TP 3 – Computation Tree Logic

CTL Syntax Formulas of CTL are built over a set of atomic propositions \mathcal{P} and satisfy the following syntax :

 $\phi ::= \top |\bot| p | \neg \phi | \phi \lor \phi | \exists \bigcirc \phi | \forall \bigcirc \phi | \exists \phi U \phi | \forall \phi U \phi$

where $p \in \mathcal{P}$.

Exercice 1 Let K be the Kripke structure with three states $\{s_1, s_2, s_3\}$ defined as :

- initial state : s_1
- atomic propositions : p
- labels : $L(s_1) = L(s_3) = \{p\}$ and $L(s_2) = \emptyset$
- transitions : $s_1 \rightarrow s_1$, $s_1 \rightarrow s_2$, $s_2 \rightarrow s_3$ and $s_3 \rightarrow s_3$.

Consider the two following formulas :

- 1. CTL : $\forall \Diamond \forall \Box p$
- 2. LTL : $\Diamond \Box p$

Tell whether these formulas are satisfied or not in K.

Exercice 2 Does $s_0 \models \forall \Diamond \forall \Box x$ in the following structure?

Exercice 4

Exercice 4 For the following Kripke structure, and the following statements, replace ? by either \models or $\not\models$:

1. \mathcal{K} ? $\forall \Diamond q$ 2. \mathcal{K} ? $\forall \Box (\exists \Diamond (p \lor q))$ 3. \mathcal{K} ? $\exists \bigcirc (\exists \bigcirc r)$ 4. \mathcal{K} ? $\forall \Box \forall \Diamond q$

Exercice 5 Tell whether the following equivalences are true or false :

- 1. $\forall \Box \phi \equiv \phi \land \forall \bigcirc \forall \Box \phi$
- 2. $\exists \Box \phi \equiv \phi \land \exists \bigcirc \exists \Box \phi$
- 3. $\forall \Diamond \phi \equiv \phi \land \forall \bigcirc \forall \Diamond \phi$
- 4. $\exists \Diamond \phi \equiv \phi \land \exists \bigcirc \exists \Diamond \phi$

Exercice 6 Give a structure which satisfies $\forall \Box \exists \Diamond p \text{ (CTL) but not } \Box \Diamond p \text{ (LTL)}.$

Exercice 7 Which of the following assertions are correct? Prove it or give a counterexample.

- (a) If $s \models \exists \Box a$, then $s \models \forall \Box a$.
- (b) If $s \models \forall \Box a$, then $s \models \exists \Box a$.
- (c) If $s \models \forall \Diamond a \lor \forall \Diamond b$, then $s \models \forall \Diamond (a \lor b)$.
- (d) If $s \models \forall \Diamond (a \lor b)$, then $s \models \forall \Diamond a \lor \forall \Diamond b$.

Exercice 8 A CTL formula is in existential normal form (CTL^{\exists}) if it is of the form

$$\phi \ ::= \ \top \ | \ p \ | \ \phi \land \phi \ | \ \neg \phi \ | \ \exists \bigcirc \phi \ | \ \exists (\phi \ U \ \phi) \ | \ \exists \Box \phi$$

Show that any CTL formula can be put in existential normal form.

Exercice 9 Give a Kripke structure K = (I, S, R, L), we define the function $SAT : CTL^{\exists} \rightarrow S$ recursively as follows :

- $-SAT(\top) = S$
- $-SAT(a) = \{s \in S \mid a \in L(s)\}$
- $-SAT(\phi_1 \land \phi_2) = SAT(\phi_1) \cap SAT(\phi_2)$

- $-SAT(\neg\phi) = S \setminus SAT(\phi)$
- $-SAT(\exists \bigcirc \phi) = \{s \in S \mid Post(s) \cap SAT(\phi) \neq \emptyset\}$
- $-SAT(\exists (\phi_1 \ U \ \phi_2))$ is the least fixpoint of the equation

 $X = SAT(\phi_2) \cup (SAT(\phi_1) \cap Pre(X))$

 $-SAT(\exists \Box \phi)$ is the greatest fixpoint of the equation

$$X = SAT(\phi_1) \cap Pre(X)$$

Compute $SAT(\phi)$ for the following formulas and tell whether there are satisfied or not.

Exercice 10 Same questions for the following formulas and structure :

1. $\forall \Diamond (\exists (p \ U \ \exists \bigcirc t))$ 2. $\exists (p \ U \ (r \land \exists \bigcirc (\exists \bigcirc p)))$

