Well-Structured Transition Systems and Extended Petri Nets —An Introduction—

Jean-François Raskin ULB

AVACS Spring School - Oldenburg - March 2010

Plan of the talk

- Parametric systems Parametric verification
- Well-quasi orders and well-structured transition systems
- Extended Petri nets
- Three algorithmic tools for WSTS:
 - The set saturation method
 - The finite unfolding (#"Karp-Miller" tree)
 - The "Expand, Enlarge and Check" (EEC) algorithm
- Beyond this introduction bibliography
- Conclusion

Motivations

- Protocols are often designed to work for an arbitrary number of participants
- Multi-threaded programs may trigger the creation of an unbounded number of threads

- We need abstract models to reason about such systems
- We need techniques to establish correctness for an arbitrary number of participants/threads...
- We want parametric verification!

```
mutex M;

Process P {
   repeat {
     take M;
     critical;
   release M;
}
```

mutex M; Process P { repeat { take M; critical; release M; }

Counting abstraction

mutex M; Process P { repeat { take M; critical; release M; }

Counting abstraction

Mutual exclusion is verified if there is no more than one token in the red place in any reachable marking.

Motivations

- Protocols are often designed to work for an arbitrary number of participants
- Multi-threaded programs may trigger the creation of an unbounded number of threads

- We need abstract models to reason about such protocols/programs.
- Well structured transition systems (WSTS) are such abstract models.
- WSTS enjoy general decidability results.

Counting abstraction

```
mutex M;

Process P {
   repeat {
     take M;
     critical;
   release M;
}
```


Mutual exclusion This is a coverability property!

This is a coverability properties are decidable for the class of WSTS!

This is a coverability properties are decidable for the class of WSTS!

This is a coverability properties are decidable for the class of WSTS!

This is a coverability properties are decidable for the class of WSTS!

This is a coverability properties are decidable for the class of WSTS!

This is a coverability properties are decidable for the class of WSTS!

This is a coverability properties are decidable for the class of WSTS!

This is a coverability properties are decidable for the class of WSTS!

This is a coverability properties are decidable for the class of WSTS!

This is a coverability properties are decidable for the class of WSTS!

Well quasi-orders Well Structured Transition Systems

- Let S be a (possibly infinite) set, a relation $\leq \subseteq S \times S$ is
 - A pre-order iff \leq is reflexive and transitive;
 - A partial-order iff \leq is a pre-order and antisymmetric;
 - A total order iff \leq is a partial-order and total.

• (S, \leq) is an ordered set if \leq is a pre-order on S.

• Let (S, \leq) be an ordered set, \leq is well-founded iff there is no infinite decreasing chains.

$$s_1 > s_2 > s_3 > ... > s_n > ...$$

• Let (S, \leq) be an ordered set, \leq is a well-quasi ordering (WQO) iff in any infinite sequence $s_1s_2...s_i...$ there exist two positions k<1 s.t. $s_k \leq s_1$.

- (S,≤) is called a well-quasi ordered set if ≤ is a WQO.
- Clearly, all well-quasi ordered sets (S,≤) are well-founded sets.
- The set (\mathbb{N}, \leq) is a well-quasi ordered set.

The set (\mathbb{N}, \leq) is a well-quasi ordered set

Indeed, consider for the sake of contradiction that it is not the case.

Then there exists a sequence of natural numbers $n_0 n_1 ... n_i ... such that for all k<1 : \neg (n_k \le n_l)$.

But as \leq is a total order, we have then for all $k < l : n_k > n_l$ i.e., an infinite strictly decreasing sequence of elements which is not possible.

Lemma. Let (S, \leq) be a WQO set. From every infinite sequence $s_1s_2...s_j...$ in S we can extract an infinite subsequence which is increasing i.e., a subsequence $s_{f(1)}s_{f(2)}...s_{f(j)}...$ with f(i) < f(i+1) for all $i \geq 1$, and such that $s_{f(i)} \leq s_{f(i+1)}$ for all $i \geq 1$.

from
$$s_1 \ s_2 \ s_3 \ ... \ s_n \ ...$$
 we can extract
$$s_{f(1)} \leq s_{f(2)} \leq ... \leq s_{f(i)} \leq ...$$
 with
$$f(1) < f(2) < ... < f(i) < ...$$

(\mathbb{N}^k, \leq) is a well quasi-ordered set

• The set (\mathbb{N}^k, \leq) , where \leq is the pointwise extension of \leq on k-tuples of natural number i.e.,

$$(c_1,c_2,...,c_k) \le (d_1,d_2,...,d_k)$$

iff $c_i \le d_i$ for all $i, l \le i \le k$.

• is a well-quasi ordered set.

(\mathbb{N}^k, \leq) is a well quasi-ordered set

By induction on k. If k=1, the theorem holds as (\mathbb{N}, \leq) is a well-quasi ordered set.

Induction. Let k=i>1. By induction hyp. (\mathbb{N}^{k-1}, \leq) is WQO set.

Assume for the sake of contradiction that $v_1v_2...v_j...$ is an infinite sequence of incomparable elements in (\mathbb{N}^k, \leq) .

Let us consider the projection of this sequence on the dimensions 2,3,..,k: $v_1(2..i)$ $v_2(2..i)...v_j(2..i)...$

By induction hypothesis (\mathbb{N}^{k-1}, \leq) is WQO and so we can extract an infinite subsequence of increasing elements in \mathbb{N}^{k-1} . Let f(1)f(2)...f(j)... be the indices corresponding to this subsequence.

Clearly the sequence $v_{f(I)}(I)v_{f(2)}(I)...v_{f(j)}(I)...$ must be a sequence of pairwise incomparable elements. But this contradict the fact that (\mathbb{N}, \leq) is a WQO set.

Upward and downward closed sets

- Let (S, \leq) be a ordered set.
- The set U⊆S is upward-closed
 iff for all u∈U for all s∈S: if u≤s then s∈U.
- The set D⊆S is downward-closed iff for all $d \in D$ for all $s \in S$: if $s \le d$ then $s \in D$.

upward-closed

downward-closed

Upward and downward closed sets

- Let (S, \leq) be a ordered set.
- Let $S'\subseteq S$. The upward-closure of S', noted $\uparrow S'$, is the set $\{s\in S\mid \exists s'\in S' \cdot s'\leq s\}$.
- Let $S'\subseteq S$. The downward-closure of S', noted $\downarrow S'$, is the set $\{s\in S\mid \exists s'\in S' \cdot s\leq s'\}$.

- Let (S, \leq) be a ordered set.
- A set $A \subseteq S$ is an antichain if for all $a_1, a_2 \in A$, if $a_1 \neq a_2$ then neither $a_1 \leq a_2$ nor $a_2 \leq a_1$ i.e., a_1 and a_2 are incomparable.
- Let $U\subseteq S$ be an upward closed set. A set G is a generator for U if $\uparrow G=U$.
- Let U⊆S be an upward closed set. Then UGen(U) is a set of elements of S such that:
 - UGen(U)⊆U;
 - UGen(U) is a generator for U;
 - UGen(U) is an antichain.

- Let U⊆S be an upward closed set. Then UGen(U) is a set of elements of S such that:
 - UGen(U)⊆U;
 - UGen(U) is a generator for U;
 - UGen(U) is an antichain.

- **Theorem**. Let (S, \le) be a WQO. Let U⊆S be an upward closed set. Then there exists a set A⊆U:
 - A is an antichain;
 - A is a generator of U.
 - A is finite.

- If \(\le \) is a partial order: take the finite set of minimal elements! • Theorem. Let (S, \leq) be a WQQ closed set. Then there exic
 - A is an anti-

Upward closed sets in (\mathbb{N}^k, \leq)

 $Min(U)=\{(x_1,y_1),(x_2,y_2),(x_3,y_3)\}$ is a finite generator for U.

Well Structured Transition Systems

Transition system

• A transition system is a tuple $T=(C,c_0,\Longrightarrow)$ where :

- C is a (possibly infinite) set of configurations
- $c_0 \in C$ is the initial configuration
- $\bullet \implies \subseteq C \times C$ is the transition relation

Well structured transition system

- A well-structured transition system is a tuple $T=(C,c0,\Longrightarrow,\leq)$ where:
 - $(C,c0,\Longrightarrow)$ is a transition system
 - (C,≤) is a well-quasi ordered set
 - is monotonic: for all $c_1,c_2,c_3\in C$: if $c_1\Longrightarrow c_2$ and $c_1\le c_3$ then there exists $c_4:c_3\Longrightarrow c_4$ and $c_2\le c_4$.

Well structured transition system

- A well-structured transition system is a tuple $T=(C,c0,\Longrightarrow,\leq)$ where:
 - $(C,c0,\Longrightarrow)$ is a transition system
 - (C,≤) is a well-quasi ordered set
 - \Rightarrow is monotonic: for all $c_1, c_2, c_3 \in C$: if $c_1 \Rightarrow c_2$ and $c_1 \le c_3$ then there exists $c_4: c_3 \Rightarrow c_4$ and $c_2 \le c_4$.

$$\begin{array}{ccc} & c_3 & & & \\ \forall & \forall & & \\ & c_1 & \Longrightarrow & c_2 \end{array}$$

Well structured transition system

- A well-structured transition system is a tuple $T=(C,c0,\Longrightarrow,\leq)$ where:
 - $(C,c0,\Longrightarrow)$ is a transition system
 - (C, \leq) is a well-quasi ordered set
 - \Rightarrow is monotonic: for all $c_1,c_2,c_3\in C$: if $c_1\Longrightarrow c_2$ and $c_1\le c_3$ then there exists $c_4:c_3\Longrightarrow c_4$ and $c_2\le c_4$.

Predicate transformer for TS

- Predicate transformers:
 - Post(c)= { c' | c⇒c' }
 - As usual, for $S\subseteq C$, we write Post(S) for $\cup_{c\in S} Post(c)$.
 - Post^I=Post and Postⁱ=Post^OPost^I and Post^{*}=∪i≥0 Post^I.
 - Reach(T)=Post * (c₀).
 - Pre(c)= { c' | c'⇒c }
 - As usual, for $S\subseteq C$, we write Pre(S) for $\cup_{c\in S} Pre(c)$.
 - Pre¹=Pre and Pre¹=Pre∘Pre¹-¹ and Pre³=∪i≥0 Pre¹.

Petri nets and Extended Petri nets

Petri nets are an important and traditional model for modeling concurrent systems.

$$m_0 = (I,I,0,I)$$
 t_1
 t_2
 $m_1 = (I,1,I,0)$
 t_3
 $m_1 = (I,2,0,I)$
 t_3
 $m_1 = (I,2,1,0)$
 t_3
 $m_1 = (I,2,1,0)$
 t_3
 $m_1 = (I,3,0,I)$

Exemple of PN

Extended Petri Nets

- A extended Petri net N=(P,T,m₀) where :
 - $P=\{p_1,p_2,...,p_n\}$ is a finite set of places;
 - $T=\{t_1,t_2,...,t_m\}$ is a finite set of transitions, each of which is of the form (I,O,s,d,b) where :
 - **★** I : P → N are multi-sets of input places, I(p) represents the number of occurrences of p in I.
 - \star O: P \to N are multi-sets of output places.
 - **★** s,d ∈ P∪{ \bot } are the source and destination places of a special arc and b∈N∪{ $+\infty$ } is the bound associated to the special arc.
- We partition T into $T_r \cup T_e$ where T_r contains regular transitions where $s=d=\bot$ and b=0, and T_e contains extended transitions where $s,d\in P$ and $b\neq 0$.

Extended Petri Nets

- \rightarrow A Petri net (PN) is a EPN where $T_e = \emptyset$.
- → A Petri net with transfer arcs (PN+T) is such that for all $t=(I,O,s,d,b)\in Te$, $b=+\infty$.
- → A Petri net with non-blocking arcs (PN+NBA) is such that for all $t=(I,O,s,d,b)\in T_e$, b=I.
- ➡ Extended Petri nets are useful to model synchronization mechanisms in counting abstractions such as non-blocking synchronization, broadcast, etc.

Non-blocking arcs

PN + NBA

t₁ can be fired in this marking

 t_1 can be fired in this marking Firing t_1 removes one token in p_1 , one token in s, add one token to p_2 and one token to d.

t₁ can be fired in this marking

 t_1 can be fired in this marking Firing t_1 removes one token in p_1 , add one token to p_2 .

Transfer arcs

PN + T

t_I can be fired in this marking

 t_1 can be fired in this marking When firing t_1 , one token is removed from p1 and added to p2, and all the tokens in s are transferred to d.

Semantics of PN

- Let N=(P,T,m0) be a Petri net.
- Its semantics is given by the following transition system $Tr(N)=(C,c_0,\Longrightarrow)$ where:
 - C={ $m \mid m : P \rightarrow \mathbb{N}$ }
 - $c_0 = m_0$
 - for all $m_1, m_2 \in C$, $m_1 \Longrightarrow m_2$ iff there exists $t=(I,O) \in T$:
 - I≤m_I and
 - $m_2=m_1-I+O$.

Semantics of Extended Petri nets

- Let N=(P,T,m₀) be an extended Petri net.
- Its semantics is given by the following transition system $Tr(N)=(C,c_0,\Longrightarrow)$ where: $C=\{m\mid m:P\to\mathbb{N}\}, c_0=m_0, \text{ and: }$
 - for all m,m' \in C, m \Longrightarrow m' iff there exists t=(I,O,s,d,b) \in T and $|\le$ m, and m' is computed as follows: let |=m-I
 - Compute m₂ as follows: if s=d=⊥ then m₂=m₁
 otherwise m₂ agrees with m₁ on all places but s and d where:
 - $m_2(s) = max(0,m_1(s)-b)$
 - $m_2(d) = min(m_1(d) + m_1(s), m_1(d) + b)$
 - Finally m'=m₂+O

- Let N=(P,T,m₀) be an extended Petri net. Its transition system $Tr(N)=(C,c_0,\Longrightarrow)$ is a WSTS $(C,c_0,\Longrightarrow,\leqslant)$, where:
 - \leq is the extension of $\leq \subseteq \mathbb{N} \times \mathbb{N}$ to tuples in $\mathbb{N}^{|P|}$, it is a $\mathbb{W} \setminus \mathbb{Q} \setminus \mathbb{Q}$.
 - and \Rightarrow is monotonic w.r.t. \leq .

- Let $N=(P,T,m_0)$ be an extended Petri net. Its transition system $Tr(N)=(C,c_0,\Longrightarrow)$ is a WSTS $(C,c_0,\Longrightarrow,\leqslant)$, where:
 - \leq is the extension of $\leq \subseteq \mathbb{N} \times \mathbb{N}$ to tuples in $\mathbb{N}^{|P|}$, it is a $\mathbb{W} \setminus \mathbb{Q} \setminus \mathbb{Q}$.
 - and \Rightarrow is monotonic w.r.t. \leq .

$$m_1 = (2,0,3,0)$$

- Let $N=(P,T,m_0)$ be an extended Petri net. Its transition system $Tr(N)=(C,c_0,\Longrightarrow)$ is a WSTS $(C,c_0,\Longrightarrow,\leqslant)$, where:
 - \leq is the extension of $\leq \subseteq \mathbb{N} \times \mathbb{N}$ to tuples in $\mathbb{N}^{|P|}$, it is a $\mathbb{W} \setminus \mathbb{Q} \setminus \mathbb{Q}$.
 - and \Rightarrow is monotonic w.r.t. \leq .

$$m_1=(2,0,3,0) \longrightarrow m_2=(1,1,2,1)$$

- Let N=(P,T,m₀) be an extended Petri net. Its transition system $Tr(N)=(C,c_0,\Longrightarrow)$ is a WSTS $(C,c_0,\Longrightarrow,\leqslant)$, where:
 - \leq is the extension of $\leq \subseteq \mathbb{N} \times \mathbb{N}$ to tuples in $\mathbb{N}^{|P|}$, it is a $\mathbb{W} \setminus \mathbb{Q} \setminus \mathbb{Q}$.
 - and \Rightarrow is monotonic w.r.t. \leq .

$$m_3=(3,0,4,0)$$
 $m_1=(2,0,3,0) \longrightarrow m_2=(1,1,2,1)$

- Let N=(P,T,m₀) be an extended Petri net. Its transition system $Tr(N)=(C,c_0,\Longrightarrow)$ is a WSTS $(C,c_0,\Longrightarrow,\leqslant)$, where:
 - \leq is the extension of $\leq \subseteq \mathbb{N} \times \mathbb{N}$ to tuples in $\mathbb{N}^{|P|}$, it is a $\mathbb{W} \setminus \mathbb{Q} \setminus \mathbb{Q}$.
 - and \Rightarrow is monotonic w.r.t. \leq .

$$m_3=(3,0,4,0) \longrightarrow m_4=(2,1,3,1)$$
 $\forall m_1=(2,0,3,0) \longrightarrow m_2=(1,1,2,1)$

Properties of extended Petri nets

- The reachability problem asks given a net $N=(P,T,m_0)$ and a marking m, if $m \in Post^*(m_0)$.
- The coverability problem asks given a net $N=(P,T,m_0)$ and a marking m, if there exists a marking m' \geq m such that $m'\in Post^*(m_0)$.
- The non-terminating computation problem asks given a net $N=(P,T,m_0)$ if there exists an infinite computation in N starting from m_0 .
- The place boundedness problem asks given a net $N=(P,T,m_0)$ and a place $p\in P$ if there exists a bound $n\in \mathbb{N}$ such that for all $m\in Reach(m_0)$, we have that $m(p)\leq n$.

Theorem. The reachability problem for PN+NBA (and for PN+T) is undecidable.

Theorem. The reachability problem for PN+NBA (and for PN+T) is undecidable.

Proof sketch. Given a 2CM machine M, we can construction a PN+NBA N and two markings m_0 , m_1 such that m_1 is reachable from m_0 in N iff the machine M halts.

We associate to each counter and each control state of the 2CM a place of the net. We have an additional place p_{check} .

Initially, the place associated to the initial control state contains one token, all the other places (incluing p_{check} and the two counters) are empty.

Theorem. The reachability problem for PN+NBA (and for PN+T) is undecidable.

Simulation of the instructions of a 2CM.

Theorem. The reachability problem for PN+NBA (and for PN+T) is undecidable.

Theorem. The reachability problem for PN+NBA (and for PN+T) is undecidable.

 L_1 : if $c_1 \neq 0$ then $c_1 := c_1 - I$; goto L_2 else goto L_3 .

Reachability is undecidable for EPN

Theorem. The reachability problem for PN+NBA (and for PN+T) is undecidable.

With this additional gadget, it is clear that the machine M halts iff the marking "one token in halt and all other places empty" is reachable for the initial marking.

Reachability is undecidable for EPN

Theorem. The reachability problem for PN+NBA (and for PN+T) is undecidable.

With this additional gadget, it is clear that the machine M halts iff the marking "one token in halt and all other places empty" is reachable for the initial marking.

Place boundedness

Theorem. The place boundedness problems for PN+NBA and PN+T are undecidable.

Place boundedness

Theorem. The place boundedness problems for PN+NBA and PN+T are undecidable.

To prove that we need a non-trivial extension of the proof idea in the previous undecidability result.

Three algorithmic techniques for WSTS

Technique I: set saturation

 The coverability problem asks given a net N=(P,T,m₀) and a marking m, if there exists a marking m'>m such that m'∈Post*(m₀).

• The coverability problem asks given a net $N=(P,T,m_0)$ and a marking m, if there exists a marking m' \geq m such that $m'\in Post^*(m_0)$.

m₀∈?

Pre and upward-closed sets in WSTS

• **Lemma**. Let $T=(C,c_0, \Longrightarrow, \leq)$ be a WSTS and U be an \leq -upward closed set of configurations in T. Pre(U) is \leq -upward closed.

Pre and upward-closed sets in WSTS

• **Lemma**. Let $T=(C,c_0, \Longrightarrow, \leq)$ be a WSTS and U be an \leq -upward closed set of configurations in T. Pre(U) is \leq -upward closed.

Proof. Let $c_1 \in Pre(U)$ and let us consider any c_2 such that $c_1 \le c_2$.

We know that there exists $c_3 \in U$ and $c_1 \Longrightarrow c_3$.

By monotonicity, there exists c_4 such that $c_3 \le c_4$ and $c_2 \Longrightarrow c_4$.

As U is upward closed, we have that $c_4 \in U$ and so $c_2 \in Pre(U)$.

Pre and upward-closed sets in WSTS

• **Lemma**. Let $T=(C,c_0, \Longrightarrow, \leq)$ be a WSTS and U be an \leq -upward closed set of configurations in T. Pre(U) is \leq -upward closed.

Proof. Let $c_1 \in Pre(U)$ and let us consider any c_2 such that $c_1 \le c_2$.

We know that there exists $c_3 \in U$ and $c_1 \Longrightarrow c_3$.

By monotonicity, there exists c_4 such that $c_3 \le c_4$ and $c_2 \Longrightarrow c_4$.

As U is upward closed, we have that $c_4 \in U$ and so $c_2 \in Pre(U)$.

Effective WSTS

• PreUp(c) is the set of all configurations whose one-step successors by \Rightarrow are larger or equal to c i.e.:

PreUp(c)=
$$\{c' \mid \exists c'' : c' \Rightarrow c'' \text{ and } c \leq c'' \}$$
=Pre($\uparrow c$)

- A WSTS $T=(C,c0,\Longrightarrow,\leq)$ is effective (EWSTS) if:
 - given any pair of configurations c_1 and c_2 in C, one can decide if $c_1 \Rightarrow c_2$ or not.
 - given any pair of configurations c_1 and c_2 in C, one can decide if $c_1 \le c_2$ or not.
 - given any configuration $c \in C$, one can effectively compute UGen(PreUp(c)).
- If the set of successors Post(c) of a configuration c is finite and effectively computable, we say that the WSTS is forward effective (FEWSTS for short).

General backward for solving coverability in EWSTS

- Let $T=(C,c0, \rightarrow, \leq)$ be EWSTS. Let U⊆C be an upward closed set and UGen(U) a finite generator for U.
- Consider now the sequence:

```
E_0=UGen(U)

E_i=UGen(PreUp(E_{i-1}) \cup \uparrow E_{i-1})), for i \ge 0.
```

- First, note that all elements of this sequence are computable as T is an EWSTS.
- Second, $\uparrow E_i$ is the set of configurations of T that can reach a configuration in U in i steps or less.
- Third, there exists a position $k \ge 0$ such that for all $l \ge k$, $\uparrow E_l = \uparrow E_k$.

Termination

Assume that this is not the case.

Then, as the sequence $\uparrow E_i$ is increasing for \subseteq , there must exist a sequence of elements

e₁ e₂ ... e_n ...

such that for all i < j, $\neg (e_i \le e_j)$.

But this is in contradiction with the fact that (S, \leq) is a well-quasi ordered set!

General backward for solving coverability in EWSTS

- Let $T=(C,c0, \Longrightarrow, \leq)$ be EWSTS. Let U⊆C be an upward closed set and UGen(U) a finite generator for U.
- Consider now the sequence:

```
E_0=UGen(U)

E_i=UGen(PreUp(E_{i-1}) \cup \uparrow E_{i-1})), \text{ for } i \geq 0.
```

- First, note that all elements of this sequence are computable as T is an EWSTS.
- Second, $\uparrow E_i$ is the set of configurations of T that can reach a configuration in U in i steps or less.
- Third, there exists a position $k \ge 0$ such that for all $l \ge k$, $\uparrow E_l = \uparrow E_k$.
- This sequence is thus a **effective algorithm** to decide coverability in EWSTS.

Decidability of coverability for EWSTS

Theorem. The coverability problem is decidable for EWSTS.

• The coverability problem asks given a net $N=(P,T,m_0)$ and a marking m, if there exists a marking m' \geq m such that $m'\in Post^*(m_0)$.

Pre(1m)

• The coverability problem asks given a net $N=(P,T,m_0)$ and a marking m, if there exists a marking m' \geq m such that $m'\in Post^*(m_0)$.

 $Pre^2(\uparrow m)$

• The coverability problem asks given a net $N=(P,T,m_0)$ and a marking m, if there exists a marking m' \geq m such that $m'\in Post^*(m_0)$.

 $Pre^2(\uparrow m)$

• The coverability problem asks given a net $N=(P,T,m_0)$ and a marking m, if there exists a marking m' \geq m such that $m'\in Post^*(m_0)$.

After a finite number of iterations it stabilizes on a set of markings whose upward closure is equal to the set of markings that can reach a marking covering m.

UGen(Pre(1m))

=Min{ m' \in N|P| | m' \geqslant I(t) \land m'-I(t)+O(t) \geqslant m } (0,0,1,1)

=intersection of two upward-closed sets!

UGen(Pre(1m))

=Min{ m' \in N|P| | m' \geqslant I(t) \land m'-I(t)+O(t) \geqslant m }

= $Min\{(1,0,1,1),(0,0,2,0),(0,1,0,1)\}$

 $=\{(1,0,1,1),(0,0,2,0),(0,1,0,1)\}$

UGen(Pre(↑m)∪↑m)

 $= Min(\{(1,0,1,1),(0,0,2,0),(0,1,0,1)\} \cup \uparrow \{(0,0,1,1)\} \quad (0,0,1,1)$

 $=\{(0,0,2,0),(0,1,0,1),(0,0,1,1)\}$

UGen(Pre(↑m)∪↑m) $= Min(\{(1,0,1,1),(0,0,2,0),(0,1,0,1)\} \cup \uparrow \{(0,0,1,1)\} \quad (0,0,1,1)$ $=\{(0,0,2,0),(0,1,0,1),(0,0,1,1)\}$

Set saturation methods for EPN

• **Theorem**. The coverability problem for extended Petri net is decidable.

Set saturation methods for EPN

• **Theorem**. The coverability problem for extended Petri net is decidable.

Nevertheless, the worst case complexity is high:

- Theorem. The coverability problem is ExpSpace-C for Petri nets.
- **Theorem**. The coverability problem is non-primitive recursive for transfer/reset/NBA PN.

Technique 2: Tree saturation

Tree saturation

Tree saturation

Unfolding

+

Rule to stop

Objective: construct a finite tree that represents (in some way) all the computations of the transition system.

$$m_0=(1,1,0,1)$$
 t_1
 $m_1=(1,2,0,1)$

$$m_0=(1,1,0,1)$$
 t_1
 t_2
 $m_1=(1,2,0,1)$
 $(1,0,1,0)$

$$m_0 = (1,1,0,1)$$
 t_1
 t_2
 $m_1 = (1,2,0,1)$
 t_1
 t_3
 $m_1 = (1,1,1,0)$
 $(1,1,0,1)$

We are done !!!

Tree saturation for FEWSTS

• The stopping rule of the tree saturation method is applicable to any FEWSTS.

Indeed, on every infinite branch of the unfolding, we are guaranteed that there exist a node annotated with a state that is larger than one of its ancestor! This is a direct consequence of WQO!

 So for every FEWSTS, there exists a finite tree, called the finite reachability tree, obtained by the tree saturation method:

Theorem. A finite reachability tree exists and is effectively computable for any FEWSTS.

(easy proof using WQO+König's lemma)

Properties of the finite reachability

- Clearly the leafs of the FRT(T) are nodes that either have no successors or contain a state which subsumes an ancestor. As a consequence, we have the following theorem.
- **Theorem**. $T=(C,c_0, ⇒ ≤)$ has a non-terminating computation starting in c_0 iff FRT(T) contains a subsumed node.

Properties of the finite reachability

• **Theorem**. $T=(C,c_0,⇒≤)$ has a non-terminating computation starting in c_0 iff FRT(T) contains a subsumed node.

and $c_1 \leq c_4$

Then clearly $c_0(c_1c_2c_3c_4)^\omega$ is an non-terminating computation in T

Properties of the finite reachability

• **Theorem**. $T=(C,c_0,⇒≤)$ has a non-terminating computation starting in c_0 iff FRT(T) contains a subsumed node.

 (\Longrightarrow)

Let c_0 c_1 c_2 ... c_n ... be a non-terminating computation in T.

This computation has a prefix which labels a branch in FRT(T).

This branch must end in a node that subsumes an ancestor (it can not be a node with no successor).

The non-terminating computation problem

 Theorem. The non-terminating computation problem is decidable for the entire class of FEWSTS.

Karp and Miller tree for PN

- The Finite Reachability Tree should not be confused with The Karp and Miller tree for Petri Net.
- KM Tree=Unfolding+Accelerations+Stopping rules.
- KM Tree is an procedure for computing an effective representation of the set \(\preceq \text{Reach}(N) \) of a Petri net N.

$$m_0=(1,1,0,1)$$
 t_1
 $m_1=(1,2,0,1)$

 $m_0 = (1,1,0,1)$ t_1 $m_1 = (1,\omega,0,1) \text{ Acceleration!}$

$$m_0 = (I, I, 0, I)$$

$$m_1 = (I, \omega, 0, I)$$

$$\downarrow t_2$$

$$m_1 = (I, \omega, I, 0)$$

$$m_{0}=(1,1,0,1)$$

$$m_{1}=(1,\omega,0,1)$$

$$\downarrow t_{2}$$

$$m_{1}=(1,\omega,1,0)$$

$$\downarrow t_{3}$$

$$m_{1}=(1,\omega,0,1)$$

$$m_{0}=(I,I,0,I)$$

$$m_{1}=(I,\omega,0,I)$$

$$\downarrow t_{2}$$

$$m_{1}=(I,\omega,I,0)$$

$$\downarrow t_{3}$$

$$m_{1}=(I,\omega,0,I)$$
Stop!

Karp and Miller tree for PN

- The Finite Reachability Tree should not be confused with The Karp and Miller tree for Petri Net.
- KM Tree=Unfolding+Accelerations+Stopping rules.
- KM Tree is an procedure for computing an effective representation of the set \(\preceq \text{Reach}(N) \) of a Petri net N.
- \(\) Reach(N) allows for deciding coverability:
 - $\exists m' \geq m \cdot m' \in Post^*(m0) \text{ iff } m \in \downarrow Reach(N).$
- Reach(N) allows for deciding place boundedness:
 - p is bounded in N iff $\exists k \in \mathbb{N} \cdot \forall m \in \downarrow Reach(N) \cdot m(p) \leq k$.

ω -Markings and downward closed sets in (\mathbb{N}^k, \leq)

- A ω -marking is a function $m : P \to \mathbb{N} \cup \{\omega\}$.
- ω ="any number of tokens".
- A ω-marking m represents a set of "plain" markings:

Let m be an ω -marking

$$\downarrow m = \{ m' \in [P \rightarrow \mathbb{N}] \mid \forall p \in P : m'(p) \leq m(p) \}$$

• **Theorem.** For any downward-closed set of marking D, there exists a finite set of ω -marking M such that \downarrow M=D.

Downward-closed sets in (\mathbb{N}^k, \leq)

DGen(D)= $\{(x_1,y_1),(x_2,y_2),(\omega,y_3)\}$ is a finite generator for D.

↓Reach(N) is not constructible for EPN

- We have seen that:
 - \Reach(N) is sufficient to decide place boundedness
 - Place boundedness is undecidable for EPN!
- So, ↓Reach(N) is not computable for EPN!

↓Reach(N) is not constructible for EPN

- We have seen that:
 - \Reach(N) is sufficient to decide place boundedness
 - Place boundedness is undecidable for EPN!
- So, \(\frac{1}{2} \text{Reach}(N) \) is not computable for EPN!

Still, can we have a forward algorithm for coverability?

Expand-Enlarge and Check

Forward algorithm for coverability of WSTS

- We have just seen that \downarrow Reach(N) has always a finite representation but it is not effectively computable.
- Nevertheless, our solution for a forward algorithm for deciding coverability of EPN will rely on the existence of this finite representation.

Under-approx of \$\pm\$Reach(S)

- Let $N=(P,T,m_0)$ be an extended Petri net and $T(N)=([P\rightarrow \mathbb{N}],m_0,\Longrightarrow,\leqslant)$ its associated WSTS.
- Let $k \in \mathbb{N}$, and the two following families of finite sets: C_k be the set of markings $\{ m \mid m \in P \rightarrow [0..k] \} \cup \{m_0\}$ L_k be the set of ω -markings $\{ m \mid m \in P \rightarrow [0..k] \cup \{\omega\} \} \cup \{m_0\}$.
- UnderApprox(N,k)=($C_k,m_0,\Longrightarrow_{under}$) where:
 - $\Rightarrow_{under} \Rightarrow \cap C_k \times C_k$ i.e., transitions that leads to markings with more than k tokens are discarded.
- Lemma. \downarrow Reach(UnderApprox(N,k)) $\subseteq \downarrow$ Reach(N).

An example

Under(N,2)

An example

Under(N,2)

Over-approx of Cover(S)

• We define $Post^{\#k}: L_k \rightarrow 2^{L_k}$ as follows:

```
Post<sup>#k</sup>(m)
={m'\inL<sub>k</sub> | m\Rightarrow\omegam' or
¬(m\Rightarrow\omegam') and \existsm"•m\Rightarrow\omegam":m'=enlarge(m",k)}
where enlarge(m",k)(p) = m"(p) if m'(p)\leqk
\omega otherwise
```

- OverApprox(N,k)=(L_k , m_0 , \Longrightarrow_{over}) where:
 - $(m_1,m_2) \in \Longrightarrow_{over} iff m_2 \in Post^{\#k}(m_1)$
- Lemma. \downarrow Reach(N) $\subseteq \downarrow$ Reach(OverApprox(N,k)).

An example

EEC Algorithm

```
k:=0;

Repeat:

"Expand": Compute D_{Under}:=UnderApprox(N,k)

"Enlarge": Compute D_{Over}:=OverApprox(N,k)

"Check": if D_{Under} \cap U \neq \emptyset return "positive";

else if D_{Over} \cap U = \emptyset return "negative" else k:=k+1;
```

EEC Algorithm

```
k:=0;
Repeat:

"Expand": Compute D_{Under}:=UnderApprox(N,k)

"Enlarge": Compute D_{Over}:=OverApprox(N,k)

"Check": if D_{Under} \cap U \neq \emptyset return "positive";
else if D_{Over} \cap U = \emptyset return "negative"
else k:=k+1;
```

Clearly this algorithm is sound as it uses:

- -under-approximations to detect positive instances.
- -over-approximations to detect negative instances.

EEC Algorithm

```
k:=0;

Repeat:

"Expand": Compute D<sub>Under</sub>:=Under

"Enlarge": C

But does it always terminate?

"Ch

But does it always terminate?

"Ch

But does it always terminate?

"Ch

But does it always terminate?

"else if D<sub>Over</sub>∩U=∅ return "negative"

else k:=k+1;
```

Clearly this algorithm is sound as it uses:

- -under-approximations to detect positive instances.
- -over-approximations to detect negative instances.

Termination of EEC

- Yes it does always terminate!
- Lemma(Positive instances). Let $m_0m_1...m_n$ be an execution that reaches U. Let k be the maximal number of tokens in a place of a marking in this execution. Then UnderApprox(N,k)∩U≠ \emptyset .
- Lemma(Negative instances). Let $k=max\{m(p)\neq\omega\mid m\in DGen(\downarrow Reach(N))\}.$ $\downarrow Post^{\#k}(\downarrow Reach(N))=\downarrow Post(\downarrow Reach(N)), and so \downarrow OverApprox(N,k)=\downarrow Reach(N).$

Beyond this introduction Bibliography

- General papers
 - Parosh Aziz Abdulla, Karlis Cerans, Bengt Jonsson, Yih-Kuen Tsay: General Decidability Theorems for Infinite-State Systems. LICS 1996: 313-321
 - Alain Finkel, Ph. Schnoebelen: Well-structured transition systems everywhere! Theor. Comput. Sci. 256(1-2): 63-92 (2001)
 - Gilles Geeraerts, Jean-François Raskin, Laurent Van Begin: Expand, Enlarge and Check: New algorithms for the coverability problem of WSTS. J. Comput. Syst. Sci. 72(1): 180-203 (2006)

More applications

- Parosh Aziz Abdulla, Aurore Annichini, Ahmed Bouajjani: Symbolic Verification of Lossy Channel Systems: Application to the Bounded Retransmission Protocol. TACAS 1999: 208-222
- Parosh Aziz Abdulla, Pritha Mahata, Richard Mayr: Dense-Timed Petri Nets: Checking Zenoness, Token liveness and Boundedness. Logical Methods in Computer Science 3(1): (2007)
- Joël Ouaknine, James Worrell: On the Language Inclusion Problem for Timed Automata: Closing a Decidability Gap. LICS 2004: 54-63
- Thomas Wies, Damien Zufferey, Thomas A. Henzinger: Forward Analysis of Depth-Bounded Processes. FOSSACS 2010: 94-10

- Relation with abstractions/Abstract interpretation/ Domain theory:
 - Pierre Ganty, Jean-François Raskin, Laurent Van Begin: A
 Complete Abstract Interpretation Framework for
 Coverability Properties of WSTS.VMCAI 2006: 49-64.
 - Rayna Dimitrova, Andreas Podelski: Is Lazy Abstraction a Decision Procedure for Broadcast Protocols?
 VMCAI 2008: 98-111
 - Alain Finkel, Jean Goubault-Larrecq: Forward Analysis for WSTS, Part I: Completions. STACS 2009: 433-444
 - Alain Finkel, Jean Goubault-Larrecq: Forward Analysis for WSTS, Part II: Complete WSTS. ICALP (2) 2009: 188-199

PhD Thesis:

- Gilles Geeraerts. Coverability and Expressiveness
 Properties of WSTS. PhD Thesis. ULB. 2007.
- Laurent Van Begin. Efficient Verification of Counting Abstraction for Parametric Systems. PhD Thesis. ULB. 2003.
- Pritha Mahata. Model Checking Parameterized
 Timed Systems. PhD Thesis, 2005.

Conclusion

- Well-structured transition systems are a general class of infinite state systems with decidable verification problems.
- They are useful to model:
 - parametric systems,
 - lossy channel systems,
 - broadcast protocols,
 - timed Petri nets,
 - complements of one-clock timed languages, etc.
- We have reviewed three algorithmic tools for their analysis.

Questions

