-
ticipants are required to execute a few tasks for free before being allowed to
register. These tasks serve both as a barrier against frivolous registrations and
as a “computational” deposit with the supervisor. This deposit will be forfeited
in the event that cheating is detected. A participant who signals his intention to
leave the computation is paid some amount to compensate for the tasks executed
for free prior to registration.

Our approach to deterring cheating is to double-check some tasks with some
probability and to ban from all future computations any participant who is
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caught returning an incorrect result. Being banned is a loss for a participant,
regardless of whether that participant intended to take part in future computa-
tions. Indeed, a participant who wanted to take part in more computations would
have to go through the registration phase again. As for participants who did not
wish to be considered for future computations, they have forfeited the amount
that the supervisor would have returned to them had they left the computation
honestly.

Let us now describe our scheme in detail. For simplicity, we start here with
the assumption that all participants have the same computational resources. We
will discuss in the next section how to adapt our scheme to participants of varying
computational resources. The supervisor organizes the distributed computation
as follows:

– Registration. In the registration step, a participant is asked to run d+1 ≥ 2
unpaid tasks. The results of these tasks is known to the supervisor. The
participant is allowed to register only if all d+1 tasks were executed correctly.

– Probability distribution of assignments Q: A task T is distributed to
n distinct participants where the number n is chosen at random according
to the probability distribution Q. The probability distribution Q is central
to our scheme. We will compare in the next two sections several possible
choices for the function Q.

– Payment function: The payment function is a constant amount α per task.
Participants are free to withdraw the money they have earned at any time.

– Severance. A participant who notifies the supervisor of his desire to leave
the computation is paid an amount dα.

Definition 3. Probabilistic Redundant Execution.
Given a task T to execute, the supervisor draws a random number n from the
probability distribution Q. The supervisor chooses n distinct participants uni-
formly at random from among the pool and assigns each to the task T . At the
end of the computation, the supervisor collects the results and compares them for
validity. A participant who fails to return a result by the deadline is banned from
future computations.

If all the results agree, they determine the correct output of the task. (If the
task T was assigned to a single participant, it is assumed to have been executed
correctly.) Each participant is paid an amount α.

In the event that not all the results agree, or that some results were not
returned by the deadline, the supervisor re-assigns the task to n′ new participants
where n′ is drawn at random from the probability distribution Q. Should this
second round also fail to produce an agreement, the task is assigned again until
an agreement emerges. At that time, all participants who produced the correct
result are paid, while all the others are banned from future computations.

According to Proposition 1, this scheme is perfectly secure if:

E[Defecting] = (H + E) · P − L · (1− P ) ≤ 0
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where P is the probability that cheating is undetected, H = α is the amount
that a participant gets paid for running the task correctly, and L > 0 is the loss
incurred if cheating is detected. For participants who intend to be considered for
future computations, L is the cost of re-registering: L = (d+1)α. For participants
who do not intend to be considered for future computations, L is the amount
forfeited by being ejected from the computation: L = dα. Thus in either case,
L ≥ dα.Let us define the ration e = E/α. We can rewrite the condition for
perfect security as:

P ≤ d

1 + e + d

The choice of P involves a trade-off between security and computational over-
head. The more participants a task is assigned to, the smaller the probability P
that cheating goes undetected, but also the higher the computational overhead.
To get the lowest possible computational overhead, the supervisor should choose
the largest value P for which the security condition above holds. In the follow-
ing two sections, we study how P is affected by the choice of the probability
distribution Q.

3.1 Exponentially Decreasing Q

Recall that the function Q is the probability distribution according to which the
supervisor chooses the number of participants to whom a task is assigned. We
study in this section the properties of our scheme when Q = Qc for one of the
probability distributions Qc defined as follows:

Qc[n = i] = (1 − c) · ci−1 for all i ≥ 1

This is an exponentially decreasing probability distribution of coefficient 0 <
c < 1. The factor (1− c) is a normalization term to ensure that the probabilities
sum to 1.

Proposition 2. Let us write p for the maximum fraction of all participants
under the control of a single adversary. We have 0 < p < 1. The scheme is
perfectly secure as long as (1− c(1− p))2 ≤ (1 − p) d

1+e+d .

Proposition 3. When the scheme is perfectly secure, its average computational
cost is 1

1−c , and thus the average computational overhead is c
1−c .

Proof. If the scheme is perfectly secure and all the participants are rational,
cheating never occurs. Thus, there is never a need to redistribute a task. Given
the probability distribution Qc[n = i] = (1 − c) · ci−1 for i ≥ 1, it follows that
the computational cost is

∑∞
i=1 i(1− c)ci−1 = (1− c)

∑∞
j=1

∑∞
i=j ci−1 = 1

1−c ��

Corollary 1. Asymptotically, the computational overhead of this scheme grows
like

√
1 + e/d, for small enough values of p.
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The corollary follows directly from Proposition 2 and 3. Before proving propo-
sition 2, let us consider a few numerical examples. The table below summarizes
the characteristics of our scheme for different values of the parameters. Observe
that our scheme remains very efficient as the maximum coalition size p increases.
As expected, the computational overhead grows with the square root of the ratio
e/d. The computational overhead becomes quite significant for large values of
e/d. This comes as no surprise: the only way to defend against an adversary will-
ing to pay much more to disrupt the computation than the supervisor is paying
for correct execution, is to distribute the tasks to a large number of participants.
Only the near certainty that cheating will be detected can redress the imbalance
between what participants are offered to defect and what they are offered to
cooperate.

Computational Overhead (c) Max coalition size (p) Ratio e/d
10% 1% 0.1
17% 10% 0.1
46% 1% 1
243% 1% 10

Proof. (Proposition 2)
Consider an adversary who controls a fraction 0 < p < 1 of the total number
of active participants, and has been assigned the same computation k times
through various of these participants. We denote this event E.

Let us now compute P . Let P ′ denote the probability that cheating is not
detected during a particular round (recall that the task may be distributed
multiple times if the results returned after the first round do not all agree).
Then

P ≤ P ′

1− p(1− P ′)

Let us compute P ′. Recall that n denotes the total number of times that the
task has been assigned.

P ′ = Pr[n = k|E]

=
Pr[E|n = k] Pr[n = k]

Pr[E]

Now Pr[E|n = k] = pk and

Pr[E] =
∞∑

i=k

pk(1 − p)i−k

(
i

k

)
Pr[n = i]

Since Pr[n = i] = (1− c)ci−1, we get after simplification:

P =
ck(1− p)k∑∞

i=k ci(1− p)i
(

i
k

)
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Let us define the function

Ik =
∞∑

i=k

ci(1− p)i
(

i

k

)

It follows easily from the equality
(

i
k

)
+
(

i
k+1

)
=
(

i+1
k+1

)
that

Ik = Ik+1

( 1
c(1− p)

− 1
)

And I0 = 1/(1− c(1− p)). It follows that

P ′ = (1− c(1− p))k+1

And thus P ≤ (1−c(1−p))2

1−p for all k ≥ 1. It follows that the scheme is perfectly
secure as long as (1− c(1− p))2 ≤ (1 − p) d

1+e+d . ��

3.2 Another Definition of Q

We study here another family of distributions Q for the number of participants to
whom a task is assigned. We wish to increase the minimal number of participants
to whom a task may be assigned. As before, the functions Q are exponentially
decreasing with parameter c, but we now also require Q to assign each task to
at least s distinct participants. The new family of probability distributions is
defined as follows:

Qc,s[n = i] = (1− c) · ci−s for all i ≥ s

Qc,s[n = i] = 0 for i < s

Proposition 4. Using the probability distribution Qc,s, the scheme of section 3
(Probabilistic Redundant Execution) is perfectly secure as long as:
(1− c(1− p))s+1 ≤ (1− p) d

1+e+d .

Proposition 5. When this scheme is perfectly secure, its average computational
overhead is s− 2 + s+1

√
1 + e/d.

The proofs of propositions 4 and 5 are omitted, as they are similar to the
proofs of propositions 2 and 3 respectively. The family of functions Qc,s results
in lower computational overhead for large values of the ratio e/d. Since each
task is assigned to a minimum of s distinct participants, we have to pay upfront
a computational overhead of s, but asymptotically the computational overhead
grows like the s + 1 root of e/d.

Observe that the definitions of Q analyzed in this section and the previous one
are by no means the only possible. We could investigate yet other distributions.
However, as we will see in section 5, the most computationally efficient schemes
come from another approach: defining the function Q dynamically.
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4 Participants with Varying Computational Resources

We have assumed in the previous section that all participants have the same
resources to contribute to the distributed computation. This assumption is not
only unrealistic, but also introduces the following threat. Consider an adversary
with little computational power, who is bent on disrupting one particular com-
putation (for example, that of a competitor). That adversary might register a
very large number of inactive participants, which she would activate just before
the target computation is distributed. In effect, it is possible for our adversary
to briefly control a number of participants which is out of proportions with her
real computational power, and inflict damage on targeted computations at little
cost.

We address this issue in this section. We introduce the activity, a measure of
the relative throughput of each participant compared to others. Based on this
measure, we modify the assignment algorithm to enable faster participants to
process more tasks than slower ones. We also counter the threat we have just
described by allowing only gradual increases in activity.

The activity At is a probability distribution over the pool of participants,
which evolves dynamically over time. Whereas before participants were drawn
uniformly at random from the pool, they are now drawn at time t according to
the activity At. This leads to the following variant of our basic scheme:

Definition 4. Scheme with Activity. The assignment algorithm S, the pay-
ment function H and the probability distribution Q are defined as in the previous
section, and the scheme is run as described in Definition 3 (probabilistic redun-
dant execution). The only difference is that participants needed at time t are
drawn at random according to the distribution At instead of uniformly at ran-
dom.

Initially, A0 is the uniform probability distribution over all registered par-
ticipants. At the end of each time period, the activity At is updated, to reflect
the throughput of each participant on the one hand, and on the other hand to
account for the arrival or departure of participants.

Recall that we write Tt(J) for the ordered set of tasks yet to be processed by
participant J at time t. Let nt(J) = |Tt(J)| be the number of these tasks. We
write ñt for the average over all participants of the nt(J). We define At+1 as a
function of At as follows:

At+1(J) = At(J)
(
1 + e · (ñt − nt(J))

)

for all active participants J . In this formula, the coefficient e ≥ 0 is the elasticity
of the activity. At the end of the time period t, a participant who has fewer tasks
left to execute than average will see her activity increase. On the other hand, a
participant who can not keep pace with the tasks assigned to him will see his
activity decrease (ñt − nt(J) < 0).

The choice of the value e involves a trade-off. A higher value of e will respond
faster to changes in a participant’s activity, and result in fewer computational
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resources being left at times untapped. On the other hand, a lower value of e will
more effectively prevent adversaries from creating spikes of activity. Experience
will tell what elasticity is best suited to a particular set of participants.

Observe that the way we have defined the evolution of activity so far,
∑

J

At+1(J) =
∑

J

At(J) = 1

and thus At+1 is again a probability distribution over the set of all participants.
But we still need to account for the arrival of new participants and the voluntary
departure or expulsion of participants:

– At+1(J) = 0 for all participants J who leave the computation at time t
(either voluntarily or as a result of submitting an incorrect result.)

– At+1(Ji) = 1/(n.m) for the m new participants Ji who wish to join the
computation at time t. Here n is the total number of participants, and m
is the number of new participants. Observe that all new participants share
equally one nth of the total activity.

– Finally At+1 is normalized so that the sum of the values adds up to 1.

Proposition 6. This scheme is perfectly secure under the same condition as
that given in Proposition 2.

Proof. The proof is exactly similar to that of Proposition 2. Indeed, the new
probability distribution does not affect the strategy of cheaters motivated by
financial gain. ��

The activity is an indirect measure of the current throughput of each par-
ticipant, relative to other participants. Observe that an absolute measure of
activity, while apparently simpler, can not cope with situations where the total
computational power of all participants exceeds the work available. Indeed in
such situations, participants who are lucky enough to be assigned some work
see their absolute activity increase, as a result of which they get assigned even
more work in the next time period. Short of creating bogus tasks to keep all
participants busy, such a scheme would become unstable and unfair.

4.1 Security Implications

Our goal is to prevent an adversary from rapidly creating a large number of
participants, who collectively represent a significant fraction of the distribution
A, just ahead of the computation that is targeted for sabotage. If the process of
amassing a significant share of activity takes a long time, an adversary will be
forced to contribute much computational power for a long time before having a
chance to disrupt a particular computation. We study the evolution of activity
in two distinct situations.

Suppose first that work is scarce, i.e. the combined computational resources
of all participants exceeds the work available. In that situation, the set of tasks



Secure Distributed Computing in a Commercial Environment 301

Tt(J) yet to be processed by a participant J is either empty, or contains very
few tasks, and for all J , ñt ≈ nt(J). Consequently At+1(J) ≈ At(J). Regard-
less of the resources available to participants, they always keep more or less the
activity that they started with. In that setting, it takes at least k time peri-
ods to accumulate a share k/n of the activity, where n is the total number of
participants. In effect, it is practically impossible for an adversary to control a
significant fraction of the activity.

Let us now consider the opposite situation in which the amount of potential
work available exceeds the combined computational power of all participants.
Recall the formula used to update A:

At+1(J) = At(J)
(
1 + e · (ñt − nt(J))

)

To slow down the potential increase of activity, we can set the elasticity e to
a small value. This has the drawback of making the distribution of tasks more
rigid for everyone. A better solution might be to place an upper bound e0 on
the increase of activity. For example, we could define:

At+1(J) = At(J)
[
1 + min

(
e0, e · (ñt − nt(J))

)]

5 Dynamic Probability Distribution

Let us return to the scheme of section 3, probabilistic redundant execution. We
propose in this section a more computationally efficient variant of this scheme,
based on a dynamic definition of the probability of re-assignment Q. Recall that
in our original scheme, the function Q is defined statically, in the sense that
the number of participants to whom a task is assigned is chosen independently
of who these participants are. It makes sense however to adjust the number of
participants involved according to how trustworthy they are. For example, we
might have the same degree of confidence in a result returned independently by
two trustworthy participants as we have in a result returned independently by
four less trusted participants.

In our model, the trustworthiness of a participant is measured by the amount
L that the participant stands to lose if cheating is detected. The registration step
of our scheme ensures that L ≥ dα for all participants. Using this value for L,
we proved in section 3 that our scheme is secure as long as the probability P
that cheating is undetected satisfies:

P ≤ d

1 + e + d

The variant we propose here is based on estimating the value L more precisely
for each participant. Consider a participant who has already earned an amount
d′α for running computations, but has not yet withdrawn that amount. Since
that amount would be forfeited alongside the deposit of dα should cheating be
discovered, the total potential loss for this participant amounts to:

L = dα + d′α
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Accordingly, the security condition for our scheme becomes:

P ≤ d + d′

1 + e + d+ d′

where as before P is the probability that cheating is undetected.
The following scheme takes advantage of this weaker condition:

Definition 5. Dynamic Scheme. Given a task T to execute, the supervisor
chooses distinct participants iteratively at random from among the pool and as-
signs each to the task T . The choice of participants proceeds as follows. The
supervisor chooses a first participant A1 uniformly at random. With probabil-
ity 1 − Q(A1), the task is assigned to no other participant and this completes
the assignment protocol (the discussion on how to choose the function Q follows
the definition of the scheme). With probability Q(A1), the supervisor assigns T
to another participant A2 chosen uniformly at random from the set of all par-
ticipants minus A1. Conditionally on having chosen a second participant, the
protocol selects a third participant A3 with probability Q(A1, A2), and selects no
other participant with probability 1−Q(A1, A2). In the general case, conditionally
on having chosen an ith participant, the protocol selects and (i+1)th participant
with probability Q(A1, . . . , Ai) and selects no more participant with probability
1−Q(A1, . . . , Ai).

At the end of the computation, the supervisor collects the results and compares
them for validity. If they are not all the same, the task is re-assigned to a new
group of participants selected according to the same protocol (if the task T was
assigned to a single participant, it is assumed to have been executed correctly).
Should this second round also fail to produce an agreement, the task is re-assigned
until a unanimous result emerges. At that time, all participants Ai who executed
the task correctly are paid α, whereas the participants who returned an incorrect
result are banned from future computations.

With the notations of section 3, we define the probability of re-assignment
Q as follows:

Q(A1, ..., Ai) =
i + e

i + e +
∑i

k=1(dk + d′k)

where dk and d′k are the deposits of participant Ak.

Proposition 7. With the assumption that the maximum coalition size is a neg-
ligible fraction of the total number of active participants, the dynamic scheme is
perfectly secure.

Proof. Let us consider an adversary who has been assigned i times the same task
T through various of the participants that he controls. Since we assume that the
adversary controls only a negligible fraction of the total number of participants,
he can not learn anything about the total number of participants to whom T
has been assigned. The only information available to the adversary is that the
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probability of re-assignment of a task already distributed to his i participants is
Q(A1, . . . , Ai). The probability that cheating is undetected is

P = 1−Q(A1, . . . , Ai) =
∑i

k=1(dk + d′k)

i + e +
∑i

k=1(dk + d′k)

This is exactly the condition required for perfect security. ��

The computational overhead of the dynamic scheme is hard to estimate, since
it depends on the behavior of the participants. The more participants are inclined
to leave with the supervisor the money they have earned, the more efficient the
scheme. The faster participants withdraw their earnings, the less efficient the
scheme.

6 Conclusion and Further Work

We give a security framework for distributed computing, based on the assump-
tion that participants are motivated by financial gain. We present a secure
scheme and its analysis, as well as two variants. The first variant addresses the
issue of participants with varying computational resources. The second variant
offers improved computational efficiency.

We are currently working on an implementation of the schemes proposed
in this paper. It is hoped that this implementation will help us determine the
optimal practical value of the elasticity for the activity (section 4), and the
computational overhead of the dynamic scheme (section 5) depending on the
population of participants.
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Abstract. In many real-life situations, massive quantities of signatures
have to be issued on cheap passive supports (e.g. paper-based) such as
bank-notes, badges, ID cards, driving licenses or passports (hereafter
IDs); while large-scale ID replacements are costly and prohibitive, one
may reasonably assume that the updating of verification equipment (e.g.
off-line border checkpoints or mobile patrol units) is exceptionally ac-
ceptable.
In such a context, an attacker using coercive means (e.g. kidnapping) can
force the system authorities to reveal the infrastructure’s secret signature
keys and start issuing signatures that are indistinguishable from those
issued by the authority.
The solution presented in this paper withstands such attacks up to a cer-
tain point: after the theft, the authority restricts the verification criteria
(by an exceptional verification equipment update) in such a way that the
genuine signatures issued before the attack become easily distinguishable
from the fresher signatures issued by the attacker.
Needless to say, we assume that at any point in time the verification
algorithm is entirely known to the attacker.
Keywords: Digital Signatures, Coercion, Bank Notes, ID Cards.

1 Introduction

In settings where passive (paper-based) bank notes, passports or ID cards are
massively delivered to users, document security specialists (e.g. [22]) distinguish
between two different threats:

– Duplication, which consists in copying information from a genuine document
into a new physical support (the copy). By analogy to the double-spending
problem met in e-cash schemes and software copyright protection, it seems
impossible to prevent duplication without relying on specific physical as-
sumptions, simply because symbols are inherently copyable. This difficulty
explains why duplication is mainly fought by optical means such as holo-
grams, iridescent printing (different colors being displayed at different angles
of observation), luminescent effects (the emission of radiation by an atom in
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the course of a transition from a higher to a lower state of energy, which is
typically achieved by submitting the ID to ultraviolet excitation) or standard
document security features such as planchettes, fibers and thread.
In the last decade, chip-based IDs appeared (e.g. Venezuela’s driving license).
Again, these are based on the assumption that appropriately designed mi-
crochips can reasonably withstand malicious cloning attempts.

– Forgery, which assumes that attackers have successfully passed the physical
barrier and are now able to reproduce documents using exactly the same
materials and production techniques used to create the original. Note that
although forgers may copy any existing ID, they can still fail in creating new
contents ex nihilo if the ID happens to rely on logical protections such as
MACs or signatures.

It seems very hard to quantify or compare the security of physical anti-
duplication technologies; partially because the effectiveness of such solutions
frequently relies on their secrecy, let alone the wide diversity of physical tech-
nologies mixed in one specific protection. By opposition, the protection of digital
assets against alteration is much better understood and can be easily used to
fight forgery.

As is obvious, if the authority’s signature or MAC keys are compromised (e.g.
by theft, cryptanalysis or coercion) forgery becomes possible, and the whole sys-
tem collapses. Theft can be easily prevented by physically protecting the produc-
tion facility or better more, by having data signed in protected remote locations
and by exchanging information and signatures through a properly protected
logical channel.

This is however not sufficient to resist coercion, a scenario in which the
attacker uses a threat (e.g. a kidnapping) to force the authorities to publish the
signature keys (e.g. in a newspaper [21]). The attacker can then check in vitro
the correctness of the revealed keys, stop coercing and start issuing fake IDs that
are indistinguishable from the genuine ones. The attack can also be motivated
by the sole intention to cause losses (global ID replacement).

Large scale ID replacement is, of course, a radical solution but it may both
entail prohibitive costs and require a transition period during which intruders
can still sneak through the borders. A second solution consists in performing
systematic on-line verifications to make sure that all controlled IDs are actu-
ally listed somewhere, but this might be cumbersome in decentralized or poorly
networked infrastructures.

As mentioned in the abstract, the problem is, of course, not limited to IDs.
Bank notes, public-key directories and any other passive supports carrying sig-
natures or MACs are all equally concerned.

Several authors formalized similar concerns [9] and solutions based on pro-
active key updates [8] which, although very efficient in on-line contexts (e.g.
Internet), do not suit our passive (non-intelligent) IDs; others share the key
between n individuals amongst which a quorum of k is necessary to sign [10,19].
This does not seem to solve the fundamental coercion problem either, since the
forger can force the authority to instruct k of the share-holders to reveal their
secrets, or coerce k share-holders directly.
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2 The Idea and a Few Definitions

The proposed solution targets the attacker’s ability to ascertain the correctness
of the stolen keys; this is achieved by updating the verification algorithm V so as
to distinguish the fake (new) signatures from the genuine (old) ones. We denote
by {V1, . . . ,Vn} the successive updates of V in a system designed to withstand
at most n coercions.

In our system, the authority’s (genuine) signatures are designed to:

– remain forward compatible i.e. be valid for all the verification algorithms Vi

to come.
– remain computationally indistinguishable from the signatures generated by

the i-th attacker until the disclosure of Vi+1.

The technique is thus analogous to the strategy of national banks who imple-
ment several (secret) security features in their bank notes. As forgeries appear,
the banks examine the fakes and publicize some of the secret features to stop
the circulation of forgeries.

Our construction relies on the following definitions:

Definition 1 (Monotone Predicates). Let V1(x), . . . ,Vn(x) be n predicates.
The set {Vi(x)} is monotone if

∀i < n, Vi+1(x)⇒ Vi(x)

Example 2. The set of predicates:

V1(x) def= x ∈ IR

V2(x) def= x ∈ IN

V3(x) def= x is prime

V4(x) def= x is a strong prime

is monotone since
V4(x)⇒ V3(x)⇒ V2(x)⇒ V1(x).

Definition 3 (Signature Schemes). A signature scheme is a collection of
three sub-algorithms {G,S,V},
– a probabilistic key-generation algorithm G, which produces a pair of related

public and secret keys, on input a security parameter k: {v, s} = G(1k), where
v and s respectively denote the public and secret keys used by V and S, the
verification and the signature algorithms (see below).

– a possibly probabilistic signature algorithm S, which produces a signature,
given a secret key and a message: σ = S(s; m).

– a verification algorithm, which checks whether the given signature is correct
relatively to the message and the public key: V(v; m,σ) ∈ {true, false}. It
must satisfy

(σ = S(s; m))⇒ (V(v; m,σ) = true) .



308 David Naccache et al.

Definition 4 (Monotone Signature Schemes). A monotone signature
scheme (MSS) is the following generalization of definition 3,

– a probabilistic key-generation algorithm G, which produces a list of public
and secret keys, on input two security parameters k and n:

{v1, . . . , vn, s1, . . . , sn} = G(1k, 1n),

where {vi} and {si} respectively denote the public and secret keys used by
the Vj and S.

– a possibly probabilistic signature algorithm S, which produces a signature,
given the list of the n secret keys and a message: σ = S(s1, . . . , sn; m).

– a list of monotone verification algorithms Vj which check whether the given
signature is correct, relatively to the message and the list of public keys:

Vj(v1, . . . , vj ; m,σ) ∈ {true, false}.
In other words, we require the three following properties.

1. Completeness :

σ = S(s1, . . . , sn; m)⇒ ∀j ≤ n, Vj(v1, . . . , vj ; m,σ) = true.

2. Soundness : for any adversary A which does not know sj+1, the probability,
over his internal random coins, to produce an accepted message-signature
pair {m,σ} is negligible

Pr[Vj+1(v1, . . . , vj+1; m,σ) = true (m,σ) = A] is negligible.

3. Indistinguishability: for any index j ≤ n, there exists a simulator Sj such
that the distributions of S(s1, . . . , sn; x) and Sj(s1, . . . , sj ; x), for the internal
random coins of the algorithms, are indistinguishable by opponents who do
not possess {sj+1, . . . , sn}.
We now categorize the opponents that MSSs will withstand. In essence we

consider two types of attackers: immediate and delayed. Both are going to coerce
the signer, get some of his secrets, check their validity (as much as possible, i.e.
with respect to the currently enforced public-key {v1, . . . , vj}) and start forging.

Definition 5 (Immediate Attackers). Immediate attackers forge signatures
using the obtained secret keys {s1, . . . , sj}, but stop their activity as soon as the
new verification algorithm Vj+1(v1, . . . , vj+1; ·, ·) is published.

The next section will be devoted to the study of the long-term validity of
such forgeries, produced before Vj+1(v1, . . . , vj+1; ·, ·) is known.

Definition 6 (Delayed Attackers). Delayed attackers wait until a new ver-
ification algorithm Vj+1(v1, . . . , vj+1; ·, ·) is published and use both the obtained
secret keys {s1, · · · , sj} and the new verification rules to compute their forgeries.

The global picture is presented on figure 1.
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– key generation: the authority gets {v1, . . . , vn, s1, . . . , sn} = G(1k, 1n)
– keys: the authority keeps {s1, . . . , sn} secret

and publishes {v1, . . . , vj} for some j < n
– signature generation: the authority runs S(s1, . . . , sn;m) to sign m
– coercion

• start
• the authority reveals, to the attackers, the signature algorithm,
together with the secret keys {s1, · · · , sj}

• stop
– immediate attackers try to issue signatures using only {s1, · · · , sj} and Vj

– authority updates Vj to Vj+1 and informs the verifiers
– delayed attackers try to issue signatures using {s1, · · · , sj}, Vj and Vj+1

Fig. 1. Coercion Model

3 Immediate Attacks and Symmetric Monotone
Signatures

As one may suspect, immediate attackers are the easiest to deal with. In theory,
the situation does not even call for the use of asymmetric primitives. It suffices to
add secret information to m or σ (e.g. using a subliminal channel as suggested by
[20]) but unless secret keys are shared with the verifiers, which is not the case in
our setting, the information rate is very low (narrow-band subliminal channel).

Better results are obtained by adding to σ some hidden randomness. In other
words, the actually signed message will be µ(m, r) where µ is a padding function
and r a randomly-looking (pseudo-random) bit string. The expression randomly-
looking translates the fact that r embeds information which is meaningful to who
knows how to interpret it :

let r =< r1 . . . rn >∈ {0, 1}n

and
{

ri = fki({rλ}λ∈E′) for all i ∈ E ⊆ {1, . . . , n},
ri ∈R {0, 1} for all i ∈ E,

where E and E′ are two disjoint subsets of {1, . . . , n}; {fi} is a family of pseudo-
random functions returning one bit; and the values {ki}, for i ∈ E, are auxiliary
secret keys. More concretely, the set E′ contains the indices of the bits used for
generating redundancy, and the set E contains the indices of the redundancy
bits.

The signer knows s as well as the complete collection of auxiliary secrets
{ki}. To issue an ID containing m, he generates a randomly looking r (which
satisfies the required secret redundancy) and a signature σ of µ(m, r). The ID
contains {m, r, σ}.

The verifier knows v and the values of some ki, for i ∈ F ⊆ E. Upon presen-
tation of the ID, he verifies the redundancy of r with respect to the ki values
that he knows. If this succeeds, he proceeds and verifies σ.

After coercion, the attacker obtains s and the ki for i ∈ G with, at least,
F ⊆ G (recall that the attacker verifies the validity of the produced signatures
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before stopping coercion). As long as G = E, the verification algorithm can be
fixed and the system saved.

After revealing H (strictly bigger than G) and the ki, for i ∈ H , signatures
are considered valid if and only if all the ri for i ∈ H are correct. Given the
unpredictable nature of the {ri} for i ∈ H\G (and well-chosen functions {fi}),
the forged signatures are accepted with probability smaller then ε = 2−c where
c = #(H\G). If c is sufficiently large, ε is negligible and the forgeries are almost
certainly spotted.

Figure 2 describes this protocol that we call symmetric MSS, since it relies
on auxiliary secrets, eventually revealed to the verifiers. More formally, the ver-

Initialization
{G,S ,V}, signature scheme
{fk}, pseudo-random family of functions

Key generation
Generation of {s, v} with G
select two disjoint subsets E and E′ of {1, . . . , n}
∀i ∈ E, ki ∈R {0, 1}128

Public: v and E′, and some F ⊂ E
(which determines the degree of verification)

Private: s, E and the ki

Signature
∀i �∈ E, ri ∈R {0, 1}
∀i ∈ E, ri = fki({rλ}λ∈E′) ∈ {0, 1}
h = H(m‖r) and σ = S(s;h)

Verification of {m, r, σ} for F ⊆ E
make sure that for all i ∈ F , ri = fki({rλ}λ∈E′)
compute h = H(m‖r) and check that V(v; h, σ) = true

Fig. 2. Symmetric Monotone Signature Scheme

ification algorithm VF checks the validity of the signature σ, but furthermore
checks the redundancy of all the bits indexed by F . We can state the following
theorem.

Theorem 7. Let {G,S,V} be a signature scheme transformed into a symmetric
MSS as suggested in figure 2.

– The signatures issued by the authority leak no information on the subset E;
– Assume that an attacker manages to obtain s, and then the ki for i ∈ G ⊇ F .

Let H ⊆ E be such that G is strictly included in H. Let us denote by c the
cardinality of H\G. The signatures issued by an attacker knowing G will be
accepted with respect to H with probability smaller than 2−c.

Proof. First assume that fk(.) = f(k, .), where f is, in the first part of the proof,
modeled by a random oracle which outputs one bit to each query:
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– The ri are all random for i ∈ E, by construction, as well as for i ∈ E
because of the randomness of f . Therefore, the signatures do not reveal any
information on E (other than the fact that F ⊆ E).

– By virtue of this indistinguishability property for E in {1, . . . , n}, the at-
tacker can not know if G is the entire set E. Assume that this is not the
case and G is strictly included in E. Define H as an intermediate subset,
G ⊂ H ⊆ E, and let c denote the cardinality of H\G. Since f is a random
oracle, without knowing the kj for j ∈ H\G, the attacker can not produce
the valid rj bits without a bias. Therefore the probability to produce a valid
forgery is smaller than 2−c.

Now, if by replacing f (secret random oracle [13]) by the family fk, the
attacker manages to produce valid signatures with probability larger than 2−c +
α, then the attacker can be used as distinguisher between the family of functions
{fk} and a perfectly random function with an advantage α, which contradicts
the assumption that {fk} is a family of pseudo-random functions. ��

Given the symmetric nature of the auxiliary secrets (except the unique asym-
metric private key revealed immediately after an attack), it is clear that this pro-
cess can not withstand delayed attacks. Actually, the information owned by the
verifier after the update is sufficient for producing valid forgeries. We therefore
focus the coming section on asymmetric MSS that can thwart delayed attacks.

4 Delayed Attacks and Asymmetric Monotone Signatures

4.1 Simple Concatenation

A trivial example of asymmetric MSS can be obtained by concatenating signa-
tures:

– Let {G,S,V} be a signature scheme and denote by � the size of each signa-
ture;

– The concatenated signature of m over the set E ⊆ {1, . . . , n}, is the tuple:

S′ ({si}i∈E ; m) = σ = {σ1, . . . , σn}
where σi =

{S(si; m) if i ∈ E, using the secret key si

ρi ∈R {0, 1}
 if i ∈ E

– Verification consists in evaluating the predicate:

V ′
F ({vi}i∈F ; m,σ) = ∧i∈FV(vi; m,σi),

where the set F ⊆ E determines the degree of verification.

However, for E not to be detectable, the two following distributions must be
indistinguishable, for any pair {s,m} of secret key and message:

δ0 = {ρ ∈R {0, 1}
}
δ1(s,m) = {S(s,m)}
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This latter distribution is over the internal random coins used in the probabilistic
signature process. Thus, not all signature algorithms lead themselves to such a
construction. For instance, the concatenation of RSA [17] signatures does not
yield an asymmetric MSS, because of the deterministic nature of σ as a function
of m (unless one uses a probabilistic padding scheme such as pss [3] or pkcs#1

v 2.0, the distribution δ1(s,m) contains only one point, by opposition to the
uniform distribution δ0.)

On the other hand, if the distribution of signatures is indistinguishable from
the uniform distribution, a mix between random numbers and signatures of m
will resist coercion up to a certain point. We formalize this in the following
theorem.

Theorem 8. Let {G,S,V} be a signature scheme for which the distribution
δ1(s,m) is indistinguishable (for any pair {s,m}) from the uniform distribution.
Let {G′,S′,V ′} be the concatenated version of {G,S,V}.
– The signatures produced by the authority do not reveal any information on

the subset E;
– Consider an attacker A who got hold of the si for i ∈ G ⊇ F . Let H ⊆ E

be such that G is strictly included in H, whose associated verification keys
have been published. If A can produce a forgery for {G′,S′,V ′} with respect
to H then he is able to produce a forgery for {G,S,V}.
A second disadvantage of RSA is the size of σ (recall that we actually talk

about n such signatures). A more compact alternative is Schnorr’s signature.
The next paragraph describes a concatenated signature based on this scheme.

4.2 Concatenation of Schnorr’s Signatures

We recall the description of the Schnorr’s scheme [18]:

– An authority generates a (k1 bit) prime p such that p− 1 has a large prime
factor q of k2 bits. The authority also generates an element g of Z

�
p of order

q and publishes a hash function H which outputs are in Zq;
– G(p, q, g) returns x ∈R Z

�
q and y = gx mod p;

– S(x; m) = {e, s} where t ∈R Z
�
q , r = gt mod p, e = H(m, r) and s =

t− ex mod q;
– V(y; m, e, s) = (H(m, gsye mod p) ?= e).

This scheme is provably secure in the random oracle model [16]. More pre-
cisely, it withstands existential forgeries even against adaptive chosen-message
attacks [7]. Moreover, δ1(x,m) = {S(x,m)} = {{e, s} ∈R Zq × Zq} is indistin-
guishable from a uniform distribution, when y is unknown.

Remark 9. We insist on the format of the Schnorr’s signature. Indeed, sometimes
one outputs {r, s} as the signature, instead of {e, s}. We use this latter for two
reasons:

– Because of the shorter size of the resulting signature. Note that in elliptic
curve settings, this is irrelevant, since both representations are as short.
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– For the randomly-looking property of the pair {e, s}. Indeed, to distinguish
a list of actual signatures {{ei, si}}, for a given pair of keys {x, y}, from a
list of truly random pairs, one has to find this common y, which can not be
found without the ri (hidden in the query asked to H). But with the ri, one
could easily compute ei = H(m, ri) and (ri/g

si)1/ei . This latter value would
be a constant: y.

By virtue of theorem 8, we can construct a concatenated variant that is as
secure as the initial scheme, that is, existentially unforgeable against adaptive
chosen-message attacks. Figure 3 describes such a variant.

Initialization
p, q, g and H as in Schnorr’s scheme

Key generation
Select a subset E of {1, . . . , n}
∀i ∈ E, let xi ∈ Z

�
q and yi = gxi mod p

Private: E and the xi for i ∈ E
Public: some F ⊂ E, and yi for i ∈ F

Signature
∀i ∈ E, σi = {ei, si} = S(xi;m)
∀i �∈ E, σi = {ei, si} ∈R Zq × Z

�
q

let σ = {σ1, . . . , σn}
Verification of {m, σ} for F ⊆ E

∀i ∈ F , H(m,gsiyi
ei mod p)

?
= ei

Fig. 3. Concatenated Schnorr’s Signatures

The resulting MSS outputs 2nk2 bit signatures, and since usually k2
∼= 160,

this would amount to 320n bits in practice. Note that efficient batch algorithms
for generating and verifying multiple Schnorr’s signatures may considerably im-
prove the parties’ workloads [12,1,11].

4.3 Introducing Degrees of Freedom

Instead of concatenating signatures and random values, the asymmetric MSS
described in this section relies on hidden relations between the different parts
of the signature that give additional degrees of freedom to the signer. It’s main
advantage over concatenation is a substantial improvement in signature size
(50%).

The Okamoto-Schnorr Signature. The new scheme is based on the
Okamoto’s variant of Schnorr’s scheme [15]. The mechanism relies on the repre-
sentation problem [4], and is recalled in figure 4.



314 David Naccache et al.

Initialization
p, q and H as in Schnorr’s scheme
g1, . . . , gn ∈ Z

�
p of order q

Key generation
Private: x1, . . . , xn ∈ Z

�
q

Public: y = gx1
1 × . . . × gxn

n mod p
Signature

t1, . . . , tn ∈ Z
�
q and r = gt1

1 × . . . × gtn
n mod p

e = H(m,r) then for i = 1, . . . , n, si = ti − exi mod q
S(x1, . . . , xn;m) = (e, s1, . . . , sn)

Verification

H(m,gs1
1 × . . . × gsn

n × ye mod p)
?
= e

Fig. 4. Okamoto–Schnorr Signatures

General Outline. The main idea is to impose and keep secret relations between
the gi. For simplicity, suppose that n = 2. Instead of choosing g1 and g2 at
random, we choose g2 as before, but set g1 = ga

2 mod p and y = gx
2 mod p, where

a is a secret element of Z
�
q , and thus x = ax1 + x2 mod q (with the notations of

the figure 4). Then we keep the verification condition

H(m, gs1
1 gs2

2 ye) ?= e (1)

But now, we can choose s1 as we want (e.g. at random), as well as a random t,
compute r = gt

2 mod p, e = H(m, r) and then we want

gs2
2 = ry−eg−s1

1 = gt
2g

−ex
2 g−as1

2 = gt−ex−as1
2 mod p.

Therefore, s2 = t − ex − as1 mod q provides a valid signature. As the signer
can choose s1 arbitrarily (even after having chosen t), we say that he gets an
additional degree of freedom. This signature will still satisfy the verification
formula (1), and will be indistinguishable from a classical Okamoto-Schnorr sig-
nature. Furthermore, instead of choosing s1 at random, we may choose it to be
randomly-looking. Explicitly, we may set s1 = fk(m‖r) where fk is a pseudo-
random function and k an auxiliary secret. When coerced, the signer reveals
x1 and x2, but keeps a and k secret. The attacker is thus capable of forging
signatures satisfying formula (1). Then, the signer publishes an additional veri-
fication condition, namely s1

?= fk(m‖r). ¿From that moment, in order to forge
valid signatures, the attacker must compute a from ga

2 , or equivalently, find a
discrete logarithm in Z

�
p.

This idea can be generalized to any arbitrary n. We set an i in {2, · · · , n−1},
and for j = 1, · · · , i− 1, we impose gj = gai

i mod p, where the ai are kept secret,
and therefore y = gxi

i × . . .× gxn
n mod p for some tuple {xi, . . . , xn}. To produce

a signature, we proceed as follows: set r = gti

i · · · gtn
n mod p, for random tj . The

signer has i−1 degrees of freedom, that is, he can set, for all j < i, sj = fkj (m‖r).
In addition, to be compatible with the verification condition

H(m, gs1
1 × . . .× gsn

n × ye mod p) ?= e, (2)
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we set si = ti − exi − a1s1 − · · · − ai−1si−1 mod q, and sk = tk − exk mod q
for k > i. Trivially, the verification formula (2) still works for this signature
generation:

gs1
1 × . . .× gsn

n × ye = ga1s1
i × . . .× g

ai−1si−1
i × gsi

i ×
k=n∏

k=i+1

gsk

k × ye

= g
a1s1+...+ai−1si−1
i × g

ti−exi−a1s1−···−ai−1si−1
i ×

k=n∏
k=i+1

gtk−exk

k × ye

= gti−exi

i ×
k=n∏

k=i+1

gtk−exk

k × ye =
k=n∏
k=i

gtk−exk

k ×
k=n∏
k=i

gexk

k =
k=n∏
k=i

gtk

k = r mod p.

But now, we can disclose some partial secrets ki and ai to an attacker, and
then add new verification conditions as shown in the case n = 2.

As a last generalization, we suppress the special role played by the first
i indices in the previous construction, and hide the indices of the generators
for which one knows some relations. That means that we can apply a secret
permutation P to the indices, imposing that gP (j) = g

aP(j)

P (i) for 1 ≤ j ≤ i−1. The
signature generation remains the same, except that the sets {1, · · · , i − 1}, {i}
and {i + 1, · · · , n} are replaced respectively by P 〈{1, · · · , i − 1}〉, {P (i)} and
P 〈{i + 1, · · · , n}〉.

Formal Description of the Scheme. The complete protocol is described in
figure 5. The validity of this new scheme comes from the fact the

gs1
1 × . . .× gsn

n × ye = g
sP(1)

P (1) × . . .× g
sP(n)

P (n) × ye mod p.

After the first coercion, the signer reveals x1, · · · , xn, for some randomly
chosen x1, . . . , xi−1 thanks to the aj ’s. He also reveals a set G, which necessarily
satisfies F ⊆ G ⊆ E, and the values aj and kj for j ∈ G. The point is that
G strictly includes the indices possibly known from previous attacks (and thus
included in the current public key). If such a G, strictly included in E, exists,
the signer can withstand the attack. When the choice of such a G is impossible,
the system finally collapses. Note that for the first attack, it is possible to choose
F = ∅.

After the attack, the signer publishes an additional verification condition,

sκ
?= fkκ(m‖r),

where κ ∈ E\G. The forgery of valid signatures will require knowing aκ. For
an attacker, this implies determining aκ from gaκ

P (i), and the difficulty of this
problem is equivalent to the security of the initial scheme.



316 David Naccache et al.

Initialization
p, q and H as in Schnorr’s scheme.
fk(.) = H(k, .), a family of random functions

Key generation
Choose a permutation P of {1, 2, . . . , n}
Choose i < n, the degree of freedom
Set E = P ({1, · · · , i − 1})
Choose F ⊂ E
Choose xi, . . . , xn ∈R Z

�
q

Choose aP (1), . . . , aP (i−1) ∈R Z
�
q

Choose kP (1), . . . , kP (i−1) random keys
Choose gP (i), gP (i+1), . . . , gP (n) ∈R Z

�
p of order q

Set gP (j) = g
aP(j)
P (i) mod p for j = 1, . . . , i − 1

Set y = gxi
P (i) × . . . × gxn

P (n) mod p

Private: P , {aj , kj}j∈E and xi, . . . , xn

Public: y, gj for j = 1, . . . , n,
F and kj for j ∈ F

Signature generation
Pick ti, . . . , tn ∈R Z

�
q

Set r = gti
P (i) × . . . × gtn

P (n) mod p

e = H(m,r)
Set, for j = 1, . . . , i − 1, sP (j) = fkP (j) (m‖r)
Set sP (i) = ti − exi − aP (1)sP (1) − . . . − aP (i−1)sP (i−1) mod q
Set, for j = i+ 1, . . . , n, sP (j) = tj − exj mod q
σ = (e, s1, . . . , sn)

Verification of (m,σ) for F ⊆ E

H(m,gs1
1 × . . . × gsn

n × ye mod p)
?
= e.

∀j ∈ F, sj
?
= fkj (m‖r)

Fig. 5. Okamoto–Schnorr Signatures with i− 1 degrees of freedom

Security. We can claim the following security result.

Theorem 10. Consider the Okamoto-Schnorr signature scheme with i − 1 de-
grees of freedom of figure 5, in the random oracle model.

– The signatures produced by the authority do not reveal any information on
the subset E;

– Consider an attacker A knowing a representation of y, k < i relations be-
tween the gj and k secret keys kj. If, after revealing one more ki, A can still
produce a signature accepted by the new verification algorithm, then A can
compute discrete logarithms.

Proof. We assume H to behave like a random oracle. For the first part of the
theorem, using classical simulation techniques ([6,16]), we can prove that there
exists a simulator that does not know any secret value, but which is able to
generate signatures that are indistinguishable from the true signatures, thanks to
the random oracles simulation (for H but also the fk’s). This simulator proceeds
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as follows: it chooses e, then the sj ’s, and computes the correct value of r. Finally,
it sets H(m, r) = e, and when a kκ is revealed, it sets fkκ(m‖r) = sκ.

Consequently, no information on E or the ai’s leaks from the signatures
produced by the scheme.

For the second part, assume that an attacker knows a representation of y in
the base gj. Assume also that he knows k values P (j), the associated aP (j), and
k + 1 elements kj . Let i0 be the index of the last verification condition disclosed
by the signer. Producing valid signatures is now equivalent to finding an α such
that gi0 = gα

P (i), and if A succeeds in doing so with a non-negligible probability,
then it can be used as an oracle to solve the discrete logarithm problem. ��

Efficiency. This technique offers several advantages compared to concatenation:

– Signature generation requires n− i + 1 exponentiations, this parameter de-
pends on the number of coercions that the system has to withstand.

– Verification requires the same number of exponentiations as the concatenated
Schnorr variant.

– The size of a signature is (n + 1)160 bits, instead of 320n bits

Roughly speaking, most characteristics are improved by a factor of two, which
represents a significant improvement.

5 Conclusion

We proposed new signature mechanisms that tolerate, up to a certain point,
secret disclosure under constraint. More precisely, we introduced symmetric and
asymmetric monotone signatures to thwart different types of attacks. The asym-
metric monotone scheme offers the broadest protection for the signer. We gave
a practical example of such a scheme, based on the Okamoto-Schnorr signature.
The new scheme, called Okamoto-Schnorr with i degrees of freedom, is provably
secure against adaptive chosen-message attacks. We believe that the proposed
solution can be practically deployed at the scale of a country.
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Abstract. Blind signatures are the central cryptographic component of
digital cash schemes. In this paper, we investigate the security of the
first such scheme proposed, namely Chaum’s RSA-based blind signature
scheme, in the random-oracle model. This leads us to formulate and
investigate a new class of RSA-related computational problems which
we call the “one-more-RSA-inversion” problems. Our main result is that
two problems in this class which we call the chosen-target and known-
target inversion problems, have polynomially-equivalent computational
complexity. This leads to a proof of security for Chaum’s scheme in the
random oracle model based on the assumed hardness of either of these
problems.
Keywords: Blind digital signature schemes, digital cash, RSA.

1 Introduction

Blind signatures are the central cryptographic component of digital cash schemes.
Withdrawer and Bank run the blind signature protocol to enable the former to
obtain the latter’s signature on some token without revealing this token to the
bank, thereby creating a valid but anonymous ecoin. In this paper, we investi-
gate the security of the first such scheme proposed, namely Chaum’s RSA-based
blind signature scheme [7]. This leads us to formulate and investigate a new
class of RSA-related computational problems which we call the “one-more-RSA-
inversion” problems. We begin with a high-level description of our approach and
its motivation.

The Gap between Proofs and Practice. Chaum’s RSA-based blind sig-
nature scheme [7] is simple and practical, and (assuming the underlying hash
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function is properly chosen) has so far resisted attacks. Yet there seems little
hope of proving its security (even in a random oracle model [3]) based on the
“standard” one-wayness assumption about the RSA function: it seems that the
security of the scheme relies on different, and perhaps stronger, properties of
RSA.

This is a common situation. It exhibits a gap created by what assumptions
we prefer to make and what schemes we want to validate. The reliance on un-
proven computational properties of RSA for security naturally inclines us to be
conservative and to stick to standard assumptions, of which the favorite is that
RSA is one-way. Designers who have worked with RSA know, however, that it
seems to have many additional strengths. These are typically exploited, implic-
itly rather than explicitly, in their designs. The resulting schemes might well
resist attack but are dubbed “heuristic” because no proof of security based on
the standard assumption seems likely. This leads designers to seek alternative
schemes that can be proven under the standard assumptions. If the alternatives
have cost comparable to that of the original scheme then they are indeed attrac-
tive replacements for the latter. But often they are more expensive. Meanwhile,
the use of the original practical scheme is being discouraged even though it might
very well be secure.

We take a different approach. Rather than going “forward” from assumptions
to schemes —meaning, trying to find a scheme provable under some given stan-
dard assumption— we try to go “backwards” from schemes to assumptions —
meaning to distill properties of RSA that are sufficient to guarantee the security
of the given scheme.

We suggest that practical RSA-based schemes that have resisted attack (in
this case, Chaum’s RSA-based blind signature scheme) are manifestations of
strengths of the RSA function that have not so far been properly abstracted or
formalized. We suggest that one should build on the intuition of designers and
formulate explicit computational problems that capture the above-mentioned
strengths and suffice to prove the security of the scheme. These problems can
then be studied to see how they relate to other problems and to what extent we
can believe in them as assumptions. Doing so will lead to a better understanding
of the security of the schemes. It will also highlight computational problems that
might then be recognized as being at the core of other schemes, and enlarge the
set of assumptions we might be willing to make, leading to benefits in the design
or analysis of other schemes.

In this paper, we formalize a class of computational problems which we call
one-more-RSA-inversion problems. They are natural extensions of the RSA-
inversion problem underlying the notion of one-wayness to a setting where the
adversary has access to a decryption oracle, and we show that the assumed hard-
ness of one problem in this class —namely the chosen-target inversion problem—
suffices to prove the security of Chaum’s RSA-based blind signature scheme in
the random oracle model. We then study this assumption, taking the standard
approach in a domain of conjectures: we try to gain confidence in the assumption
by relating it to other assumptions. Below, we first discuss the new computa-
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tional problems and their properties and then tie this in with the blind signature
scheme.

The RSA System. Associated with a modulus N and an encryption exponent
e are the RSA function and its RSA-inverse defined by

RSAN,e(x) = xe mod N and RSA−1
N,e(y) = yd mod N

where x, y ∈ Z∗
N and d is the decryption exponent. To invert RSA at a point

y ∈ Z∗
N means to compute x = RSA−1

N,e(y). The commonly made and believed
assumption is that the RSA function is one-way. In other words, the following
problem is hard:

RSA single-target inversion problem: RSA-STI

Input: N, e and a random target point y ∈ Z∗
N

Find: yd mod N

Hardness (i.e. computational intractability) is measured via the usual conven-
tion: the success probability of an adversary, whose time-complexity is polyno-
mial in the length k of the modulus, is negligible, the probability being over the
choice of keys N, e, d as well as over any random choices explicitly indicated in
the problem, in this case y. A problem is easy if it is not hard.

The One-More-RSA-Inversion Problems. We are interested in settings
where the protocol is such that the legitimate user —and hence the adversary—
has access to an oracle RSA−1

N,e(·) for the inverse RSA function. (The adversary
can provide a value y ∈ Z∗

N to its oracle and get back x = RSA−1
N,e(y) = yd mod

N , but it is not directly given d. We will see later how the RSA-blind signature
scheme fits this setting.) A security property apparently possessed by RSA is that
an adversary can only make “trivial” use of this oracle. We capture this in the
following way. The adversary is given some random target points y1, . . . , yn ∈
Z∗

N , and we say it wins if the number of these points whose RSA-inverse it
manages to compute exceeds the number of calls it makes to its oracle. That is,
it computes “one more RSA-inverse.” Within this framework we consider two
specific problems. They are parameterized by polynomially-bounded functions
n,m: N→ N of the security parameter k satisfying n(·) > m(·)–

RSA known-target inversion problem: RSA-KTI[m]

Input: N, e and random target points y1, . . . , ym(k)+1 ∈ Z∗
N

Oracle: RSA-inversion oracle computing RSA−1
N,e(·) = (·)d mod N

but only m(k) calls allowed
Find: yd

1 , . . . , y
d
m(k)+1 mod N

RSA chosen-target inversion problem: RSA-CTI[n,m]

Input: N, e and random points y1, . . . , yn(k)+1 ∈ Z∗
N

Oracle: RSA-inversion oracle computing RSA−1
N,e(·) = (·)d mod N

but only m(k) calls allowed
Find: Indices 1 ≤ i1 < · · · < im(k)+1 < n(k) and yd

i1 , . . . , y
d
im(k)+1

mod N
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In the first problem, the number of oracle calls allowed to the adversary is just
one fewer than the number of target points, so that to win it must compute
the RSA-inverse of all target points. In the second version of the problem, the
adversary does not have to compute the RSA-inverses of all target points but
instead can choose some m(k) + 1 points out of n(k) given points and wins if it
can find their RSA-inverses using only m(k) oracle calls.

The RSA-KTI[0] problem is identical to the standard RSA-STI problem.
(When m(·) = 0 the adversary’s task is to find the RSA-inverse of one given
random point y1 without making any oracle queries.) In this sense, we consider
security against known-target inversion to be a natural extension of one-wayness
to a setting where the adversary has access to an RSA-inversion oracle.

We note in Remark 2 that if factoring reduces in polynomial time to RSA
inversion then both the above problems are easy. Accordingly, these problems
can be hard only if factoring does not reduce to RSA inversion. Some evidence
that the latter is true is provided by Boneh and Venkatesan [6].

Relations among One-More-RSA-Inversion Problems. We note in Re-
mark 1 that if problem RSA-CTI[n,m] is hard then so is problem RSA-KTI[m].
(If you can solve the latter then you can solve the former by RSA-inverting
the first m(k) + 1 target points.) However, it is conceivable that the ability to
choose the target points might help the adversary considerably. Our main re-
sult is that this is not so. We show in Theorem 1 that if problem RSA-KTI[m]
is hard then so is problem RSA-CTI[n,m], for any polynomially-bounded n(·)
and m(·). (This result assumes that the encryption exponent e is prime.) We
prove the theorem by showing how given any polynomial-time adversary B that
solves RSA-KTI[m] we can design a polynomial-time adversary A that solves
RSA-CTI[n,m] with about the same probability. The reduction exploits linear
algebraic techniques which in this setting are complicated by the fact that the
order φ(N) of the group over which we must work is not known to the adversary.

The RSA-Based Blind Signature Scheme. The signer’s public key is N, e,
and its secret key is N, d where these quantities are as in the RSA system. The
signature of a message M is

x = RSA−1
N,e(H(M)) = H(M)d mod N (1)

where H : {0, 1}∗ → Z∗
N is a public hash function. A message-tag pair (M,x) is

said to be valid if x is as in Equation (1). The blind signature protocol enables a
user to obtain the signature of a message M without revealing M to the signer,
as follows. The user picks r at random in Z∗

N , computes M = re ·H(M) mod N ,
and sends M to the signer. The latter computes x = RSA−1

N,e(M) = M
d
mod N

and returns x to the user, who extracts the signature x = x · r−1 mod N of
M from it. Two properties are desired, blindness and unforgeability. Blindness
means the signer does not learn anything about M from the protocol that it
did not know before, and it is easy to show that this is unconditionally true
[7]. Unforgeability in this context is captured via the notion of one-more-forgery
of Pointcheval and Stern [18,19]. (The standard notion of [13] does not apply
to blind signatures.) The forger can engage in interactions with the signer in
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which it might not follow the prescribed protocol for the user. (As discussed
further in Section 3 there are, in general, a variety of attack models for these
interactions [18,19,14,16], but in the case of the RSA blind signature protocol, all
are equivalent.) Nothing prevents it from coming up with one valid message-tag
pair per protocol execution (to do this, it just has to follow the user protocol)
but we want it to be hard to come up with more. We ask that the number of
valid message-tag pairs that a forger can produce cannot exceed the number of
executions of the blind-signature protocol in which it engages with the signer.

It is the unforgeability property that has been the open question about the
RSA-based blind signature scheme. Michels, Stadler and Sun [15] show that one
can successfully obtain one-more forgery if the hash function is poorly imple-
mented. Here, we will assume that the hash function is a random oracle. (The
forger and signer both get an oracle for H .) In that case, the signature scheme
is the FDH scheme of [4]. This scheme is proven to meet the standard security
notion for digital signatures of [13] in the random oracle model assuming that
RSA is one-way [4,8], but this result won’t help us here. To date, no attacks
against the one-more-forgery goal are known on the blind FDH-RSA signature
scheme. We would like to support this evidence of security with proofs.

When the forger interacts with a signer in Chaum’s blind signature protocol
detailed above, the former effectively has access to an RSA-inversion oracle: it
can provide the signer any M ∈ Z∗

N and get back M
d
mod N . It is the presence

of this oracle that makes it unlikely that the one-wayness of RSA alone suffices
to guarantee unforgeability. However, the one-more-RSA-decryption problems
were defined precisely to capture settings where the adversary has an RSA-
inversion oracle, and we will be able to base the security of the signature scheme
on hardness assumptions about them.

Unforgeability of the FDH-RSA Blind Signature Scheme. In
Lemma 4, we provide a reduction of the security against one-more-forgery of
the FDH-RSA blind signature scheme, in the random oracle model, to the se-
curity of the RSA chosen-target inversion problem. Appealing to Theorem 1 we
then get a proof of unforgeability for the blind FDH-RSA scheme, in the ran-
dom oracle model, under the assumption that the RSA known-target inversion
problem is hard. (Again, this is for prime encryption exponents.) These results
simplify the security considerations of the blind FDH-RSA scheme by eliminat-
ing the hash function and signature issues from the picture, leaving us natural
problems about RSA to study.

Perspective. An obvious criticism of the above result is that the proof of
security of the blind FDH-RSA signature scheme is under a novel and extremely
strong RSA assumption which is not only hard to validate but crafted to have
the properties necessary to prove the security of the signature scheme. This is
true, and we warn that the assumptions should be treated with caution. But
we suggest that our approach and results have pragmatic value. Certainly, one
could leave the blind RSA signature scheme unanalyzed until someone proves
security based on the one-wayness of RSA, but this is likely to be a long wait.
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Meanwhile, we would like to use the scheme and the practical thing to do is to
understand the basis of its security as best we can. Our results isolate clear and
simply stated properties of the RSA function that underlie the security of the
blind signature scheme and make the task of the security analyst easier by freeing
him or her from consideration of properties of signatures and hash functions. It
is better to know exactly what we are assuming, even if this is very strong, than
to know nothing at all.

Extensions. The analogues of the one-more-RSA-inversion problems can be for-
mulated for any family of one-way functions. We can prove that the known-target
inversion and chosen-target inversion problems have polynomially-equivalent
computational complexity also for the discrete logarithm function in groups of
prime order. (That proof is actually a little easier than the one for RSA in this
paper because in the discrete log case the order of the group is public informa-
tion.)

Related Work. Other non-standard RSA related computational problems
whose study has been fruitful include strong-RSA [11,2,12,9] and dependent-
RSA [17]. For more information about RSA properties and attacks see [5].

2 Complexity of the One-More-RSA-Inversion Problems

Throughout this paper, k ∈ N denotes the security parameter. We let KeyGen
be the RSA key generation algorithm which takes k as input and returns the
values N, e and d where N is a k-bit RSA modulus (product of two k/2 bit
random primes p1, p2) and e, d ∈ Z∗

φ(N) with ed ≡ 1 mod φ(N) where φ(N) =
(p1 − 1)(p2 − 1). (The public key is N, e and the secret key is N, d.) The results
in this paper will assume that e is prime.

Below, we provide the formal definitions corresponding to the computational
problems discussed in Section 1. In each case, we associate to any given adversary
an advantage function which on input the security parameter k returns the
probability that an associated experiment returns 1. The problem is hard if the
advantage of any adversary of time-complexity poly(k) is negligible, and we say
that a problem is easy if it is not hard. Furthermore, we adopt the convention
that the time-complexity of the adversary refers to the function which on input
k returns the execution time of the full associated experiment including the
time taken to compute answers to oracle calls, plus the size of the code of the
adversary, in some fixed model of computation. This convention will simplify
concrete security considerations.

One-wayness of RSA. We recall the standard notion, couching it in a way
more suitable for comparison with the new notions.

Definition 1. (Single-Target Inversion Problem: RSA-STI) Let k ∈ N be
the security parameter. Let A be an adversary. Consider the following experi-
ment:
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Experiment Exprsa-sti
A (k)

(N, e, d) R← KeyGen(k)
y

R← Z∗
N ; x← A(N, e, k, y)

If xe ≡ y (mod N) then return 1 else return 0

We define the advantage of A via

Advrsa-sti
A (k) = Pr[Exprsa-sti

A (k) = 1 ] .

The RSA-STI problem is said to be hard —in more standard terminology, RSA is
said to be one-way— if the function Advrsa-kti

A,m (·) is negligible for any adversary
A whose time-complexity is polynomial in the security parameter k.

The Known-Target Inversion Problem. We denote by (·)d mod N the
oracle that takes input y ∈ Z∗

N and returns its RSA-inverse yd. An adversary
solving the known-target inversion problem is given oracle access to (·)d mod N
and is given m(k) + 1 targets where m : N → N. Its task is to compute the
RSA-inverses of all the targets while submitting at most m(k) queries to the
oracle.

Definition 2. (Known-Target Inversion Problem: RSA-KTI[m]) Let k ∈
N be the security parameter, and let m : N → N be a function of k. Let A be
an adversary with access to an RSA-inversion oracle (·)d mod N . Consider the
following experiment:

Experiment Exprsa-kti
A,m (k)

(N, e, d) R← KeyGen(k)
For i = 1 to m(k) + 1 do yi

R← Z∗
N

(x1, . . . , xm(k)+1)← A(·)d mod N (N, e, k, y1, . . . , ym(k)+1)
If the following are both true then return 1 else return 0

– ∀i ∈ {1, . . . ,m(k) + 1} : xe
i ≡ yi (mod N)

– A made at most m(k) oracle queries

We define the advantage of A via

Advrsa-kti
A,m (k) = Pr[Exprsa-kti

A,m (k) = 1 ] .

The RSA-KTI[m] problem is said to be hard if the function Advrsa-kti
A,m (·) is

negligible for any adversary A whose time-complexity is polynomial in the se-
curity parameter k. The known-target inversion problem is said to be hard if
RSA-KTI[m] is hard for all polynomially-bounded m(·).
Notice that RSA-KTI[0] is the same as RSA-STI. That is, the standard assump-
tion that RSA is one-way is exactly the same as saying that RSA-KTI[0] is
hard.

The Chosen-Target Inversion Problem. An adversary solving the chosen-
target inversion problem is given access to an RSA-inversion oracle as above, and
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n(k) targets where n : N → N. Its task is to compute m(k) + 1 RSA-inversions
of the given targets, where m : N → N and m(k) < n(k), while submitting at
most m(k) queries to the oracle. The choice of which targets to compute the
RSA-inversion is up to the adversary. This choice is indicated by the range of
the injective map π. (Notationally, this is different from the definition provided
in Section 1. There, indices for elements chosen by the adversary are explicitly
indicated. These indices constitute the range of the map π used here.)

Definition 3. (Chosen-Target Inversion Problem: RSA-CTI[n,m]) Let
k ∈ N be the security parameter, and let m,n : N → N be functions of k such
that m(·) < n(·). Let B be an adversary with access to an RSA-inversion oracle
(·)d mod N . Consider the following experiment:

Experiment Exprsa-cti
B,n,m(k)

(N, e, d) R← KeyGen(k)
For i = 1 to n(k) do yi

R← Z∗
N

(π, x1, . . . , xm(k)+1)← B(·)d mod N (N, e, k, y1, . . . , yn(k))
If the following are all true then return 1 else return 0

– π: {1, . . . ,m(k) + 1} → {1, . . . , n(k)} is injective
– ∀i ∈ {1, . . . ,m(k) + 1} : xe

i ≡ yπ(i) (mod N)
– A made at most m(k) oracle queries

We define the advantage of A via

Advrsa-cti
B,n,m(k) = Pr[Exprsa-cti

B,n,m(k) = 1 ] .

The RSA-CTI[n,m] problem is said to be hard if the function Advrsa-cti
B,n,m(·) is

negligible for any adversary A whose time complexity is polynomial in the se-
curity parameter k. The chosen-target inversion problem is said to be hard if
RSA-CTI[n,m] is hard for all polynomially-bounded n(·) and m(·).

Relations amongst the Problems. We note a few simple relations before
going to the main result.

Remark 1. Let n,m: N→ N be polynomially-bounded functions of the security
parameter k. If the RSA-CTI[n,m] problem is hard then so is the RSA-KTI[m]
problem. This is justified as follows: given an adversary A for RSA-KTI[m], we
let B be the adversary for RSA-CTI[n,m] that runs A on input the first m(k)+1
of B’s target points and returns the values returned by A. Then B’s advantage
is the same as A’s.

Remark 2. If factoring reduces to RSA inversion then there exists a polynomially-
bounded function m: N→ N such that RSA-KTI[m] is easy. (So the assumption
that either the known-target or chosen-target inversion problems is hard is at
least as strong as the assumption that factoring does not reduce to RSA inver-
sion.) Let us briefly justify this. Assume that factoring reduces to RSA inversion.
This means there is a polynomial-time algorithmR such that the probability that
the following experiment returns 1 is non-negligible:
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(N, e, d) R← KeyGen(k)
(p1, p2)← R(·)d mod N (N, e, k)
If p1, p2 are prime and p1p2 = N then return 1 else return 0.

Let m be the number of oracle queries made by R. We define adversary A as
follows:

Adversary A(·)d mod N (N, e, k, y1, . . . , ym(k)+1)
(p1, p2)← R(·)d mod N (N, e, k)
Compute d from p1, p2

Compute and return yd
1 , . . . , y

d
m(k)+1 mod N

The adversary A runs the algorithm R, answering to its inversion queries with
the answers from its own oracle. It uses the fact that possession of the prime
factors of N enables computation of the decryption exponent d, and having
computed d, it can of course compute the RSA-inversions of as many points as
it pleases.

Our main result is a converse to the claim of Remark 1.

Theorem 1. Let n,m: N → N be polynomially-bounded functions of the secu-
rity parameter k. If the RSA-KTI[m] problem is hard then so is the RSA-CTI[n,
m] problem. Concretely, for any adversary B, there exists an adversary A so
that

Advrsa-cti
B,n,m(k) ≤

9
5
·Advrsa-kti

A,m (k) (2)

and A has time-complexity

TA(k) = TB(k) +O
(
k3n(k)m(k) + k4m(k) + k2m(k)5 + km(k)6

)
(3)

where TB(·) is the time-complexity of B.

We will now present some technical lemmas, and then proceed to the proof
of Theorem 1. The reader might prefer to begin with Section 2.2 and refer to
Section 2.1 as needed.

2.1 Technical Lemmas

Before proving our main result we state and prove some relevant technical lem-
mas.

Lemma 1. Let s ≥ 1 be an integer, let Is be the s by s identity matrix, and let

C =



c1,1 · · · c1,s

...
...

cs,1 · · · cs,s


 and D =



d1,1 · · · d1,s

...
...

ds,1 · · · ds,s




be integer matrices such that C · D = det(C) · Is. Suppose N, e is an RSA
public key and N, d is the corresponding secret key. Suppose yi, yi, vi ∈ Z∗

N for
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i = 1, . . . , s are related via

yi ≡ v−e
i ·

s∏
j=1

y
cj,i

j (mod N) . (4)

Let xi = yd
i mod N for i = 1, . . . , s. Then, for j = 1, . . . , s, we have

(yd
j )

det(C) ≡
s∏

i=1

(vi · xi)di,j (mod N) . (5)

Proof (Lemma 1). Let δl,j = 1 if l = j and 0 otherwise. Since C ·D = det(C) · Is

we know that
s∑

i=1

cl,idi,j = det(C) · δl,j (6)

for all l, j = 1, . . . , s. We now verify Equation (5). Suppose 1 ≤ j ≤ s. In the
following, computations are all mod N . From Equation (4), we have

s∏
i=1

(vi ·xi)di,j =
s∏

i=1


vi ·

(
v−e

i ·
s∏

l=1

y
cl,i

l

)d



di,j

=
s∏

i=1

[
vi · v−1

i ·
s∏

l=1

(yd
l )

cl,i

]di,j

.

Simplifying the last expression, we obtain
s∏

i=1

s∏
l=1

(yd
l )

cl,idi,j =
s∏

l=1

s∏
i=1

(yd
l )

cl,idi,j =
s∏

l=1

(yd
l )
∑s

i=1
cl,idi,j =

s∏
l=1

(yd
l )

det(C)·δl,j

where the last equality is by Equation (6). Finally, we use the fact that
δl,j = 1 if l = j and 0 otherwise. This tells us that the above is (yd

j )
det(C)

as desired.

Lemma 2. Let N, e be an RSA public key and N, d the corresponding secret
key. Let α ∈ N and y, z ∈ Z∗

N . If gcd(α, e) = 1 and (yd)α ≡ z (mod N) then
(zayb)e ≡ y (mod N) where a, b are the unique integers such that aα+ be = 1.

Proof (Lemma 2). This is a standard calculation:

(zayb)e = (ydα)aeybe = yαa+be = y1 = y

where the computations are all mod N .

Next, we consider a question in probabilistic linear algebra.

Definition 4. Let q ≥ 2 be a prime, and let s ≥ 1 be an integer. We define
SProb(q, s) to be the probability that det(M) ≡ 0 (mod q) when M is an s by
s matrix formed by choosing all entries uniformly and independently from Zq.

It is tempting to think that the determinant of a random matrix is a random
value and hence that SProb(q, s) = 1/q. This, however, is not true. For example,
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a simple computation shows that SProb(q, 2) = 1/q + 1/q2 − 1/q3. There is
actually a standard formula (whose proof we will recall later) for this quantity–

SProb(q, s) = 1−
s∏

i=1

(
1− qi−1

qs

)
. (7)

This formula, however, does not lend itself well to estimates. We would like a
simple upper bound on SProb(q, s). We prove the following. (We don’t use the
lower bound in this paper but include it for completeness.)

Lemma 3. Let q ≥ 2 be a prime, and let s ≥ 1 be an integer. Then
1
q
≤ SProb(q, s) ≤ 1

q
+

1
q2

. (8)

Proof (Lemma 3). View the matrix M as formed by successively choosing ran-
dom row vectors from Zs

q . Let Mi denote the vector which is the i-th row of M ,
and let LIi denote the event that the vectors M1, . . . ,Mi are linearly indepen-
dent over Zq, for i = 1, . . . , s. It is convenient to let LI0 be the event having
probability one. Let SProb(q, s, i) = Pr[¬LIi ] for i = 0, . . . , s and note that
SProb(q, s) = SProb(q, s, s).

We briefly recall the justification for Equation (7) and use it to derive the
lower bound. (The upper bound is derived by a separate inductive argument.)
We have

1− SProb(q, s) =
s∏

i=1

Pr [ LIi | LIi−1 ] =
s∏

i=1

qs − qi−1

qs
=

s∏
i=1

(
1− qi−1

qs

)

which is Equation (7). We derive the lower bound by upper bounding the product
term of Equation (7) by the biggest term of the product:

SProb(q, s) ≥ 1−
(
1− 1

q

)
=

1
q

.

For the upper bound, we first claim that the following recurrence is true for
i = 0, . . . , s:

SProb(q, s, i) =




0 if i = 0
qi−1

qs
+
(
1− qi−1

qs

)
· SProb(q, s, i− 1) if i ≥ 1

(9)

The initial condition is simply by the convention we adopted that Pr[LI0 ] = 1.
The recurrence is justified as follows for i ≥ 1:

SProb(q, s, i)
= Pr[¬LIi ]
= Pr [ ¬LIi | LIi−1 ] · Pr[LIi−1 ] + Pr [ ¬LIi | ¬LIi−1 ] · Pr[¬LIi−1 ]
= Pr [ ¬LIi | LIi−1 ] · (1− SProb(q, s, i− 1)) + 1 · SProb(q, s, i− 1)
= Pr [ ¬LIi | LIi−1 ] + (1− Pr [ ¬LIi | LIi−1 ]) · SProb(q, s, i− 1)

=
qi−1

qs
+
(
1− qi−1

qs

)
· SProb(q, s, i− 1) .
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We claim that

SProb(q, s, i) ≤ qi

qs
· 1
q − 1

for i = 0, . . . , s . (10)

This will be justified below. It already gives us an upper bound on SProb(q, s) =
SProb(q, s, s), namely 1/(q−1), but this is a little worse than our claimed upper
bound. To get the latter, we use the recurrence for i = s and use Equation (10)
with i = s− 1. This give us

SProb(q, s) = SProb(q, s, s) =
qs−1

qs
+
(
1− qs−1

qs

)
· SProb(q, s, s− 1)

≤ qs−1

qs
+
(
1− qs−1

qs

)
· q

s−1

qs

1
q − 1

Simplifying this further, we get

SProb(q, s) ≤ 1
q
+
(
1− 1

q

)
· 1
q

1
q − 1

=
1
q
+

1
q − 1

·
(
1
q
− 1

q2

)
=

1
q
+

1
q2

.

This is the claimed upper bound. It remains to justify Equation (10) which we
do by induction on i. When i = 0, Equation (10) puts a positive upper bound on
SProb(q, s, 0), and hence, is certainly true. So assume i ≥ 1. Substituting into
the recurrence of Equation (9), we get

SProb(q, s, i) =
qi−1

qs
+
(
1− qi−1

qs

)
· SProb(q, s, i− 1)

≤ qi−1

qs
+ SProb(q, s, i− 1) .

Using the inductive hypothesis and simplifying, we have

SProb(q, s, i) ≤ qi−1

qs
+

qi−1

qs

1
q − 1

=
qi−1

qs

(
1 +

1
q − 1

)
=

qi

qs

1
q − 1

as desired.

2.2 Proof of Theorem 1

Overview. The adversary A is depicted in Figure 1. Its input is (N, e, k and)
s = m(k) + 1 target points y1, . . . , ys. Its goal is to compute yd

1 , . . . , y
d
s mod N .

Adversary A will begin by computing n(k) points y1, . . . , yn(k) as a (random-
ized) function of the given points y1, . . . , ys. The property we want these to have
is that, given the RSA-inverses of any s of the points y1, . . . , yn(k), it is possible
to extract in polynomial time the RSA-inverses of the original target points, at
least with high probability. If such a “reversible embedding” can be implemented
then A’s work is complete since invoking B on the points y1, . . . , yn(k) will cause
the RSA-inverses of some s of these points to be returned. The question is, thus,
how to compute and later reverse this “reversible embedding.”
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Algorithm A(·)d mod N (N, e, k, y1, . . . , ym(k)+1)
1 q ← e ; s← m(k) + 1
2 For i = 1 to n(k) do

3 v[i]
R← Z∗

N

4 For j = 1 to s do c[j, i]
R← Zq

5 yi ← v[i]−e
∏s

j=1
y

c[j,i]
j mod N

6 (π, x1, . . . , xs)← B(·)d mod N (N, e, k, y1, . . . , yn(k))

7 For j = 1, . . . , s do
vj ← v[π(j)]
For l = 1, . . . , s do cj,l ← c[j, π(l)]

8 C ←



c1,1 . . . c1,s

...
...

cs,1 . . . cs,s




9 α← det(C)
10 If α = 0 then abort
11 Compute a matrix

D =



d1,1 . . . d1,s

...
...

ds,1 . . . ds,s




with integer entries such that C ·D = det(C) · Is
12 For j = 1 to s do

13 zj ←∏s

i=1
(vi · xi)

di,j mod N
14 If gcd(α, e) �= 1 then abort
15 Compute a, b ∈ Z such that aα+ be = 1 via extended Euclid algorithm
16 For j = 1 to s do

17 xj ← za
j · yb

j mod N
18 Return x1, . . . , xs

Fig. 1. Adversary A of the proof of Theorem 1

Lines 2–5 of Figure 1 show how to compute it. For each j, the point yj is
created by first raising each of y1, . . . , ys to a random power and then multi-
plying the obtained quantities. (This product is then multiplied by a random
group element of which A knows the RSA-inverse in order to make sure that
y1, . . . , yn(k) are uniformly and independently distributed and thus are appro-
priate to feed to B.) A detail worth remarking here is the choice of the range
from which the exponents c[j, i] are chosen. This is Zq where we have set q equal
to the encryption exponent e. We will see the reasons for this choice later.

Once the points y1, . . . , yn(k) have been defined, B is invoked. In executing
B, adversary A will invoke its own oracle to answer RSA-inversion oracle queries
of B. Notice that this means that the number of oracle queries made by A is
exactly equal to the number made by B which is s− 1 = m(k). Assuming that
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B succeeds, A is in possession of xj ≡ yd
π(j) (mod N) for j = 1, . . . , s where

π(j) are indices of B’s choice that A could not have predicted beforehand. The
final step is to recover the RSA-inverses of the original target points.

To this end, A creates the matrix C shown in line 8 of the code. If this matrix
has zero determinant then A will not be able to reverse its embedding and aborts.
Assuming a non-zero determinant, A would like to invert matrix C. Since the
entries are exponents, A would like to work modulo φ(N) but A does not know
this value. Instead, it works over the integers. A can compute a “partial” RSA-
inverse, namely an integer matrix D such that C ·D is a known integer multiple of
the s by s identity matrix Is. The integer multiple in question is the determinant
of C, and thus the matrixD is the adjoint of C. (We will discuss the computation
of D more later.) Lines 12–18 show how A then computes x1, . . . , xs which we
claim equal yd

1 , . . . , y
d
s . We now proceed to the detailed analysis.

Analysis. Let NS be the event that det(C) �≡ 0 (mod q). (If this is true then
not only is det(C) �= 0, meaning C is non-singular, but also gcd(det(C), e) = 1
because q = e is prime.) Let “A succeeds” denote the event that xi = yd

i for
all i = 1, . . . , s. Let “B succeeds” denote the event that xj = yd

π(j) for all j =
1, . . . , s. Then,

Pr[A succeeds ]
≥ Pr[A succeeds ∧B succeeds ∧NS ]
= Pr [A succeeds | B succeeds ∧NS ] · Pr[B succeeds ∧NS ] . (11)

We claim that

Pr [A succeeds | B succeeds ∧NS ] = 1 (12)

Pr[B succeeds ∧NS ] ≥ 5
9
·Advrsa-cti

B,n,m(k) . (13)

Equations (11), (12), and (13) imply Equation (2). So it remains to verify Equa-
tions (12), (13) and the time-complexity claimed in Equation (3). We begin with
Equation (12). Lemma 1 tells us that, assuming B succeeds and det(C) �= 0, af-
ter line 13 of Figure 1, we have

(yd
j )

det(C) ≡ zj (mod N) (14)

for j = 1, . . . , s. Assume gcd(α, e) = 1. Then Equation (14) and Lemma 2 imply
that at line 17 we have xe

j = yj for all j = 1, . . . , s, in other words, A succeeds.
Now note that event NS implies that det(C) �= 0 and that gcd(det(C), e) = 1
because q = e and e is prime. This completes the proof of Equation (12).

We now move on to the proof of Equation (13). Due to the random choice of
v[1], . . . , v[n(k)], the points y1, . . . , yn(k) computed at line 5 and then fed to B
are uniformly and independently distributed over Z∗

N regardless of the choices
of c[j, i]. This means that the events “B succeeds” and NS are independent and
also that the probability of the former is the advantage of B. Thus, we have

Pr[B succeeds ∧NS ] = Pr[NS ] · Pr[B succeeds ] = Pr[NS ] ·Advrsa-cti
B,n,m(k) .



The Power of RSA Inversion Oracles 333

Code Cost

“For” loop at line 2 O(k3) · n(k) · s
det(C) O(s4k + s3k2)

Matrix D s2 ·O(s4k + s3k2)

“For” loop at line 12 O(k2s) · O(sk)
Lines 14, 15 O(sk) ·O(k)
Line 17 O(k2) ·O(k2s)

Total O(k3n(k)s+ k4s+ k2s5 + ks6)

Fig. 2. Costs of computations of the algorithm of Figure 1. Recall that s =
m(k) + 1

So to complete the proof of Equation (13), it suffices to show that

Pr[NS ] ≥ 5
9

. (15)

Recall that our adversary A sets q = e (line 1 in Figure 1) and that e ≥ 3 for
RSA. We now apply Lemma 3 to get

Pr[NS ] = 1−SProb(q, s) ≥ 1−
(
1
q
+

1
q2

)
= 1− 1

e
− 1

e2
≥ 1− 1

3
− 1
32

=
5
9

.

This proves Equation (15) and, hence, completes the proof of Equation (13). To
complete the proof of Theorem 1, it remains to justify the claim of Equation (3)
about the time complexity. The costs of various steps of the algorithm of the
adversary A are summarized in Figure 2. We now briefly explain them.

As in the code, we let s = m(k) + 1. The “For” loop beginning at line 2
involves n(k) · s exponentiations of k-bit exponents which has the cost shown.
Computation of determinants is done using the algorithm of [1]. This takes
O(r4(log(r) + k) + r3k2) time to compute the determinant of an r by r integer
matrix each of whose entries is at most k-bits long. (Although somewhat faster
algorithms are known [10], they are randomized, and for simplicity, we use a
deterministic algorithm.) We use this algorithm in Step 9. In the worst case, e
(and hence q) is k-bits long. So the entries of C are at most k-bits long, and the
cost of computing det(C) is O(s4(log(s)+k)+s3k2), which is O(s4k+s3k2) since
log(s) = O(k). The matrix D is the adjoint matrix of C, namely the transpose
of the co-factor matrix of C. We compute it by computing the co-factors using
determinants. This involves computing s2 determinants of submatrices of C so
the cost is at most s2 times the cost of computing the determinant of C. Line 13
involves computing exponentiations modulo N with exponents of the size of
entries in D. The Hadamard bound tells us that the entries of D are bounded
in size by O(s(log(s) + k), which simplifies to O(sk), so the cost is this many
k-bit multiplications. Euclid’s algorithm used for lines 14, 15 runs in time the
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product of the lengths of α and e. Finally, the lengths of a, b cannot exceed this
time, and they are the exponents in line 17.

3 The RSA Blind Signature Scheme

The RSA blind signature scheme [7] consists of three components: the key gen-
eration algorithm KeyGen described in Section 2; the signing protocol depicted
in Figure 3; and the verification algorithm. The signer has public key N, e and
secret key N, d. Here H : {0, 1}∗ → Z∗

N is a public hash function which in our
security analysis will be modeled as a random oracle [3]. In that case, the signa-
ture schemes is the FDH-RSA scheme of [4]. A message-tag pair (M,x) is said
to be valid if xe mod N is equal to H(M). The verification algorithm is the same
as that of FDH-RSA: to verify the message-tag pair (M,x) using a public key
(N, e), one simply checks if the message-tag pair is valid.

Unforgeability. In the standard formalization of security of a digital signature
scheme —-namely unforgeability under adaptive chosen-message attack [13]—
the adversary gets to submit messages of its choice to the signer and obtain
their signature, and is then considered successful if it can forge the signature of
a new message. This formalization does not apply for blind signatures because
here nobody submits any messages to the signer to sign, and in fact the user is
supposed to use the signer to compute a signature on a message which the signer
does not know. Instead, we use the notion of security against one-more-forgery
introduced in [18,19]. The adversary (referred to as a forger in this context) is
allowed to play the role of the user in the blind signature protocol. After some
number of such interactions, it outputs a sequence of message-tag pairs. It wins
if the number of these that are valid exceeds the number of protocol instances
in which it engaged.

There are numerous possiblities with regard to the manner in which the
adversary is allowed to interact with the signer, giving rise to different attack
models. Some that have been considered are the sequential [18,19] (where the
adversary must complete one interaction before beginning another), the parallel
[18,19] or adaptive-interleaved [14] (where the adversary can engage the signer
in several concurrent interactions), and a restricted version of the latter called
synchronized-parallel [16]. However, in the blind signature protocol for FDH-
RSA, the signer has only one move, and in this case the power of all these
different types of attacks is the same.

Notice that in its single move the signer simply inverts the RSA function
on the value supplied to it by the user in the previous move. Thus, the signer
is simply an RSA inversion oracle. With this simplification we can make the
following definition for security against one-more forgery which will cover all
types of attacks.

Below, we let [{0, 1}∗ → Z∗
N ] denote the set of all maps from {0, 1}∗ to Z∗

N .
It is convenient to let the notation H

R← [{0, 1}∗ → Z∗
N ] mean that we select a

hash function H at random from this set. The discussion following the definition
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User Signer

Input: N, e,M Input: N, d

r
R← Z∗

N

M ← re ·H(M) mod N
M ✲

x← (M)d mod N
x✛

x← r−1 · x mod N

Fig. 3. Blind signing protocol for FDH-RSA

clarifies how we implement this selection of an object at random from an infinite
space.

Definition 5. [Unforgeability of the Blind FDH-RSA Signature
Scheme] Let k ∈ N be the security parameter, and let m,h : N→ N be functions
of k. Let F be a forger with access to an RSA-inversion oracle and a hash oracle,
denoted (·)d mod N and H(·), respectively. Consider the following experiment:

Experiment Exprsa-omf
F,h,m (k)

H
R← [{0, 1}∗ → Z∗

N ]
(N, e, d) R← KeyGen(k)
((M1, x1), . . . , (Mm(k)+1, xm(k)+1))← F (·)d mod N,H(·)(N, e, k)
If the following are all true, then return 1 else return 0:

1. ∀i ∈ {1, . . . ,m(k) + 1} : H(Mi) ≡ xe
i mod N

2. Messages M1, . . . ,Mm(k)+1 are all distinct
3. F made at most m(k) queries to its RSA-inversion oracle
4. The number of hash-oracle queries made in this experiment is

at most h(k)

We define the advantage of the forger F via

Advrsa-omf
F,h,m (k) = Pr[Exprsa-omf

F,h,m (k) = 1 ] .

The FDH-RSA blind signature scheme is said to be polynomially-secure against
one-more forgery if the function Advrsa-omf

F,h,m (·) is negligible for any forger F
whose time-complexity is polynomial in the security parameter k.

Several conventions used here need to be detailed. The count of hash-oracle
queries refers to the entire experiment, not just those made directly by the
adversary, meaning those made in verifying the signatures in Step 3 are included
in the count. We also need a convention regarding choosing the function H since
it is an infinite object. The convention is that we do not actually view it as being
chosen all at once, but rather view it as being built dynamically and stored in
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a table. Each time a query of M to the hash oracle is made, we charge the cost
of the following: check whether a table entry H(M) exists and if so return it;
otherwise, pick an element y of Z∗

N at random, make a table entryH(M) = y, and
return y. Recall that the time-complexity refers to the entire experiment as per
conventions already stated in Section 2. In this regard, the cost of maintaining
this table-based implementation of the hash function is included.

Security. We show that the FDH-RSA blind signature scheme is secure as long
as the RSA known-target inversion problem is hard.

Theorem 2 (Unforgeability of the FDH-RSA Blind Signature
Scheme). If the RSA known-target inversion problem is hard, then the FDH-
RSA blind signature scheme is polynomially-secure against one-more forgery.
Concretely, for any functions m,h : N→ N and forger F , there exists an adver-
sary A so that

Advrsa-omf
F,h,m (k) ≤ 9

5
·Advrsa-kti

A,m (k)

and the time-complexity of A is

TA(k) = TF (k) +O(k3n(k)m(k) + k4m(k) + k2m(k)5 + km(k)6)

where TF (k) is the time-complexity of the forger F .

Theorem 2 follows directly from Theorem 1 and the following lemma saying
that the FDH-RSA blind signature scheme is secure if the RSA chosen-target
inversion problem is hard.

Lemma 4. If the RSA chosen-target inversion problem is hard, then the FDH-
RSA blind signature scheme is polynomially-secure against one-more forgery.
Concretely, for any functions m,h : N → N and any forger F , there exists an
adversary B so that

Advrsa-omf
F,h,m (k) ≤ Advrsa-cti

B,h,m(k)

and the time-complexity of B is

TB(k) = TF (k)

where TF (k) is the time-complexity of the forger F .

Proof (Lemma 4). Adversary B uses the forger F to achieve its goal by running
F and providing answers to F ’s oracle queries. In response to hash-oracle queries,
B simply returns its own targets to F . RSA-Inversion oracle queries of F are
forwarded by B to its own RSA-inversion oracle and the results returned to F .

A detailed description of B is in Figure 4. It uses a subroutine Find that
looks for a given value in a given array. Specifically, it takes as its inputs an
array of values A and a target value a assumed to be in the array, and returns
the least index i such that a = A[i].

The simulation is a largely straightforward use of random oracle techniques
[3,4] so we confine the analysis to a few remarks. Note that B simulates hash-
oracle queries corresponding to the messages in the message-tag pairs output by
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Algorithm B(·)d mod N (N, e, k, y1, . . . , yn(k))
1 count ← 0 ; s← m(k) + 1
2 Initialize associative arrays Hash and Ind to empty
3 Initialize arrays Msg ,X to empty
4 Run F on input N, e, k replying to its oracle queries as follows:
5 When F submits a hash query M do
6 If Hash [M ] is undefined then
7 count ← count + 1 ; Hash [M ]← ycount ; Msg [count ]←M
8 Return Hash[M ]
9 When F submits an RSA-inversion query y do

10 Submit y to the RSA-inversion oracle (·)d mod N and
return its response.

11 ((M1, x1), . . . , (Ms, xs))← F
12 For j = 1 to s, do
13 If Hash[Mj ] is undefined then
14 count ← count + 1 ; Hash [Mj ]← ycount ; Msg [count ]←Mj

15 Ind [j]← Find(Msg ,Mj) ; X[Ind [j]]← xj

16 Return (Ind ,X[Ind [1]], . . . ,X[Ind [s]])

Fig. 4. Adversary B for the proof of Lemma 4

F in case these are not already made. This ensures that the advantages of the
two algorithms are identical. The time spent by B to maintain the hash-oracle
table is the same as that spent in Exprsa-omf

F,h,m (k) as per the conventions discussed
following Definition 5. We omit the details.
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Abstract. We propose a new protocol allowing the exchange of an
item against a signature while assuring fairness. The proposed proto-
col, based on the Girault-Poupard-Stern signature scheme (a variation
of the Schnorr scheme), assumes the existence of a trusted third party
that, except in the setup phase, is involved in the protocol only when one
of the parties does not follow the designated protocol or some technical
problem occurs during the execution of the protocol. The interesting fea-
ture of the protocol is the low communication and computational charges
required by the parties. Moreover, in case of problems during the main
protocol, the trusted third party can derive the same digital signature
as the one transmitted in a faultless case, rather than an affidavit or an
official certificate.
Keywords: Fair exchange, electronic commerce, digital signature.

1 Introduction

With the phenomenal growth of open networks in general and the Internet in
particular, many security related problems have been identified and a lot of so-
lutions have been proposed. Applications in which the fair exchange of items
between users is required are becoming more frequent. Payment systems, elec-
tronic commerce, certified mail and contract signing are classical examples in
which the fairness property is of crucial importance in the overall security of
the related protocol. As defined originally, fairness must ensure that during the
exchange of the items, no party involved in the protocol can gain a significant
advantage over the other party, even if the protocol is halted for any reason. This
paper addresses the problem of the fair exchange of an electronic item against a
digital signature (which could be considered as an acknowledgment of receipt of
the item).

The previous major works about fair exchange assume the existence of a
trusted third party (TTP) in the protocol1. Independently of how the TTP is
involved in the protocol, its role is mainly to resolve the problems that may occur
between parties. Some proposals [22,13,11] use the TTP to store the details of the
1 Though some fair exchange protocols without a TTP have already been proposed
[7,19,20,21] (implying often some communication and computation overheads).

P. Syverson (Ed.): FC 2001, LNCS 2339, pp. 339–350, 2002.
c© Springer-Verlag Berlin Heidelberg 2002
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transaction in order to complete the exchange if one of the parties does not follow
the predetermined protocol. As the TTP is actively involved in the protocol,
this approach considerably reduces the efficiency of the exchange. To remedy
this shortcoming, independently Micali and Asokan et al. [1,4,18] proposed a
solution that avoids the presence of the TTP between the parties. They proposed
not to use the TTP during the transaction when the parties behave correctly
and the network works, but to invoke the TTP to complete the protocol in case
of problems with one of the parties or the network. Such protocols are said to
be optimistic.

The idea in that approach is as follows: one of the parties (that we call
the client) sends a signature to the other party (that we call the provider) in
exchange of a requested item. The provider should be convinced that the client’s
request and all other information he received from the client before sending him
the item are sufficient to convince the TTP that the client actually asked that
item. If so, in case of problem, the TTP can either make the client’s signature
available or give its own signature as an affidavit that has the same legal value
than the client’s signature. Methods based on this approach have firstly been
proposed in [23,22,2,3]. In these protocols, the TTP can complete the protocol
by producing its own signature rather than the client’s signature.

Recently Liqn Chen [10] proposed a protocol using discrete logarithm based
signatures, in which the client commits his signature in a verifiable way for the
provider. If the client does not send his final signature after having received
the item, the TTP transmits information which has the same properties as a
client’s final signature when combined with the earlier committed signature.
This recovered signature is not the same signature expected in a faultless case
but is also a client’s signature.

The use of an invisible TTP was first proposed by Micali [14] in the framework
of certified mails. Asokan et al. [5] and Bao et al. [6], proposed fair exchange
protocols allowing to recover, in case of problem, the original client’s signature
committed earlier in the protocol rather than affidavits produced and signed by
the TTP. This kind of signatures is said to be transparent. Bao et al. proposed
two protocols, from which the first one is inefficient, while the second one, though
more efficient, has recently been broken by Boyd and Foo [8]. In the same paper,
Boyd and Foo [8] proposed a fair exchange protocol for electronic payment.
Their method allows to recover the original client’s signature from the committed
one, using designated convertible signatures [9]. They also proposed a concrete
protocol based on the RSA signature scheme.

In this paper, we propose a new protocol that allow the exchange of an item
against a signature while assuring fairness. The protocol, based on the Girault-
Poupard-Stern (GPS) signature scheme [12,16] (a variation of the Schnorr sig-
nature scheme [17]), uses an offline TTP, acting only in case of problem, which
produces the same digital signature that the client and the provider would pro-
duce in a normal case.

We assume that the communication channel between the provider and the
client is unreliable (the transmitted data may be lost or modified), and the
communication channels between the provider and the TTP, and also between
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the client and the TTP are resilient2 (the transmitted data is delivered after a
finite, but unknown amount of time; the data may be delayed, but will eventually
arrive).

The last point we wish to make before describing our protocol is the follow-
ing. In [8], Boyd and Foo denoted that the client’s committed signature must be
in such a way that only the provider can verify its correctness. For this purpose,
they propose to use an interactive protocol between the client and the provider
during which the latter is convinced that, in case of problem, the TTP can con-
vert the committed signature into a normal one that anyone could verify. In our
protocol we do not follow this point of view. In fact, we believe that the use
of an interactive verification just increases uselessly the amount of communica-
tion and provides nothing useful in exchange. All we want is that the security
from the client’s and the provider’s point of view be respected. If the final sig-
nature (that is accepted as a valid signature by anyone) is different from the
committed signature and if the latter cannot be forged, nor converted into a
valid final signature by someone else than the TTP and the client, this partial
signature gives sufficient credence about the ”non-transferability” of information
exchanged during the protocol. We believe that this is sufficient for the purpose
of fair exchange and this is what we implement in our protocol.

2 Generic Fair Exchange Protocol

As it is also the case in recently proposed fair exchange protocols with offline
TTP, in our protocol the provider and the client can verify the validity of a
committed signature without being able to extract the final signature from it.
More precisely, the provider and the client, after having received a committed
signature, can make sure that it contains enough information for the TTP to
open it and produce the final signature, if problems occur during the transaction.

Hereafter, we give an outline of our protocol, inspired by the Asokan et al.
fair exchange protocol [4], that may be used to provide fair exchange with various
signature schemes. We will see an instantiation in the following section.

Main Protocol.

1. The provider sends to the client the item ciphered with a session key together
with the session key ciphered with the TTP’s public key, those ciphered in-
formation signed by the provider and a committed signature on the item’s
description.

2. If the provider’s committed signature may be opened by the TTP to provide
the final signature and if the provider’s signature on the ciphered informa-
tion is valid, the client transmits to the provider his committed signature on
the description of the requested item.

2 This kind of channel is also said asynchronous [15].
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3. Upon receiving the committed signature from the client, the provider verifies
its correctness and checks if it may be opened by the TTP to provide the
client’s final signature. If so, the provider answers by sending the item and
his final signature to the client3.

4. After having checked the validity of the received item, the client sends to
the provider his final signature on the requested item.

Provider’s Recovery Protocol. If, during the main protocol, the provider does not
receive the client’s final signature or if the one received is not valid, he initiates
a recovery protocol with the TTP.

1. The provider sends to the TTP the item, his final signature on the item’s
description and the client’s committed signature of the item’s description.

2. If the protocol has already been recovered or aborted, the TTP stops the
recovery protocol. Otherwise, it verifies if the item corresponds to the item’s
description, checks the validity of the provider’s signature, the client’s com-
mitted signature and whether the signature is actually addressed to the
provider and is on the item’s description. If all the checks are correct, the
TTP extracts the client’s final signature from the committed one and for-
wards it to the provider and transmits to the client the item and the fi-
nal provider’s signature. Otherwise, the TTP sends an abort token to the
provider and the client.

Client’s Recovery Protocol. If, during the main protocol, the client does not
receive the session key from the provider or if the one received is not valid, he
initiates a recovery protocol with the TTP.

1. The client sends to the TTP the ciphered item, the ciphered session key, the
provider’s signature on those ciphered information, his committed signature
on the item’s description4 and the provider’s committed signature on the
item’s description.

2. If the protocol has already been recovered or aborted, the TTP stops the
recovery protocol. Otherwise, it verifies if the item (obtained by deciphering)
corresponds to the item’s description, checks the validity of the client’s final
signature and the provider’s committed signature and whether the signature
is actually addressed to the client. If the received signatures are invalid the
TTP stops the protocol. If the other checks are incorrect, it sends an abort

3 The provider may just send the session key, rather than the item, in order to decrease
the amount of communications.

4 If the client sends directly his final signature when realizing a recovery, just after
the provider has aborted the protocol (see the abort protocol hereafter), then the
provider can obtain the client’s final signature by observing the communication chan-
nel between the client and the TTP, while the client does not obtain the requested
item, as the protocol has been aborted.
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token to the provider and to the client. Otherwise, if all the checks are correct,
the TTP extracts the provider’s final signature from the committed one,
transmits it to the client along with the item. The TTP extracts the client’s
final signature from the committed one and forwards it to the provider.

Abort Protocol. If, during the main protocol, the provider does not receive the
committed signature from the client or if the one received is not valid, he initiates
an abort protocol with the TTP.

1. The provider sends to the TTP an abort request.

2. If the protocol has not already been recovered or aborted, the TTP sends
an abort confirmation to the client and to the provider.

As mentioned in the introduction, in [8] the sending of a committed signature
is followed by an interactive proof of correctness of this committed signature.
In our protocol, described in the next section, when receiving a committed sig-
nature, its correctness may be checked non-interactively and efficiently, without
being able to take any advantage from it.

Remarks:

– At the beginning of the main protocol, the provider sends the item ciphered
with a session key. The client cannot check if the ciphered item corresponds
to the item that he asked, however if the provider does not give the ex-
pected item at the third step of the main protocol, when, thanks to the
ciphered item, the client runs a recovery protocol, the TTP will detect that
the provider has cheated, and so sends an abort token to both parties, ending
this protocol run.

– The provider must send his signature on the ciphered information in step 1 of
the main protocol, in order to prevent the client to take advantage from the
protocol. In fact, the client can stop the main protocol after having received
the requested item and the provider’s final signature (in the step 3) and
launch a recovery protocol with the TTP. Without the provider’s signature
on the ciphered information, the client can hand an incorrect ciphered session
key, which leads to an incorrect item deciphered by the TTP, forcing the
latter to send an abort token to the provider. This prevent the provider to
obtain the client’s final signature afterward by launching a recovery protocol.

– The provider’s committed signature cannot relate to the ciphered item and
to the ciphered session key because it must be converted into a final signature
that should only be related to the item’s description.

Fairness. After a successful execution of the main protocol, the final signature is
exchanged against the item. If the client stops the main protocol after receiving
the first message of the main protocol, the provider can realize the abort protocol.
If the provider does not send the session key or if the client stops the main
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protocol after receiving the item, they can initiate independently their recovery
protocol and the TTP will either send the final client’s signature to the provider
and the requested item to the client or an abort token if the information are
inconsistent; the protocol is remaining fair, due to the resilient channels between
the TTP and respectively the provider and the client. If the client does not
receive the first message of the main protocol, he stops the main protocol and
the protocol remains fair as no target information (neither the item nor the final
client’s signature) has been transmitted.

3 A Fair Exchange Protocol Based on the GPS Signature
Scheme

Before describing our protocol, let us introduce some definitions and notations:

– item is an item to be transmitted to the client.
– descr is a string containing the client’s request, the description of the re-
quested item and some other information allowing the provider, the TTP
and any other external party to recognize the item.

– C, P,TTP identify respectively the following entities: the client, the provider
and the trusted third party.

– A→ B : X denotes that the entity A sends a message X to the entity B.
– h(X) is the output of a one-way hash function h applied to the message X .
– SP (X) is a “classical” provider’s digital signature (and not recoverable) of
the message X .

– Ek (X) is a symmetric encryption of the message X with the session key k.
– ETTP (X) is an asymmetric encryption of the message X with the TTP’s
public key.

– fcom,msg,ack,rec,abort,aborted are flags indicating the purpose of a message sent
(respectively “committed signature”, “expected message”, “final signature”,
“ask for recovery”, “ask for abort” and “confirmation of abort” ).

– l is a label identifying, with the identities P and C, the protocol run.

The protocol is based on the GPS signature [12,16]. The signature of a mes-
sage m is realized on one hand by choosing a random value r and computing
t = αrmod n where n is a composite modulus and α is a basis of maximum
order, λ(n), and on the other hand by computing z = r + xh(t, m) where x is a
secret value associated to y ≡ α−xmod n the corresponding public value. The
verification is achieved by comparing t and αzyh(t,m)mod n.

Initialization. Our protocol assumes the existence of a TTP that knows some
secret information. In this phase of the protocol, the TTP chooses an integer
n = pq, where p and q are large random primes of almost the same size such
that p = 2p′ + 1 and q = 2q′ + 1 for some primes p′ and q′. The TTP chooses
also a base α of order s = p′q′ and a very small integer c such that gcd(s, c) = 1.
We recommend c = 3 for some reasons that we discuss further is this section.

The TTP now computes d such that cd ≡ 1 (mod s) and β = αcmod n.
Finally, the TTP makes n, β, c, h and α public, keeps d secret and discards p
and q.
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Key Generation. In order to prepare a pair of public and secret keys, each user u
chooses respectively a random integer xu as secret key and computes the relative
public key yu = αxu mod n.

Note that, here, for the purpose of simplicity we do not consider the au-
thenticity of the public keys. However, it is easy to see that public keys may be
converted to self-certified keys as explained in [12] and be used in a straightfor-
ward way in the following protocol.

Main Protocol. When a client wishes to receive an item from a provider against
a valid signature, they follow this protocol:

1. The provider chooses a random rP and computes:

tP = βrP mod n and zP = c · rP + h(tP , mP ) · xP

where mP = (fmsg , P, C, l, descr ). He also selects a random session key k
and forms Ek (item) and ETTP (k). The pair (tP , zP ) (being the provider’s
committed signature) is sent to the client together with Ek (item), ETTP (k)
and the provider’s signature on those ciphered information.

P → C : fcom1 , P, C, l, descr ,Ek (item) ,ETTP (k) , sigP , tP , zP

where sigP = SP (fcom1 , P, C, l,Ek (item) ,ETTP (k)).

2. The client forms mP and checks whether sigP is valid and whether

αzP ≡ tP · yP
h(tP ,mP ) (mod n)

If so, the client chooses a random rC and computes

tC = βrC mod n and zC = c · rC + h(tC , mC) · xC

where mC = (fack , C, P, l, descr ). The pair (tC , zC), being the client’s com-
mitted signature, is sent to the provider.

C → P : fcom2 , C, P, l, tC , zC

3. The provider forms mC and checks whether

αzC ≡ tC · yC
h(tC ,mC) (mod n)

If so, the provider computes

t′P = αrP mod n

and sends the item and t′P to the client. The pair (t′P , zP ) being the final
signature.

P → C : fmsg , P, C, l, item , t′P
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4. The client verifies that

αzP ≡ t′P
c · yP

h(t′P
c mod n,mP ) (mod n)

If so, after having checked the validity of the received item, the client com-
putes

t′C = αrC mod n

and sends t′C to the provider. The pair (t′C , zC) being the final signature.

C → P : fack , C, P, l, t′C

5. The provider verifies that

αz ≡ t′C
c · yC

h(t′C
c mod n,mC) (mod n)

If so, the provider accepts the signature, since it will also be accepted by any
external party.

Remarks:

– The occurrence of fack and fmsg (rather than fcom2 and fcom1 ) in mP and
mC are just because mP and mC are used in zP and zC and they constitute
a part of the final signature.

– The use of the identities (P and C) in mP and mC is of particular impor-
tance, because this guarantees that a committed signature is addressed to a
given recipient. In fact, without P in m′ (for example), any provider (pro-
viding the requested item) can capture the committed signature and use it
afterward to obtain a client’s final signature by launching a recovery protocol
with the TTP. So, it is essential that the TTP verifies the provider’s identity
in the recovery protocol and checks the correctness of a committed signature
with respect to it (see below).

– In steps 4 and 5, it is actually sufficient to check whether t′P
c ≡ tP mod n

and t′C
c ≡ tC mod n. The full equations are described above in order to

highlight how to check the the final signature.

Provider’s Recovery Protocol. If the client does not send his final signature or if
the last signature is not valid, the provider runs the following protocol with the
TTP, in order to recover the client’s final signature.

1. The provider sends the item, descr , the pair (tC , zC) and his final signature
to the TTP.

P → TTP : frecP
, P, C, l, descr , item , tC , zC , tP , t′P , zP

2. If the protocol was not already recovered or aborted, the TTP makes sure
that the item corresponds actually to descr and if so it forms mC and mP
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and verifies the validity of (tC , zC) and (tP , t′P , zP ). If all the checks are
successful, the TTP sends

t′C = tC
d mod n

to the provider and the item to the client. Otherwise, it sends an abort token
to both parties.

TTP → P : fack , C, P, l, t′C

TTP → C : fmsg , P, C, l, item , t′P

Client’s Recovery Protocol. If the provider does not realize the third sending of
the main protocol or if this message is not valid, the client runs the following
protocol with the TTP.

1. The client sends the received ciphered information, descr , the provider’s sig-
nature on them, the pair (tp, zp) (the provider’s committed signature) and
his final signature to the TTP.

C → TTP : frecC
, C, P, l, descr ,Ek (item) ,ETTP (k) , sigP , tP , zP , tC , zC

where sigP = SP (fcom1 , P, C, l,Ek (item) ,ETTP (k)).

2. If the protocol was not already recovered or aborted, the TTP first makes
sure that the received item (obtained after deciphering) corresponds actually
to descr and that the provider’s signature sigP is valid, if so it forms mC

and mP and verifies the validity of (tP , zP ) and (tC , zC). If the signatures
are invalid the TTP stops the recovery protocol. If the other checks are not
successful the TTP sends an abort token to the provider and to the client,
as in the abort protocol. Otherwise, if the checks are successful, the TTP
sends t′P = tP

dmod n and the item to the client and t′C = tC
dmod n to the

provider.

TTP → C : fmsg, P, C, l, item , t′P

TTP → P : fack , C, P, l, t′C

Abort Protocol. If the client does not send the second message of the main
protocol, the provider runs the following protocol with the TTP, in order to
abort the protocol.

1. The provider sends an abort request to the TTP.

P → TTP : fabort , C, P, l,SP (fabort , C, P, l)
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2. If the protocol was not already recovered or aborted, the TTP sends an abort
confirmation to the provider and to the client.

TTP → P : faborted , P, C, l,STTP (faborted , P, C, l)

TTP → C : faborted , P, C, l,STTP (faborted , P, C, l)

Security. The security of the protocol may be discussed around two questions:

1. Is it possible to create false signatures linked to a given client?
2. Is it possible to convert a committed signature to a final one without knowing

r or d?

First, let us see why we recommend to choose c = 3. When a committed
signature is given, we have z = cr + h(t, m)x, where c and h are known. Since
there is no modular reduction (unlike the Schnorr scheme), we can immediately
compute xmod c. Hence, with c = 3 we minimize the amount of information
that anybody can learn about the secret key.

To answer the first question, let us notice that the committed signature is
essentially the same as the Schnorr scheme with composite modulus. Since r is
random, cr in z may be seen as a random r′ (even though the knowledge of c

gives a “bit” of information about x), while t may be considered as αr′
mod n.

So, the pair (t, z) actually constitutes a GPS signature on m′. The security of
this scheme is already discussed in [16] by Poupard and Stern.

On the other hand, creating a final signature just from the public key and
known signatures (but without having the corresponding committed signature)
is at least as hard as forging a committed signature. In fact, if it is possible to
create such a signature, i.e., producing a pair (t′, z) for a message m′, then it
is also possible to create (t = t′cmod n, z), as a committed signature, or more
generally a GPS signature on m′.

To answer the second question, it is straightforward to see that, in order
to compute t′, one should either know r (to do as the real client does) or d
(to do like the TTP). Otherwise, it would be possible for a cheater to use a
committed signature (t, z) to create a correct final signature (t̂′, ẑ) such that
ẑ �= z (that implies that t̂′

c �= t) or ẑ = z but t̂′
c �= t. We believe that in

either cases, establishing a final signature using t and z is equivalent to forging
a GPS signature. In fact, this precisely means that it is possible to create a GPS
signature (t̂ = t̂′

c
, ẑ) onm′ from a signature (t, z) on the same message. However,

creating a new signature from an existing signature on the same message is
equivalent to forging a signature for a message m from known signatures of
messages m1, m2, .... This can clearly be shown by the same techniques used in
theorem 10 in [16].
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4 Conclusion

We have considered a new protocol, based on the GPS signature scheme (a
variation of the Schnorr signature schemes), allowing the exchange of an item
against a signature while assuring fairness. Our protocol assumes the existence
of a trusted third party whose role is to guarantee fairness and that, expect in
the setup phase, is involved in the protocol only when one of the parties does not
follow the protocol correctly. We proposed to use a committed signatures that
gives sufficient assurance about the TTP’s ability of recovering the final signature
from the committed signature, in case of problem. The interesting feature of the
protocol is the low communication and computational charges required by the
parties during the transactions.

It seems to us that our protocol is not an isolated instance based on the
framework introduced in section 2. We are currently working on protocols based
on Guillou-Quisquater and Fiat-Shamir signature schemes.

The possibility of using DSA and ElGamal schemes for designing fair ex-
change protocols based on our model is not clear to us and remains as an open
problem.
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Abstract. This paper presents a new protocol for M + 1st-price auc-
tion, a style of auction in which the highest M bidders win and pay a
uniform price, determined by the (M + 1)st price. A set of distributed
servers collaborates to resolve the (M +1)st price without revealing any
information in terms of bids including the winners’ bids. A new trick to
jointly and securely compute the highest value as a degree of distributed
polynomials is introduced. The building block requires just one round
for bidders to cast bids and one round for auctioneers to determine the
winners.

1 Introduction

The Internet is a prime vehicle for supporting electronic auction, a primitive
pricing mechanism for setting prices. The most common auction style is the
open-bid English auction, in which bidders incrementally raise the prices bid for
goods until as many winners are left as the number of units of goods. Bidders are
required to be watching the current prices, and it usually takes a long time to
close the auction. As an alternative to this classical style of auction, an automatic
agent system called “proxy bidding” [1] is becoming popular. First, a bidder B
specifies the maximum amount he/she wants to bid, which is kept secret in the
agent system. If someone else has the highest current bid, the system immediately
raises B’s bid, and so on until someone exceeds B’s maximum bid, or B wins
the auction.

This works, but what if all bidders choose proxy bidding? The result would
be equivalent to that of a sealed-bid auction. In this paper, therefore, we consider
a secure protocol for sealed-bid (M + 1)st-price auction:

(M+1)st-price Auction.Multiple units of a single item are auctioned.
TheM highest bidders win and pay a uniform price, the (M+1)st highest
bid.

By letting M be 1, the definition includes as a special case the second-price
auction, or so called Vickrey auction[7]. Wurman et al. proved that the (M+1)st-
price auction satisfies a useful property, incentive compatibility, i.e., the dominant
strategy is for a bidder to bid to his/her true valuation[20], as is well known
for the widely advocated Vickrey auction. Since a winner’s payment will be
determined by the (M +1)st highest bid, which is the highest of all losing bids,

P. Syverson (Ed.): FC 2001, LNCS 2339, pp. 351–363, 2002.
c© Springer-Verlag Berlin Heidelberg 2002
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every bidder who agrees to bid the maximum price he/she is willing to pay
for a given item maximizes his/her chance to win without being worried that
he/she might bid too much. Furthermore, the sealed-bid auction is fast. All that
bidders have to do is to cast their sealed bids just once. No interaction between
auctioneers and bidders is required.

In this paper, we present a solution for (M+1)st price sealed-bid auction pro-
tocol. First, we show the first price version using secret multiparty computation,
and then use it to extend (M + 1)st price auction in later section.

2 (M+1)st-Price Auction

2.1 Assumptions and Model

Given M units of a single good, n bidders are going to buy goods at a uniform
price, which is determined in a meaningful procedure. Let W = {w1, . . . , wk}
be a set of k possible discrete bidding prices. The i-th bidder has his/her true
evaluation ei ∈ W . The objective of the auction game is to find the (M + 1)st
highest price w∗ of all bids without revealing any bids, even those higher than
w∗, and to find all winners who have bids higher than w∗.

We assume that bidder has independent private evaluation for goods. The
evaluation, ei, is not affected by the evaluations other bidders place on the good.
This assumption is widely accepted and makes theoretical analysis possible. In
the theory of economics, it is known that a social surplus is maximized when
bidders whose bid is higher than w∗ win the auction game and pay the uniform
winning price which is independent of their evaluation. The Vickery auction,
in which the winner who has the highest bid pays the second highest bid, is a
special case with M = 1.

Them auctioneers corroborate to resolve the winning price in such a way that
no c auctioneers can be faulty. Auctioneers are m independent servers. Bidders
do not trust each of the auctioneers, but trust an agreement of more than c
auctioneers. Auctioneers do not trust bidders, who might violate the specified
protocol in order to disrupt the auction.

We assume confidentiality of every session, entity authentication, and in-
tegrity of messages based on appropriate cryptographical tools including PKI.
Hence, eavesdropping links give no information about bids or bidders.

2.2 Requirements

Privacy of bid. No bid is revealed to anyone except the (M + 1)st highest
bid. For the sake of the incentive compatibility, we want to make leakage of
information as small as possible. Thus, even the bids higher than the winning
bid must be secret even after the auction closes. No statistics can be used to
identify the distribution of bids even after the auction closes.

Proof of winner. The winner must publicly prove that his/her bid is higher
than the winning bid without revealing how high the bid is.
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Non-repudiation. No bidder can repudiate his bid. If bidders are allowed to
cancel their bids, a collusion of malicious bidders can control the winning
price as they like (this attack was mentioned first in [3].)

Accountability of bidder. Any auctioneer can verify that bidders follow a
protocol to cast their bids. No malicious bidder can disrupt the auction with
an unmannered bid without being detected.

Accountability of auctioneer. Any bidder can verify that auctioneers cor-
rectly follow a protocol to resolve the winning bid. No malicious auctioneer
can alter the result of auction without being detected.

Round efficiency. The protocol is efficient in terms of rounds involved in re-
solving the winner. We say a protocol is efficient if up to O(log n) rounds are
involved.

Communication efficiency. The protocol is efficient in terms of bandwidth
consumption between bidders and auctioneers. The communication among
servers must be minimized.

2.3 Related Work

Franklin and Reiter present a sealed-bid auction protocol in [5]. The protocol uses
a verifiable signature sharing in order to prevent malicious bidder from canceling
their bids. Bids are kept secret until the opening phrase, and then all bids are
opened and compared to determine the highest one. Kikuchi, Hakavy, and Tygar
[8] improve the privacy of bids among distributed auctioneers even after the
opening phrase comes using a secure function computation of summation. The
protocols runs in linear time to the number of possible bidding prices and cannot
deal with tie breaking.

Any Dutch-style auction naturally satisfies the property that privacy of losing
bids is preserved after auction closes. In [11,12], Sako implements a Dutch-style
auction using a group signature which bidders use as container of their bids.
Similarly, Miyazaki, and Sakurai use an undeniable signature [14], and Kobayashi
and Morita use a one-way hash chain [16]. Recently, several works have been
made in [17,18,19,21,13,15].

Auctions in the electronic commerce are more complicated. Multiple buyers
and sellers are involved and multiple unit of goods are auctioned in several
environments. Wurman, Walsh and Wellman examined a several auction designs
and analyzed in terms of the incentive compatibility in [20]. They showed that the
(M +1)st-price sealed-bid auction is incentive compatible for single-unit buyers.
The secure second-price (M = 1) auction protocol is presented by Hakavy et
al. in [9]. They use the secure multiparty protocol of multiplication, presented
in [4] in order to resolve the second highest bid in O(log(k)) rounds. Recently,
Miyamoto et al. implement this protocol but due to the communication cost
among auction servers, O(n), an enormous amount of time is required to decide
the winning price. Kikuchi presents a more general protocol for (M + 1)st-price
auction in [24]. The protocol, however, is definitely inefficient because it takes a
cost of n-choose-k and has a serious security flaw.
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3 Protocol Description

3.1 Overview

Our proposed protocol is based on the secure multiparty computation protocol
of [4], which allows distributed computation of the sum and product of every pair
of secrets encoded as free variables of random polynomials, namely, f(0)+ g(0),
and f(0) · g(0).

We present a new trick to jointly and securely compute the (M+1)st highest
value for n bids without revealing any statistics of bids, such as their distribution
or the highest value. The well-known technique due to [4], in which arbitrary
functions are computed bit-by-bit, would take an enormous number of rounds.
Instead, our underlying idea involves only a constant number of rounds between
bidders and auctioneers.

The basic idea is to encode secret information (bid) in the degree of a ran-
dom polynomial and secretly compute a function of polynomials in order to
give the intended computation of bids. For example, if we sum some shares of
polynomials generated by each bidder, then the result gives the share of a new
polynomial whose degree is the maximum of bids. Introducing a fair and secure
order-resolution protocol, we learn whether or not the degree is greater than a
given value (M). In the proposed protocol, instead of summation, the auction-
eers collaborate to compute the product of bidders’ polynomials, which in turn
gives the number of bidders willing to bid at a given price. Polling several prices,
a set of auctioneers finally identifies the maximum price at which there are just
M bidders who are willing to buy.

There is some possibility that a malicious bidder could disrupt an auction
just by casting an unmannered bid. On the other hand, malicious auctioneers
would alter the result of computation they have to show. Hence, we present a
verifiable protocol of bidding so that auctioneers are able to verify if a bidder
follows the protocol or not. The verifiable secret sharing is not sufficient for our
purpose because the degree can be resolved by any entity from commitment
values. Thus, we use the information-theoretic secure verifiable secret sharing
proposed by Pedersen in [6].

3.2 Preliminary

Let p and q be large primes such that q divides p− 1. All arithmetic operations
are done in modular p unless otherwise stated. Let α1, . . . , αm be somem distinct
non-zero points in field Z∗

p and be published to mean commonm points, assigned
to m auctioneers. Let g ∈ Z∗

p of order q.

3.3 Properties of Polynomial Degree

Definition 1. Let f be a polynomial of degree t of the form f(x) = a+ a1x+
· · ·+atx

t. The s-th interpolation of f , denoted by f (s)(0), is defined as (Lagrange)

f (s)(0) =
s∑

j=1

∏
i�=j∈As

αi

αi − αj
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where As = {α1, . . . , αs} ⊂ Z∗
p .

Note that t-th interpolation always satisfies that f (t)(0) = f(0), while the
contrary holds with very high (but not 1) probability. Assuming random picking
from Z∗

p gives 0 with probability of 1/p, we have the probability that the degree
resolution succeeds, which can be negligible with p increasing.

Remark 1. Probability of t ≤ s given f (s)(0) = f(0) is 1− 1/p.

Given gf(α1), . . . , gf(αt), we can learn the degree as the least s that satisfies

gf(0) =
s∏

j=1

(gf(αj))γj

where
γj =

∏
i�=j∈As

αi

αi − αj
(mod q).

Arithmetic operation of polynomials yields operation of degrees as follows.

Remark 2. Let t and s be degrees of polynomials f and h, respectively. The
f + h is a polynomial of degree max(t, s) with probability of 1− 1/p. The f · h
is of degree t+ s with probability of 1.

3.4 First-Price Auction

We begin with the first-price auction, which will be used to construct more secure
protocol as building block. Let us assume that m > k. To find the highest price
from n bids without revealing any of bids, we have the following protocol.

PROTOCOL MAX
Step 1: Let bi ∈ {1, . . . , k} be a bid of bidder i such that wbi = ei. Bidder i

randomly picks a polynomial

fi(x) =
ti∑

j=1

ajx
j

of degree ti = bi + c, where c is a number of faulty auctioneers. Note that
a0 = 0, which will play a role of flag in resolving degree.
Bidder i sends share fi(αj) to auctioneer j for j = 1, . . . ,m.

Step 2: Auctioneer j adds n shares, f1(αj), . . . , fn(αj), sent from bidders, to
have

F (αj) =
n∑

i=1

fi(αj)

and publishes F (αj) in a fair manner using an appropriate commitment
protocol.
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Step 3: With F (α1), . . . , F (αn), any entity (bidders or auctioneers) can find
the smallest s such that F (s)(0) = 0, which gives the maximum bid as
b∗ = s− c = max(t1, . . . , tn)− c.
Any set of more than t∗+1 shares is enough to recover the whole polynomial

F , but reveals no secret information. Even if up to c faulty auctioneers try to
collude or to disrupt the auction, they can be excluded by choosing an alternate
group of t∗ + 1. (Detection of faulty auctioneers will be discussed later.) The
protocol is quite effective because the communication cost of a bidder is O(m)
and just one round is involved between bidders and auctioneers.

Running time to determine s is linear to the number of price candidates,
k, which is bounded by m, thus O(m), but computations can be done locally
once all necessary information F (α1), . . . , F (αm) are published by broadcasting
or through a bulletin board.

The functions provided by the Protocol MAX are very limited because enti-
ties are assumed to be honest. To make this more realistic, we need deal with

– case when multiple bidders are tied with the same price,
– malicious bidders who cast bogus shares in order to disrupt the auction,
– malicious auctioneers who forge F (αj) to alter the winning price,
– malicious winner who tries to figure out how high the second highest bid

is by subtracting his share fi(αj) from F (αj), resulting polynomial of the
second highest degree.

3.5 Verification Protocol

With information-theoretic verifiable secret sharing in [6], we show the revised
protocol prevents both malicious bidders and auctioneers from misbehaving. Let
g1 and g2 be distinct elements of multiplicative group Z∗

p of order q.

PROTOCOL VMAX
Step 1: Bidder i chooses random polynomials fi(x) = a1x+ a2x

2 + · · ·+ atix
ti

of degree ti = bi+ c and hi(x) = b1x+ b2x2+ · · ·+ bsxs, where s = k+ c and
s > ti. He secretly sends fi(αj) and hi(αj) to auctioneer j for j = 1, . . . ,m.
As commitments of polynomials, he publishes

Ei,1 = ga1
1 g

b1
2 , . . . , Ei,ti = g

ati

1 g
bti

2 ,

Ei,ti+1 = g
bti+1

2 , . . . , Ei,s = gbs
2 .

Step 2: Auctioneer j verifies that the share sent from bidder i is consistent with
the commitments as,

g
fi(αj)
1 g

hi(αj)
2 = Xi,j =

s∏
l=1

(Ei,j)α
l
j .

If the identity holds, she is convinced that fi(x) has no constant (a0 = 0)
and is of degree of at most s, and then publishes

Yj = g
F (αj)
1 and Zj = g

H(αj)
2
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where F (αj) = f1(αj) + · · ·+ fn(αj) and H(αj) = h1(αj) + · · ·+ hn(αj).
Step 3: Any entity now can verify that Yj and Zj are computed correctly by

testing

YjZj =
n∏

i=1

Xi,j = g
F (αj)
1 g

H(αj)
2 .

If this holds then the highest price is given by b∗ = t∗ − c where t∗ is the
least element in {1, . . . , k} such that

t∗∏
j=1

Y
γj

j = g
F (t∗)(0)
1 = 1,

where γj =
∏

i�=j∈At∗
αi/(αi − αj) (mod q).

The protocol ensures that neither of bidder or auctioneer can cast bogus
values without being detected. In [6], for any a ∈ Z∗

q and for randomly chosen
b ∈ Z∗

q , Ei,j = ga
1g

b
2 is uniformly distributed in subgroup of Z∗

p of order q. Note
that the weakness of the protocol is that it is still vulnerable to the winner
attack, which will be mentioned in later section.

3.6 Identifying Winners

After the winning price is determined, the winner must prove the fact that he
actually has sent the winning bid. On the other hand, the winner should be able
to be publicly determined without his help; otherwise a malicious bidder can
repudiate to collaborate just in order to cancel the overestimation. Hence, bidders
pick three random polynomials fi(x), Gi(x) and hi(x), which will be used for
determining winning price, winner’s identities and for randomizing commitment
value, respectively. The degree of product of fi(x) and Gi(x) is equal to degree
of hi(x).

PROTOCOL WINNER
Step 1: Bidder i chooses random polynomials

fi(x) = a1x+ a2x
2 + · · ·+ atix

ti ,

Gi(x) = b1x+ b2x2 + · · ·+ bs−tix
s−ti ,

hi(x) = c1x+ c2x2 + · · ·+ csxs,

and sends fi(αj), Gi(αj) and hi(αj) to auctioneer j for j = 1, . . . ,m. He
publishes Ei,l = galbl

1 gcl
2 for l = 1, . . . , s.

Step 2: Auctioneer j verifies that

g
fi(αj)Gi(αj)
1 g

hi(αj)
2 = Xi,j =

s∏
l=1

(Ei,j)α
l
j
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and then publishes

Yj = g
F (αj)
1 and Zj = g

H(αj)
2

where F (αj) = f1(αj) + · · · + fn(αj) and H(αj) = h1(αj) + · · · + hn(αj).
Note that, unlike to Protocol VMAX, shares G1(αj), . . . , Gn(αj) are kept
secret locally at this point.

Step 3: The first-price b∗ is determined in the same manner as Protocol VMAX.
Then, a subset of auctioneer whose size is u = s − t∗ collaborate to re-
solve winners by revealing a sequence of shares, G1(αj), . . . , Gn(αj) for
j = 1, . . . , u. There must be (at least one) bidder i∗ such that

G
(u)
i∗ (0) = 0,

which proves his bid is the highest.

Even if multiple bidders are tied with t∗, the third step detects all of the
winner candidates, and thus the final auction will be held among them. One
drawback of this protocol is the lost of verification process of auctioneers, which
is with protocol VMAX.

3.7 Simple (M+1)st-Price Auction

To extend the first-price auction to (M+1)st-price, the simplest way is to iterate
Protocol WINNER excluding the winner i∗ from the set of bidders as

Y
(l)
j =

Y
(l−1)
j

g
fi∗ (αj)
1

,

for l = 1, . . . ,M and j = 1, . . . ,m. Let Y (0)
j = Yj at Step 3 in Protocol WINNER

or VMAX. AfterM+1 winners are determined, the set of auctioneer use Protocol
VMAX to identify the (M+1)st price, say t∗, with keeping the (M+1)st highest
bidder anonymous.

Remark 3. Protocol WINNER determines a set of winners without revealing
loosers’ bids.

Unless more than t∗ auctioneers collude and leak the corresponding Gi(α),
the privacy of (M + 1)st highest bidder is preserved. The protocol, however,
reveals all winners’ private bids, which are not required because the winners pay
the uniform price, t∗ − c, and thus should be secret in the protocol in the next
section.

3.8 Majority Protocol

Suppose bidder i has one-bit secret, bi ∈ {0, 1}, meaning Yes and No, and wants
to know if there are more than S entities with Yes for n entities. (This can be
used in a vote of confidence.)
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The technique known as the secure multiparty protocol for addition[4] might
be used, but it finally reveals the number of Yeses, which must be secret for our
requirements.

PROTOCOL MAJORITY
Step 1: For i = 1, . . . , n, bidder i picks a random polynomial fi(x) of the form

fi(x) = 1 + a1x+ · · ·+ ac+1x
c+1

where

ac+1 =
{
r if bi = 0,
0 if bi = 1.

The degree of fi(x) is c + 1 only if bi = 1. Entity i (i = 1, . . . , n) sends to
server j fi(αj), for j = 1, . . . ,m.

Step 2: Auctioneer j computes

H(αj) =
n∏
i

fi(αj),

which yields a share of unknown function of degree T = cn + B, where
B =

∑n
i bi. Given the shares, auctioneers wish to see whether T is greater

than a threshold value S without revealing B.
Step 3: A trusted dealer D privately picking a random polynomial of degree

S, say R(x) = r1x+ · · · rSxS , uses secret sharing scheme to distribute R(x)
into m auctioneers. Each auctioneer computes and publishes

H(αj) = H(αj) +R(αj),

in which true degree T of H is masked by R(x) if T ≤ S. Any verifier
applies the Lagrange interpolation to reconstruct H

(S)
(0), which would be

1 if T ≤ S; otherwise it fails to recover the secret polynominal.

When T > S, the degree is too high to reconstruct the polynomial H and just
bogus value appears as the result of S-th interpolation. No information about B
is revealed. When T ≤ S, the Lagrange interpolation converges at the common
constant, 1. Note the secret B is kept under the trust of dealer D. Obviously, the
trusted party D can be eliminated by using an extra multiparty protocol that
generates a random polynomial of common degree. With S = 1/n, the protocol
gives if the yes players are majority or not, which is what the election scheme
requires.

Multiplication of polynomials involves increasing degree up to n times. Thus,
degree reduction technique presented in [4] must be applied here.

3.9 Binary Search of M+1st Highest Price

The majority protocol allows us to determine if there are more than M bidders
who are willing to buy an item at the given price. A naive implementation
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of (M + 1)st-price resolution takes a time of O(k). We use a well-known binary
search scheme to reduce the round complexity for winning price resolution. After
the M + 1st price is determined through the protocol, auctioneers use Protocol
WINNER to identify bidders whose bid is higher than the M + 1st price.

PROTOCOL MPLUS1
Step 0: LetW = {w1, . . . , wk} be a set of bidding prices and w∗ = w1, w∗ = wk

and w = wi ∈ W where i = �k/2	.
Step 1: A representative auctioneer publishes w to bidders, who then cast their

willingness to buy at the current call w using Protocol MAJORITY.
Step 2: In Protocol MAJORITY, the auctioneers can test if more than M + 1

bidders are willing to buy at w. According to the result, they update w∗ = w
if there are more than M + 1 bidders willing to buy, otherwise they set
w∗ = w. A new polling price is determined by an index i = �(w∗ − w∗)/2	
as w = wi. They iterate Step 1 and 2 until w∗ = w∗ holds. The (M + 1)st
highest price is given by w∗ = w∗ = wi∗ .

To show the soundness of the protocol, we need to examine three cases; i)
there is just one bidder whose bid is the (M+1)st highest; ii) multiple bidders are
tied for the (M + 1)st highest; and iii) there are several possible prices between
M -th and (M + 1)st highest price. In Case i), the iteration completed at the
(M + 1)st-highest price (of loser) and we successfully identify all M winner at
wi∗+1 (the following bidding price). In Case ii), the protocol outputs the least
price at which less than or equal to M +1 bidders want to buy. Hence, less than
M winners cannot be elected. Even if the auctioneers reveal one extra share,
then more than M winners happen. Accordingly, the winner candidates might
have to replay to resolve the tiebreak. Finally, in Case iii), the following bidding
price wi∗+1 might be too low to exclude the (M + 1)st bidder (loser) from the
winner set since the output w∗ is likely to be the least element in the interval
between (M + 1)st and M -th highest bids. The chance to unfortunately reveal
the M + 1st loser can be small as making the breadth larger than 1.

Obviously, Protocol MPLUS1 runs in O(log k) round complexity, although it
requires all bidders to participate the protocol to determine the winning price.
Alternatively, we can make it non-interactive by having bidders send a batch
of shares for each of all k possible prices in W . In this non-interactive version,
bidders are involved just one time in the expense of communication cost.

The privacy of winners’ bids is preserved based on the assumption of no more
than c auctioneers being faulty.

4 Analysis

4.1 Performance

The proposed Protocol MPLUS1 requires a number of rounds proportional to
log k when a bidder sends a bid. The communication cost from bidder to m auc-
tioneers is of the order of O(m), which can be considered reasonable because the
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Table 1. Communication costs in Auction Protocols

style protocol bidder auctioneers

rounds bandwidth number rounds bandwidth

First price [8] 1 O(km) m 1 O(k)
[11,12] 1 O(1) m O(k) O(n)
[14] O(k) O(1) 1 O(k) O(1)
[19] 1 O(m log k) 2 O(n) O(log k)

proposed 1 O(m) m 1 O(n)

Second price [9] 1 O(m log k) m O(log k) O(n)
M + 1st price proposed O(log k) O(m) m O(log k) O(n)

population of auctioneers is much smaller than that of bidders. The computation
cost at auctioneers is independent of the number of bidders, n, and some related
with M , which is a negligibly small constant. In the Protocol MPLUS1, a quite
small bandwidth of size p is required while O(log k) iterations are expected to
happen to determine the winning price. On the other hand, just one round is
involved in identifying winners at Protocol WINNER though O(n) bandwidth
is required. Thus, we can say that the protocol for (M +1)st-price auction runs
in O(log k) rounds and consumes O(n) bandwidth in communication. The cost
for the Lagrange interpolation is not considerable large.

Table 1 shows the comparison of auction protocols in terms of communica-
tion complexity. The column labeled as ’rounds’ indicates (average) number of
rounds to proceed the protocol at each entity. In the comparison, we estimate the
cost of the proposed first-price auction protocol since no other M +1st-highest-
price auction protocol presented so far. The round complexity of the first-price
protocol is just one for both of bidders and auctioneers, thus can be said as the
optimal in multi-parity approach.

5 Conclusion

We presented an efficient protocol for the first-price auction which identifies
the first price only without revealing any bids and the winner. The proposed
protocol does not need a single trusted third parity and allows any entity to
detect misbehavior of bidders and auctioneers. The privacy of bids is protected
under assumption of no more than c auctioneers being faulty. Note that the
requirement of non-repudiation is satisfied because the winner can be determined
without help of bidders. The communication complexity is optimal in the sense
the bandwidth spent by every entity is constant and does not depend the number
of possible prices, k.

We showed a solution to the problem of (M +1)st-price auction in which no
information about bids is revealed. Using the binary-search tree, the protocol
takes a O(log k) rounds to identify the (M + 1)st-highest price. The efficient
tie-breaking protocol is the future study.

It should be noted that in the current protocol, any auctioneer can learn
which bidder wins the auction. The requirement of anonymity, which has been
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achieved through some assumptions such as an anonymous channel or bulletin
board in some protocols, will be studied in future work.
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Abstract. We describe a new auction protocol that enjoys the following
properties: the biddings are submitted non-interactively and no informa-
tion beyond the result is disclosed. The protocol is efficient for a loga-
rithmic number of players. Our solution uses a semi-trusted third party
T who learns no information provided that he does not collude with any
participant. The robustness against active cheating players is achieved
through an extra mechanism for fair encryption of a bit which is of in-
dependent interest. The scheme is based on homomorphic encryption
but differs from general techniques of secure circuit evaluation by taking
into account the level of each gate and allowing efficient computation of
unbounded logical gates. In a scenario with a small numbers of players,
we believe that our work may be of practical significance, especially for
electronic transactions.
Keywords: Auctions, bidding, homomorphic encryption, secure circuit
evaluation.

1 Introduction

In web electronic commerce, the question of auctions has become a major issue.
They offer a very flexible way to exchange goods while minimizing negotiation
costs, and as expected, a variety of software architecture have been discussed
[1,15]. Additionally, it is desirable to ensure privacy of each customer through
cryptographic mechanisms. Ideally, at the end of the protocol, no information on
the submitted bids should be disclosed. Depending on the auction settings, only
the winner and the highest (or 2nd highest) bid should be revealed. So far, several
approaches have been considered. Based on multi-party computation [2,6] and
secret sharing [22], Harkavy, Tygar and Kikuchi [14] have described a distributed
protocol, that ensures privacy but needs several rounds of interaction between
the auctioneers. In a novel direction, Cachin has proposed a non-interactive
protocol [3] based on the so-called Φ-hiding assumption that allows to secretly
compare two numbers. However bidders have to interact in a direct manner and,
furthermore, for a number of users greater than 2, it is necessary to consider two
non-colluding third parties and partial order of bids is leaked to one of them.
Finally, a more promising and efficient technique using two third parties has
been introduced by Naor, Pinkas and Sumner [19]; it uses pseudo-randomness
and oblivious transfer to securely compute arbitrary circuits.
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Our solution uses a different approach which is built on a new one round
secure circuit evaluation [23,10,9,11] tailored for our specific problem. Although,
it is more efficient than general techniques, it is limited to a logarithmic number
of players. In practice, 5 or 6 participants keep the amount of network traffic at a
reasonable level. We also require a semi-trusted third party T (the server), who
learns no information provided that he does not collude with any participant.
To achieve robustness against active cheating players, the hardness of deciding
composite residuosity classes is assumed. We point out that no interaction be-
tween the bidders is required, which is a main achievement of our work. A high
level description of the protocol is as follows.

1. Registration. Bidders who wish to participate publish their public encryption
key.

2. Submission. Each bidder encrypts the figure of his choice under all partici-
pant’s public keys and sends the result to the server using a secure commu-
nication channel.

3. Results. The server publishes, in a encrypted way, whether each participant
is the winner.

4. The winner reveals himself by proving to the server that he has actually won.
5. The server sends to each subscriber (or to the winner only) an encryption of

the highest (or 2nd highest) bid.

The core of the problem is to decide whether a given participant has submitted
the highest bid. This is accomplished in the next section. In section 3, we extend
the submission scheme to withstand cheating players. In section 4, we propose
some solutions to deal with a larger number of players. The conclusion comes in
section 5.

2 Computing over Encrypted Bids

2.1 Preliminaries

We consider a protocol with p participants, who submit �-bit numbers repre-
senting their bids. A probabilistic encryption scheme E satisfying the following
properties is fixed:

– The set of plaintext messagesM is a group of order N such that 1/N is a
negligible function of the security parameter k. In the sequel we will use an
additive notation.

– E is self-randomizable: there exists a probabilistic polynomial time function
R such that for any m ∈M, R(E(m)) is uniformly distributed over the sets
of encryptions of m.

– E is homomorphic: for any m1,m2 ∈M, E(m1 +m2) = E(m1).E(m2).
– E is semantically secure against a chosen plaintext attack: no probabilistic

polynomial time adversary can distinguish, with a non-negligible success,
between encryptions of two plaintexts of its choice [12].
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– There exists a full decryption algorithm D: for any pair of public key and
secret key (pk, sk), for any encryption c ofm under pk,Dsk(c) outputs (m, r)
such that Epk(m, r) = c.

Known efficient schemes meeting these requirements are: Naccache-Stern [16],
Okamoto-Uchiyama [17] and Paillier [18]. The latter will be used for the robust
version of our protocol together with proofs of membership, so it should be given
more attention.

Each participant encrypts p times each bit of his bid using the p candidates’
public key (including his own one). The output, of length �× p times the length
of an encryption, is sent to the server through a private channel. The ultimate
goal of this section is for the server, to compute, for each integer i in {1, ..., n}
the predicate: (Pi) : ai

?≥ max(a1, ..., ap) where the aj = (a�−1
j a�−2

j · · · a0
j)2 are

the binary representations of the biddings. To perform the comparison of two
numbers using logical bit operations, we observe that ai > aj if and only if there
exists an index s in {0, ..., �− 1} such that the following predicate is satisfied

(Qi,s) :
�−1∧

m=�−s

(
am

i ⇔ am
j

)∧
a�−s−1

i

∧(¬a�−s−1
j

)
(1)

Namely, the first s bits of ai match the first s bits of aj and the (s + 1)th

bit of ai is greater than the (s + 1)th bit of aj . Observe that the predicate
deciding the equality of ai and aj is given by (Qi,�) :

∧�−1
m=0

(
am

i ⇔ am
j

)
. In the

next stage, the existential quantifier is evaluated by OR-ing over the various
boolean formulae. Finally, to decide whether a number ai is the maximum of
a set of p numbers (a1, ..., ap), it remains to compute a logical AND of the
p− 1 subexpressions comparing ai with all others aj. Consequently, the circuits
representing the predicates (Pi), using unbounded AND nd OR gates, are given
by

(Pi) :
p∧

j=1
j �=i

�∨
s=0

Qi,s (2)

Considerable efforts have been made to provide general protocols that enable
a third party to blindly compute each logical gate of a circuit with the help
of the secret inputs’ owners. However, efficient protocols require a number of
interaction rounds linear in the depth of the circuit. As told in the introduction,
it is essential from a practical viewpoint to perform the whole circuit evaluation
non-interactively. Recently, Sander, Young and Yung showed how to compute
in a single round any NC1 circuit over encrypted data [21]. They recursively
define structures allowing the computation of logical gates. However, it must
be pointed out that an OR-gate inflates the length of the input datas by a
factor of 8, and the same holds for AND-gates. Thus, considering our initial
circuit of the max function, the algorithm would produce a string of length
Θ(82 log �+log(p−1)) = Θ(�6(p− 1)3) encryptions.
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Our solution differs from Sander et al. by applying different rules to a given
gate according to its level in the circuit. Also, the use of a message space of
order N enables us to build an efficient method for computing unbounded gates
directly, rather than considering the equivalent binary sub-circuit. Against a cu-
rious but honest server, the privacy of the submitted inputs is ensured through-
out the semantic security of the encryption scheme E. Similarly, privacy towards
curious participants is guaranteed provided the encryption of the result is inde-
pendent of the posted data. This is achieved throughout the self-randomization
of E.

2.2 Efficient Computation of the max Function

We now precisely describe our specific solution to compute the various predicates
Pi. The security parameter k is fixed. We denote by C the space of ciphertexts:
C = E(M). We define (Enc0t )t∈N\{0} and (Enc1t )t∈N\{0} two family of sets repre-
senting encryptions of bit 0 and bit 1 respectively. For each t ∈ N\{0}, Enc0t is
the set of t-coordinates vectors in Ct such that the decryption of any coordinate
is non zero, and Enc1t is the set of t-coordinates vectors in Ct such that there
exists exactly one coordinate which encrypts zero. We also define Enct to be the
set Enc0t ∪ Enc1t . In symbols:

Enc0t = {(c1, . . . , ct) ∈ Ct | ∀i ∈ {1, . . . , t} D(ci) �= 0}
Enc1t = {(c1, . . . , ct) ∈ Ct | ∃!i ∈ {1, . . . , t} D(ci) = 0}

Each logical gateG takes as input elements fromEncf(G) and outputs an element
in Encg(G), where f and g are positive integer functions which only depend on
the type and the level of the given gate G. Namely, f(G) is the length of the
inputs of G and g(G) is the length of its output, both in number of encryptions.
The server propagates the cipher bits in the circuit by the following algorithm:

– Inputs: cipher bits are elements of the sets:

In0 = {c ∈ C | D(c) = 1} � Enc01
and In1 = {c ∈ C | D(c) = 0} = Enc11

We note In = In0 ∪ In1.

– Level 1, ¬ gates: f = 1, g = 1
NOT1 : In −→ Enc1

E(x) �−→ R([E(x)/E(1)]r) = R(E(r(x − 1)))
where r is uniformly drawn in ZN\{0}.

– Level 1, ⇔ gates: f = 1, g = 1
EQUIV1 : In× In −→ Enc1

(E(x), E(y)) �−→ R([E(x)/E(y)]r) = R(E(r(x − y)))
where r is uniformly drawn in ZN\{0}.
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– Level 2, ∧ gates: f = 1, g = 1
AND2 : (Enc1)s −→ Enc1

(E(x1), . . . , E(xs)) �−→ R([Πs
i=1E(xi)]

r) = R(E(r∑s
i=1 xi))

where r is uniformly drawn in ZN\{0}.
– Level 3, ∨ gates: f = 1, g = �

OR3 : (Enc1)� −→ Enc�
(c1, . . . , c�) �−→ (cσ(1), . . . , cσ(�))
where σ is a random permutation of � elements.

– Level 4, ∧ gate: f = �, g = �p−1

AND4 : (Enc�)p−1 −→ Enc�p−1

(E(xi
1), . . . , E(x

i
�))1≤i≤p−1 �−→

(
R(Πp−1

i=1 E(x
i
ji
))
)

(j1,..,ji)∈[1,p−1]i

coordinates of the final vector are randomly permuted.

The final result is a string of Θ(�p−1) encryptions. Although it is asymptotically
exponential in the number of participants, it is better than what can be achieved
by general techniques for a limited number of players. For example, considering
32-bit precision of bids and 4 participants, our scheme leads to strings of length
215 whereas [21] would produce strings of length 234.8. Now, we prove that our
computation is correct and leaks no information on the inputs. First the following
lemma results from the particular structure of the boolean circuit.

Lemma 1. For any s and s′ such that s �= s′, the predicates Qi,s and Qi,s′ are
mutually exclusive.

Proof. Without loss of generality, assume that s < s′. We focus on the particular
bit position r = �− s− 1 in the integers ai and aj . As s ≤ �, it follows that Qi,s

is a conjunction of terms including ar
i

∧¬ar
j . Similarly, Qi,s′ is a conjunction

of terms including am
i ⇔ am

j , for each m in {� − s′, � − 1}. Since r lies in this
interval, the conjunction includes ar

i ⇔ ar
j . Consequently, either a

r
i = ar

j and
Qi,s is false, either ar

i �= ar
j and Qi,s′ is false.

Then, we prove correctness of the crypto computing algorithm.

Theorem 1. For any bit precision �, for any number of participants p, for any
integer i ∈ {1, ..., p} the proposed algorithm correctly outputs with probability 1−
O(�p−1/N) a random element uniformly distributed in Enc1�p−1 (resp. Enc0�p−1)
iff the predicate Pi is true (resp. false).

Proof. We will prove that the probabilistic computation is correct at each level
of the circuit. For the input encrypted data, and the first level, the verification
is obvious and true with probability 1. For the AND gates at the second level: if
some bits are 0 then r

∑s
i=1 xi �= 0 holds with probability (N−1)/N and if all the

bits are 1 then
∑s

i=1 xi = 0 with probability 1. Since this layer includes �(p− 1)
such AND gates, the set of its output is correctly computed with probability
((N − 1)/N)�(p−1). We now consider the OR gates at the third level. If each of
the input bits is 0, then the sequence of such bits is also 0. Otherwise, from the
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previous Lemma, it follows that exactly one input is 1, so the output sequence
lies in the correct space. In both cases, it is easily verified that the output is
uniformly distributed in Enc�. Furthermore, assuming correct inputs, the whole
computation of this �-gate layer is correct with probability 1. Finally, the AND
gate at the fourth level outputs a sequence of encryptions that performs the
product of each (p−1)-tuples of Enc�. Thus, if each input is 1, each input includes
one encryption of zero, and this combination leads to exactly one zero. If there
exists a zero input, then, assuming inputs are correct, it is encryptions of only
non zero terms, and thus each sum is non-zero with probability (N − 1)/N . The
conditional probability of correctness of this whole layer is then ((N−1)/N)�

p−1
.

The uniformity is easily seen. In conclusion, it results that the success of the
computation holds with probability (1 − 1/N)�(p−1)+�p−1

which is greater than
1− (�(p− 1) + �p−1)/N . ��

Having performed these computations, the server publishes a bulletin board
containing the results of the predicates Pi encrypted under the public key of the
ith player. The amount of data is Θ(p�p−1) which is reasonably small for 4 to 5
players. Then each player decrypts its sequence of encrypted data, which either
leads to a set of non-zero values, in case he has lost the auction, or to exactly
one zero in case he is the winner. To prove his status, the winner sends the full
decryption of the encrypted value of zero to the server. This transaction may
occur publicly, or through a secure channel. If several players have submitted the
same maximum bid, then they may all prove they did and an additional round
can take place. It should be noticed that the initial input bits are only a small
subset of the plaintext space. Therefore, dishonest bidders could encrypt values
that are not real bits (ie: not 0 nor 1). Then the whole protocol would collapse,
since circuit evaluation would produce only false value, for example if the leading
bit is “2”. The next section proposes an enhanced version of our scheme where
each participant proves that he has only encrypted fair bits. Before doing so, we
turn to the last part of the protocol.

2.3 End of the Protocol

In the standard case, it is assumed that the winner makes himself known. Oth-
erwise, if he remains silent, one may consider various solutions, e.g. asking other
users to prove that they really lose the auction by decrypting each of the mes-
sages announcing the results. We underline that such a hiding player does not
compromise privacy. Next, it remains to set the price. First, we consider a sce-
nario where the transaction is done at the highest price (sealed-bid auctions).
Since the server has no information on the initial plaintexts, the winner has to
reveal the full decryptions of his bid and the zero message proving that he has
won. Remind that a full decryption provides the cleartext message and the ran-
dom coins that enables to check the validity of a given encryption. Using the
homomorphism of E, this phase is very efficient: from the initial data E(xi) he
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has sent, the winner computes the encrypted message

E

(
�−1∑
i=0

xi.2i

)
=

�−1∏
i=0

E(xi)2
i

(3)

and sends its full decryption to the server. Then this one checks the validity
of the computation. In a second scenario, where we consider that the value of
the transaction is set at the 2nd highest price (as is well known, this scheme
is equivalent to a public “English” auction) further computation and an addi-
tional round of interaction are needed. Basically, once the winner has revealed
himself by decrypting a zero from the bulletin board, the server withdraws this
encrypted bid and computes the maximum predicates over the remaining bids.
Then, it sends a random permutation of the predicates to the winner and asks
him to provide the full decryption of the zero value it contains, together with
the underlying �-bit bid. Then the server checks the decryption values he has
received, and publicly announce the price of the transaction as in the previous
case.

3 A Robust Protocol against Cheating Players

We now turn to a scenario where some dishonest players may send arbitrary
data, possibly not encrypting fair bits or encrypting different bids under the
different public keys. We have already observed that this could compromise the
auction: if the jth player submits the encryption of an �-bit integer aj with
an unfair leading “bit” then for each predicate (Pi), the evaluations of (¬a�−1

j )
and (a�−1

i ⇔ a�−1
j ) would both leads to false. The same holds for the predicate

(Pj) considering a�−1
j and (a�−1

j ⇔ a�−1
i ). As a result, none of the participant

could be declared the winner. It may be asked to each player to decrypt his
own data, but contrary to the situation where we considered a fair but silent
player, this would compromise privacy and is not acceptable here. Therefore, in
order to achieve robustness, each participant adds a short proof of fairness to
his encrypted bid. We will consider the specific homomorphic encryption scheme
proposed by Paillier [18] at Eurocrypt’99 whose overview is given below. Using
this system, we will design a proof of fair encryption of bits.

3.1 Overview of Paillier’s Encryption Scheme

Key Generation. Let N be a RSA modulus of k + 1 bits, where k is a security
parameter. Let g be an element of Z∗

N2 whose order is a large multiple of N .
The public parameters are N and g whilst the factorization of N , or equiva-
lently λ(N), remains secret. Recall that in this case the Carmichael function λ
is λ(N) = lcm(p− 1, q − 1).

Encryption. The space of plaintext messagesM is ZN . The encryption of a mes-
sage m ∈ M is E(m) = gmrN mod N2 where r is randomly chosen in Z

∗
N . m
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is called the N th residuosity class of c with respect to g.

Decryption. Let L be the function L(u) = (u− 1)/N defined over the subgroup
SN =

{
u < N2 | u = 1 mod N

}
. For any ciphertext c = gmrN mod N2, using

the trapdoor λ(N), it holds that m =
L(cλ(N) mod N2)
L(gλ(N) mod N2)

. Full decryption is

achieved by extracting the N th root mod N of (cg−m mod N).

Assuming the hardness of deciding composite residuosity classes, this encryption
scheme is proven to be semantically secure against a chosen plaintext attack. Us-
ing appropriate optimizations, the workload for encryption and decryption is of
the same order of magnitude as RSA. The required properties for our auction
protocol are efficient and easily verified: self-randomization is achieved through
a single modular exponentiation and the additive homomorphic property is ob-
vious. Furthermore, the scheme enjoys the advantage of encrypting 0 in a N th

residue. Therefore, using the additive homomorphic property, c encrypts a fair
bit if and only if either c or c/E(1) is a N -residue. This leads to an efficient
proof of fair encryption described below.

3.2 Zero-Knowledge Proof of Fair Encryption of a Bit

To prove that one correctly encrypted a plaintext in {0, 1}, we combine a Guillou-
Quisquater proof of knowledge of a N th root [13] with a proof of knowledge of one
discrete log out of two [7,8,4]. Firstly, we propose a 3-round interactive protocol
between a prover P and a verifier V , then we turn it into an non interactive
protocol using hash functions, as usual.

Settings: k ∈ N and A are security parameters. N is a RSA modulus of k bits.
P owns a secret value b ∈ {0, 1} and publishes c = gbrN mod N2 where r is a
random secret value in Z

∗
N . We note c0 = c and c1 = c/g. The following 3 rounds

of interaction is iterated t times.

1st round : P → V
P picks at random two values ρ0 and ρ1 in Z

∗
N . He has to commit to u0 and

u1, as if he was trying to prove in parallel that both c0 and c1 are N -residues.
To this end, since only cb is an actual residue, further messages indexed by
b are fairly computed, whereas messages indexed by 1 − b take advantage of
the malleability of the challenge. So, the prover chooses half of the challenge
in advance, by picking at random e1−b ∈ ZA. This knowledge enables him to
choose at random the corresponding final answer v1−b in Z

∗
N2 . Then he computes

a fake commitment u1−b satisfying the verifier’s equality and a fair commitment
ub such that

{
ub = ρN

b mod N2

u1−b = vN
1−b/c

e1−b

1−b mod N2

Finally he sends u0 and u1 to the prover.
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2nd round : V → P
V picks a random a challenge e in ZA and sends it to P .

3rd round : P → V
P computes the regular challenge eb such that e = e0 + e1 mod A. It also
computes vb = ρbr

eb . Then he sends v0, v1, e0, e1 to V .

V verifies that




vN
0 = u0c

e0
0 mod N2

vN
1 = u1c

e1
1 mod N2

e = e0 + e1 mod A

Remark 1. In the last round of interaction, the prover may be asked not to
send e1 since it is deducible from e and e0. Also, the last test performed by the
verifier may be discarded by using e− e0 instead of e1. This presentation is for
convenience only. The figure shows the actual protocol.

Prover Verifier

N = p.q such that |N | = k
A : security parameter

g ∈ Z
∗
N2 of order multiple of N

secret : p, q
b ∈ {0, 1}
r ∈ Z

∗
N

public : c = gbrN mod N2

ρ0, ρ1 ∈ Z
∗
N

v1−b ∈ Z
∗
N2

e1−b ∈ [0, A[

ub = ρN
b , u1−b = vN

1−b

(
g1−b

c

)e1−b

u0, u1 mod N2

−−−−−−−−−−−−−−−→
e←−−−−−−−−−−−−−−− e ∈ [0, A[

eb = e − e1−b mod A

vb = ρbr
eb v0, v1 mod N2, e0−−−−−−−−−−−−−−−→ vN

0
?
= u0c

e0

vN
1

?
= u1(c/g)e−e0

Fig. 1. Zero-knowledge proof of fair encryption of a bit

Theorem 2. For any positive constants α and β, for any non-zero parameters
A and t such that A = O(kα) and t = Ω(log1+β k), it holds that t iterations of
the previous protocol is a perfect zero-knowledge proof of membership that c is a
fair encryption of a bit.

Proof. We note L the language of fair encrypted bits:

L =
{
gbrN mod N2 | b ∈ {0, 1}, r ∈ Z

∗
N

}
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Completeness. Assume c ∈ L. Then either c or c/g is a N th residue. For this
residue, the prover may answer to any challenge eb. Thanks to the degree of
freedom, he has the ability to fix in advance the challenge e1−b and forge the
appropriate answer v1−b. Therefore the prover is accepted with probability 1.

Soundness. Assume c �∈ L. Suppose that a cheating prover P ∗ successfully com-
pletes an iteration of the protocol. From the final verifying equations and the
expression of c we have

{
vN
0 = u0 g

be0re0N mod N2

vN
1 = u1 g

(b−1)e1re1N mod N2

Taking the logarithms of each expression, it follows
{
log u0 + be0 = 0 mod N
log u1 + (b − 1)e1 = 0 mod N

So we have the system of 3 equations in the variables e0 and e1


be0 = − logu0 mod N

(b − 1)e1 = − logu1 mod N
e0 + e1 = e mod A

If b is different from 0 and 1, it follows that e0 and e1 are functions of b and the
original commitment {u0, u1}. Therefore, the third equation holds with proba-
bility at most 1/A. If the protocol is iterated t times, then standard arguments
show that the probability that P ∗ passes the protocol cannot significantly exceed
1/At. Since A is a positive integer and t = Ω(log1+β k) the probability of success
is O(k− log A logβ k) which is a negligible function of k.

Simulation. Fix any verifier V ∗. First guess the challenge: pick e′ randomly in
[0, A[. Then choose e0 and e1 such that e′ = e0 + e1. Next compute u0 = vN

0 /c
e0

and u1 = vN
1 /(c/g)

e1 and send u0 and u1 ( mod N2) to V ∗. If V ∗ answers e such
that e = e′ then this iteration is successfully completed by sending v0, v1, e0 and
e1. Otherwise, rewind the simulation to the beginning of the iteration. It results
that the whole protocol is perfectly simulated in expected time O(A.t). ��
From a practical point of view, it may be desirable to perform a single iteration
of the 3-round protocol. Then, since a large A is require to ensure soundness of
the protocol, the resulting scheme is not zero-knowledge anymore. However, no
strategy is known to increase the probability of accepting a dishonest prover.

3.3 Equalities of Bids under Multiple Encryptions

To achieve robustness of the submission protocol, it is also required that each
bidder proves that he has encrypted the same bits under the different public keys.
As shown in equation (3), the server learns an encryption of the �-bit integer
submission. Therefore it remains to prove equality of p discrete logs lying in a
given interval [5]. Following the previous section, we first propose an interactive
zero-knowledge proof between a prover P and a verifier V .
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Settings: k, k′ and A are security parameters such that 2�A < 2k+k′
. The set

{Ni}1≤i≤p are RSA moduli of k + 1 bits. P owns a secret value x ∈ [0, 2�[ and
publishes {ci = gx

i r
Ni

i mod N2
i }1≤i≤p where the ri are p random secret values

in Z
∗
Ni
.

1st round : P → V
P picks at random ρ ∈ [0, 2k[, and si ∈ Z

∗
Ni

for each i = 1, ..., p. Then he commits
to {ui = gρ

i s
Ni

i mod N2
i }1≤i≤p.

2nd round : V → P
P picks at random a challenge e ∈ [0, A[ and sends it to P .

3rd round : P → V
P computes z = ρ + xe, and {vi = sir

e
i mod N2

i }1≤i≤p and sends them to V .
Then V verifies that z < 2k and gz

i v
Ni

i = uic
e
i mod N2

i for each i = 1, ..., p.

Theorem 3. For any positive constants α, β and γ, for any non-zero parame-
ters A, t and � such that A = O(kα), t = Ω(log1+β k) and � = k −Ω(log1+γ k),
it holds that t iterations of the previous protocol provides a statistical zero-
knowledge proof of membership that elements {c1, ..., cp} encrypt the same �-bit
message.

Proof.
Completeness. For any i ∈ {1, ..., p}, it holds that gz

i v
Ni

i = gρ+xe
i sNi

i reNi

i = uic
e
i

mod N2
i , with probability 1. Furthermore, since z = ρ+xe, the inequality z < 2k

holds with probability at least 1 − 2�A/2k. Thus, a honest prover successfully
completes t iterations of the protocol with probability at least 1− 2�−kAt. Since
t and A are upper-bounded by polynomials and 2�−k = O(k− logγ k), this prob-
ability is overwhelming.

Soundness. Assume there exists i1 and i2 in {1, ..., p} such that ci1 encrypts x1

and ci2 encrypts x2 with x1 �= x2. Then, from the equalities verified by V
{
gz

i1v
Ni1
i1

= ui1g
x1e
i1

u
eNi1
i1

mod N2
i1

gz
i2
v

Ni2
i2

= ui2g
x2e
i2

u
eNi2
i2

mod N2
i2

Taking the logarithms it follows
{
z = log ui1 + ex1 mod Ni1

z = log ui2 + ex2 mod Ni2

Since z < 2k then z− e < Ni1 , Ni2 and both equalities hold without the moduli.
It results that log ui1 + ex1 = log ui2 + ex2 in the integers. So, if x1 �= x2,
e = (log ui1 − log ui2)/(x2 − x1), which occurs with probability at most A.
Simulation. Following the previous proof, the same resettable simulation works.
However, since the simulator uniformly picks z in [0, 2k[ and not in [xe, 2k +xe[,
only a statistical indistinguishability can be achieved (see [20] for a complete
proof).
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We are now ready to design a robust auction protocol. The main operation is
to replace the verifiers by a secure hash function such as SHA-1. This leads to
non-interactive proofs that has to be stuck to the bit encryptions. To reduce the
amount of data, the following trick may be used. The �p proofs of fair encryption
consist of their last two rounds {e; v0, v1, e0} and a hash of the parallel commit-
ments. To check the proof, these commitments are first computed from the last
predicates of equality, then the whole verifications are performed. As a result
the total length of these �p proofs is no more than 3�p encryptions. In the same
way, the proof of equality of logs consists of the last p+2 messages from rounds
2 and 3. Thus its length is about p + 2 encryptions. One can also ask that the
proofs are given only in the case that the server is unable to provide any winner.
This makes an additional round of interaction, but still preserves the privacy of
each bidder.

Prover Verifier

{Ni = piqi}1≤i≤p, such that each |Ni| = k + 1

A < 2k : security parameter
{gi ∈ Z

∗
N2

i
of order multiple of Ni}1≤i≤p

secret : {pi, qi}1≤i≤p

x ∈ [0, 2�[

{ri ∈ Z
∗
Ni

}1≤i≤p

public : {ci = gx
i rNi

i mod N2
i }1≤i≤p

ρ ∈ [0, 2k[

{si ∈ Z
∗
Ni

}1≤i≤p

{ui = gρ
i sNi

i mod N2
i }1≤i≤p

{ui mod N2
i }1≤i≤p

−−−−−−−−−−−−−−−−−−→
e←−−−−−−−−−−−−−−−−−− e ∈ [0, A[

z = ρ + xe

{vi = sir
e
i mod N2

i }1≤i≤p
z, {vi mod N2

i }1≤i≤p

−−−−−−−−−−−−−−−−−−→ z
?
< 2k

{gz
i vNi

i

?
= uic

e
i mod N2

i }
1≤i≤p

Fig. 2. Zero-knowledge proof of equality of logs

4 Dealing with Many Participants

To cope with real-life Internet business application, it is obvious that the number
of total participants should be increased. Under the hypothesis that we accept a
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partial leak of information and reasonable interaction, we can substantially gain
efficiency and deal with a polynomial number of players. A possible approach
is to form small groups of users and perform the protocol to decide who owns
the maximum bid inside of them. Assume that we allow q participants in each
group, then we can build a q-ary tree and achieve the whole protocol of bid
submission in a number of rounds proportional to logq(p). Next, if we have to
find the second highest bid, we consider the following algorithm: form the path of
the progression of the winner in the q-ary tree and select all the participants that
are present in one of the winner’s subgroup along this path. This list contains
at most q logq p players where it remains to extract the highest bid.

5 Conclusion

We have proposed a practical protocol of auctions with a high degree of confi-
dence and very few interaction. Compared to existing schemes, we focused on
security. The drawback resides in the limited number of players that may simul-
taneously participate in a scenario where absolute privacy is needed. Nonetheless,
we believe that in many scenarii these parameters meet real life applications.
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