TP 2 – Linear Time Temporal Logic

LTL Syntax Formulas of LTL are built over a set of atomic propositions \mathcal{P} and satisfy the following syntax :

where $p \in \mathcal{P}$.

A state s of a Kripke structure satisfies an LTL formula ϕ if all the paths from s satisfy ϕ .

A Kripke structure \mathcal{K} satisfies an LTL formula ϕ if all its initial states satisfy ϕ .

Exercice 1 For the following Kripke structure,

and the following statements, replace ? by either \models or $\not\models$:

- 1. \mathcal{K} ? $\Box a$
- 2. s_1 ? $\bigcirc (a \land b)$
- 3. s_2 ? $\bigcirc (a \land b)$
- 4. s_3 ? $\bigcirc (a \land b)$
- 5. \mathcal{K} ? $\bigcirc (a \land b)$
- 6. \mathcal{K} ? $\Box(\neg b \rightarrow \Box(a \land \neg b))$
- 7. \mathcal{K} ? $b \ U \ (a \land \neg b)$

Exercice 2 For each of the following formulas

- 1. $\bigcirc a$
- 2. $\bigcirc \bigcirc \bigcirc a$

- 3. $\Box b$
- 4. $\Box \diamondsuit a$
- 5. $\Box(a \ U \ b)$
- 6. $\diamondsuit(a \ U \ b)$

and the following Kripke structure :

give the set of states for which the formulas are satisfied.

Exercice 3 For each of the following formulas

- 1. $\Box c$
- 2. $\Box \diamondsuit c$

3.
$$\bigcirc(\neg c) \rightarrow \bigcirc \bigcirc c$$

- 4. $\Box a$
- 5. $a \ U \ (b \lor c)$
- 6. $(\bigcirc \bigcirc b) \ U \ (b \lor c)$

tell whether they are satisfied by the following Kripke structure :

Exercice 4 Let $\mathcal{P} = \{p\}$. Express in LTL that p is true at most once.

Exercice 5 Prove the following equivalences :

- 1. $\neg \bigcirc \phi \equiv \bigcirc \neg \phi$ 2. $\neg \diamondsuit \phi \equiv \Box \neg \phi$
- 3. $\neg \Box \phi \equiv \Diamond \neg \phi$

- 4. $\Diamond \Diamond \phi \equiv \Diamond \phi$
- 5. $\Box\Box\phi\equiv\Box\phi$
- 6. $\square \phi \equiv \square \Diamond \phi$
- 7. $\Diamond \phi \equiv \phi \lor \bigcirc \Diamond \phi$
- 8. $\Box \phi \equiv \phi \land \bigcirc \Box \phi$
- 9. $\phi \ U \ \psi \equiv \psi \lor (\phi \land \bigcirc (\phi \ U \ \psi))$

Exercice 6 Consider a printer system with two users A and B. We suppose that there is only one printer. For all users $\alpha \in \{A, B\}$, we have the following command :

- $-req_{\alpha}$: α wants to use the printer (he sends a request),
- $-use_{\alpha}: \alpha$ uses the printer,
- $-rel_{\alpha}: \alpha$ releases the printer.

Specify in LTL the following properties :

- 1. mutual exclusion : at most one user uses the printer at a time
- 2. every user uses the printer during a finite amount of time (consecutively)
- 3. No starving : every user that wants to use the printer eventually uses it
- 4. alternance : if the two users want to use the printer infinitely often, then they must alternate in using it

Exercice 7 Give regular expressions equivalent to the following Büchi automata :

Exercice 8 Give a Büchi automaton whose language cannot be defined by a deterministic Büchi automaton.

Exercice 9 Construct Büchi automata equivalent to the following LTL formulas :

- 1. $\Box(a \lor \neg \bigcirc b)$
- 2. $\Diamond a \lor \Box \diamond (a \to b)$
- 3. $\bigcirc \bigcirc (a \lor \diamondsuit \Box b)$

Exercice 10 Construct a Büchi automaton which is not equivalent to any LTL formula.

Exercice 11 Apply the LTL model-checking algorithm to check that $\mathcal{K} \models \Box a$, where \mathcal{K} is the structure defined in Exercice 1.