## **TP 1 – Comparing Structures**

**Definition 1.** Given two Kripke structures  $\mathcal{K}_1 = (\mathcal{I}_1, \mathcal{S}_1, \mathcal{R}_1, \mathcal{L}_1)$  and  $\mathcal{K}_2 = (\mathcal{I}_2, \mathcal{S}_2, \mathcal{R}_2, \mathcal{L}_2)$ , and a relation  $\sigma \subseteq \mathcal{S}_1 \times \mathcal{S}_2$ , we say that  $\sigma$  is a simulation relation if

- 1.  $(s_1, s_2) \in \sigma$  implies  $\mathcal{L}_1(s_1) = \mathcal{L}_2(s_2)$ .
- 2.  $\forall (s_1, s_2) \in \sigma, \forall s'_1 \in S_1 \text{ such that } s_1 \rightarrow_{\mathcal{K}_1} s'_1, \text{ there exists } s'_2 \in S_2 \text{ such that } (s'_1, s'_2) \in \sigma$ and  $s_2 \rightarrow_{\mathcal{K}_2} s'_2.$
- 3. for all  $s_1 \in \mathcal{I}_1$ , there exists  $s_2 \in \mathcal{I}_2$  such that  $(s_1, s_2) \in \sigma$ .

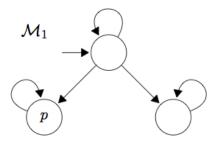
We write  $\mathcal{K}_1 \preceq^S \mathcal{K}_2$  whenever there exists a simulation relation  $\sigma$  between  $\mathcal{K}_1$  and  $\mathcal{K}_2$ , and say that  $\mathcal{K}_2$  simulates  $\mathcal{K}_1$ .

**Exercice 1** Show that  $\preceq^S$  is transitive.

**Exercice 2** The relation  $\preceq^S$  between Kripke structures is a preoder. Explain why it is, in general, not an order. Give a counter-example (we assume that two Kripke structures  $\mathcal{K}_1$  and  $\mathcal{K}_2$  are equal if they are isomorphic).

**Exercice 3** Show that  $\simeq^S$ , defined by  $\mathcal{K}_1 \simeq^2 \mathcal{K}_2$  if  $\mathcal{K}_1 \preceq^S \mathcal{K}_2$  and  $\mathcal{K}_2 \preceq^S \mathcal{K}_1$ , is an equivalence relation.

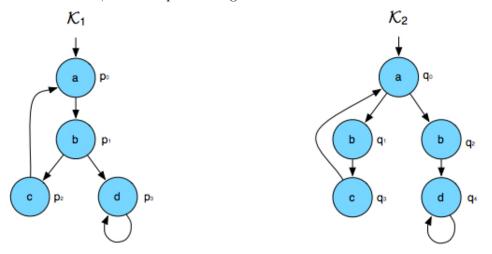
**Exercice 4** What is the language of the following Kripke structure? (the set of variables is  $\mathcal{V} = \{p, q\}$ ).



**Exercice 5** Compare the following structures with  $\leq^{S}$ :



**Exercice 6** Compare the following structures with  $\preceq^S$ , by applying the algorithm, presented in the lecture notes, that computes the greatest simulation relation :



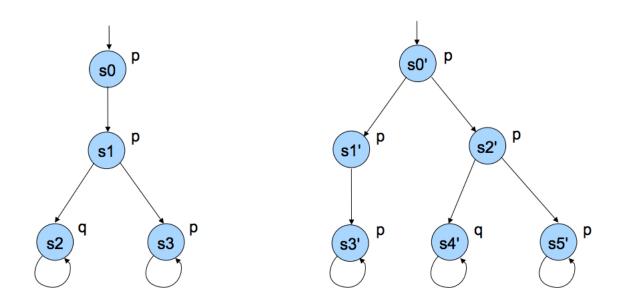
**Exercice 7** Simulation implies language inclusion, i.e.  $\mathcal{K}_1 \preceq^S \mathcal{K}_2$  implies  $Lang(\mathcal{K}_1) \subseteq Lang(\mathcal{K}_2)$ , for all Kripke structures  $\mathcal{K}_1, \mathcal{K}_2$ . Prove this statement and show that the converse does not hold true.

**Definition 2.** Given two Kripke structures  $\mathcal{K}_1 = (\mathcal{I}_1, \mathcal{S}_1, \mathcal{R}_1, \mathcal{L}_1)$  and  $\mathcal{K}_2 = (\mathcal{I}_2, \mathcal{S}_2, \mathcal{R}_2, \mathcal{L}_2)$ , and a relation  $\sigma \subseteq \mathcal{S}_1 \times \mathcal{S}_2$ , we say that  $\sigma$  is a bisimulation relation if

- 1.  $(s_1, s_2) \in \sigma$  implies  $\mathcal{L}_1(s_1) = \mathcal{L}_2(s_2)$ .
- 2.  $\forall (s_1, s_2) \in \sigma, \forall s'_1 \in S_1 \text{ such that } s_1 \rightarrow_{\mathcal{K}_1} s'_1, \text{ there exists } s'_2 \in S_2 \text{ such that } (s'_1, s'_2) \in \sigma$ and  $s_2 \rightarrow_{\mathcal{K}_2} s'_2,$
- 3.  $\forall (s_1, s_2) \in \sigma, \forall s'_2 \in S_2 \text{ such that } s_2 \rightarrow_{\mathcal{K}_2} s'_2, \text{ there exists } s'_1 \in \mathcal{S}_1 \text{ such that } (s'_1, s'_2) \in \sigma$ and  $s_1 \rightarrow_{\mathcal{K}_1} s'_1,$
- 4. for all  $s_1 \in \mathcal{I}_1$ , there exists  $s_2 \in \mathcal{I}_2$  such that  $(s_1, s_2) \in \sigma$ ,
- 5. for all  $s_2 \in \mathcal{I}_2$ , there exists  $s_1 \in \mathcal{I}_1$  such that  $(s_1, s_2) \in \sigma$ .

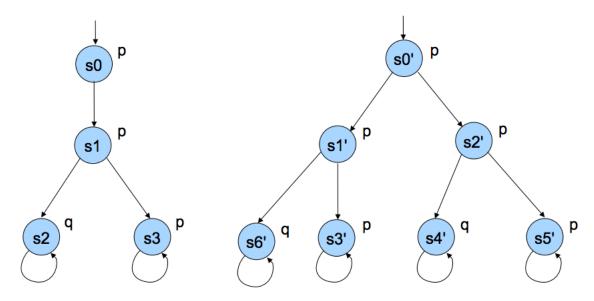
We write  $\mathcal{K}_1 \simeq^B \mathcal{K}_2$  if such a relation  $\sigma$  exists, and say that  $\mathcal{K}_1$  and  $\mathcal{K}_2$  are bisimilar.

**Exercice 8** Are the following two structures bisimilar?



Give the greatest relation that satisfies conditions 1 to 3 of bisimulation relation.





**Exercice 10** Compute the quotient of  $\mathcal{K}_4$  by the coarsest equivalence relation  $\rho$  compatible with its sets of transitions (use the algorithm presented in the lecture notes) to compute  $\rho$ .

**Exercice 11** Prove that  $\mathcal{K}_1 \simeq^B \mathcal{K}_2 \implies \mathcal{K}_1 \simeq^S \mathcal{K}_2$  and show that the converse does not hold, in general.