Well-Structured Transition Systems

and Extended Petri Nets
—An Introduction—

Jean-Francgois Raskin
ULB

AVACS Spring School - Oldenburg - March 2010

Plan of the talk

® Parametric systems - Parametric verification
® WWell-quasi orders and well-structured transition systems
® Extended Petri nets

® Three algorithmic tools for WSTS:

® The set saturation method
® The finite unfolding (+“Karp-Miller” tree)

® The “Expand, Enlarge and Check” (EEC) algorithm
® Beyond this introduction - bibliography

® Conclusion

Friday 19 March 2010

Introduction

Motivations

® Protocols are often designed to work for an arbitrary
number of participants

® Multi-threaded programs may trigger the creation of an
unbounded number of threads

® We need abstract models to reason about such systems

® We need techniques to establish correctness for an
arbitrary number of participants/threads...

® We want parametric verification !

Friday 19 March 2010

Parametric verification and PN

mutex M ;

Process P {
repeat {
take M ;
critical ;
release M ;

Friday 19 March 2010

Parametric verification and PN

Counting abstraction
mutex M ;

Process P {
repeat {
take M ;
critical ;
release M ;

Friday 19 March 2010

Parametric verification and PN

Counting abstraction
mutex M ;

Process P {
repeat {
take M ;
critical ;
release M ;

Mutual exclusion is verified if there is no more than one
token in the red place in any reachable marking.

Friday 19 March 2010

Motivations

® Protocols are often designed to work for an arbitrary
number of participants

® Multi-threaded programs may trigger the creation of an
unbounded number of threads

® Ve need abstract models to reason about such
protocols/programs.

® WWell structured transition systems (VVSTYS) are such
abstract models.

® WSTS enjoy general decidability results.

Friday 19 March 2010

Parametric verification and PN

Counting abstraction

mutex M ;

Process P {
repeat {
take M ;
critical ;
release M ;

Mutual ex
token

Friday 19 March 2010

Well quasi-orders
Well Structured Transition Systems

Friday 19 March 2010

WVell quasi-order

® |etS bea (possibly infinite) set,a relation <CSXS is

® A pre-order iff < is reflexive and transitive;
® A partial-order iff < is a pre-order and antisymmetric;

® A total order iff < is a partial-order and total.

® (5,<)is an ordered set if < is a pre-order on S.

Friday 19 March 2010

WVell quasi-order

® Let (S,<) be an ordered set, < is well-founded iff
there is no infinite decreasing chains.

® Let (S,<) be an ordered set, < is a well-quasi
ordering (WQO) iff in any infinite sequence

$1S2...Si... there exist two positions k<I| s.t. sy<s..

S| S2... Sk ... S| ...

.
S

Friday 19 March 2010

WVell quasi-order

® (5,<)is called a well-quasi ordered set if < is a
WQO.

® C(Clearly, all well-quasi ordered sets (S,<) are
well-founded sets.

® The set (N,<) is a well-quasi ordered set.

Friday 19 March 2010

The set (IN,<) is a well-quasi ordered set

Indeed, consider for the sake of contradiction
that it is not the case.

Then there exists a sequence of natural numbers
noni...Nni... such that for all k<| : =(nk=<n).

But as < is a total order, we have then for all
k<l : ni>n i.e., an infinite strictly decreasing
sequence of elements which is not possible.

Friday 19 March 2010

WVell quasi-order

Lemma. Let (5,<) be a WQO set. From every infinite
sequence s|s2...5j... i S we can extract an infinite
subsequence which is increasing i.e., a subsequence

Sf(1Sf(2)...Sf(j)... With f(i)<f(i+1) for all i=|, and such that
sii) <sfi+1) for all i=|.

from
S| S2 S3 ... Sph ...
we can extract
Sf(1) = Sf2) = ... = Sf() = ...
with
f(1) < f(2) < ..<f(i) < ...

Friday 19 March 2010

(NK,x) is a well quasi-ordered set

® The set (NK <), where < is the pointwise extension of
< on k-tuples of natural number i.e.,

(C1,C2,...,Ck) =< (di,d2,...,dk)
iff ci<d;foralli, | <i<k.

® ..isa well-quasi ordered set.

Friday 19 March 2010

(NK,x) is a well quasi-ordered set

By induction on k. If k=1, the theorem holds as (I\,<) is a well-quasi ordered set.

Induction. Let k=i>1. By induction hyp. (N*!,<) is WQO set.

Assume for the sake of contradiction that vvz...v;... is an infinite sequence of
incomparable elements in (NX,<).

Let us consider the projection of this sequence on the dimensions 2,3,..,k :
vi(2..1) v2(2..i)...vj(2..i)...

By induction hypothesis (N*! <) isWQO and so we can extract an infinite

subsequence of increasing elements in NI, Let f(1)f(2)...f(j)... be the indices
corresponding to this subsequence.

Clearly the sequence vi)(1)vi2)(1)...v5(1)... must be a sequence of pairwise
incomparable elements. But this contradict the fact that (I, <) is aWQO set.

Friday 19 March 2010

Upward and downward closed sets

® |et (5,<)bea ordered set.

® The set UCS is upward-closed
iff for all ueU for all s€S :if u<s then seU.

® The set DCS is downward-closed
iff for all deD for all seS :if s<d then seD.

upward-closed downward-closed
S
Vi d
u Vi

Friday 19 March 2010

Upward and downward closed sets

® |let (S5,<)bea ordered set.

® |et S$CS.The upward-closure of S’, noted TS,
is the set { s€S | 3Is’eS’ » s’<s}.

® |etS’CS.The downward-closure of §’, noted 1S,
is the set { s€S | 3s’eS’ * s<s'}.

Friday 19 March 2010

Generators of upward closed sets

Let (S,<) be a ordered set.

A set ACS is an antichain if for all aj,a2€A, if aj#a; then
neither aj<az nor a;<a, i.e.,,a; and a; are incomparable.

Let UCS be an upward closed set. A set G is a generator
for U if TG=U.

Let UCS be an upward closed set. Then UGen(U) is a set
of elements of S such that:

o UGen(U)cU;
® UGen(V) is a generator for U;

® UGen(U) is an antichain.

Friday 19 March 2010

Generators of upward closed sets

® |et UCS be an upward closed set. Then UGen(U) is a set
of elements of S such that:

o UGen(U)cU;
® UGen(V) is a generator for U;

® UGen(U) is an antichain.

Friday 19 March 2010

Generators of upward closed sets

® Theorem.Let (5,<) be aWQO. Let UCS be an upward
closed set. Then there exists a set ACU:

® Ais an antichain;
® Aisa generator of U.

® A is finite.

Friday 19 March 2010

Generators of upward closed sets

Friday 19 March 2010

Generators of upward closed sets

Friday 19 March 2010

Upward closed sets in (IN¥ <)

(X1,y1)

(x2,y2) @

@ >
(X3,Y3)

Min(U)={(xi.y1). (xy2) (x3y3)} is a finite generator for U.

Friday 19 March 2010

Well Structured
Transition Systems

Transition system

® A transition system is a tuple T=(C,co,=)
where :

® C isa (possibly infinite) set of configurations

® coeC is the initial configuration

@ — CCxC is the transition relation

Friday 19 March 2010

Well structured transition system

® A well-structured transition system is a tuple
T=(C,c0,=,<) where:

® (C,c0,=) is a transition system

® (C,<)is a well-quasi ordered set

® — js monotonic:for all c|,cz,c3€C:
if cj=c7 and ¢ <c3
then there exists c4: c3=c¢c4 and ¢, <ca.

Friday 19 March 2010

Well structured transition system

® A well-structured transition system is a tuple
T=(C,c0,=,<) where:

® (C,c0,=) is a transition system

® (C,<)is a well-quasi ordered set

® — js monotonic:for all c|,cz,c3€C:
if cj=c7 and ¢ <c3
then there exists c4: c3=c¢c4 and ¢, <ca.

Friday 19 March 2010

Well structured transition system

® A well-structured transition system is a tuple
T=(C,c0,=,<) where:

® (C,c0,=) is a transition system

® (C,<)is a well-quasi ordered set

® — js monotonic:for all c|,cz,c3€C:
if cj=c7 and ¢ <c3
then there exists c4: c3=c¢c4 and ¢, <ca.

=
C3 == C4

\v4 VI VI
C| — C2

Friday 19 March 2010

Predicate transformer for TS

® Predicate transformers:
® Post(c)={c |c=c}
® As usual, for SCC, we write Post(S) for uces Post(c).
® Post!'=Post and Post'=PostoPost-! and Post'=ui>0 Post'.
e Reach(T)=Post’(co).
® Pre(c)={c|c=c}
® As usual, for SCC, we write Pre(S) for uces Pre(c).

® Pre!'=Pre and Pre’=PrecoPre’-! and Pre*™=ui>0 Pre'.

Friday 19 March 2010

Petri nets and
Extended Petri nets

Exemple of PN

Petri nets are an important and
traditional model for modeling
concurrent systems.

Friday 19 March 2010

Exemple of PN

mo=(1,1,0,1)

e

mi=(1,2,0,1)

RN

mi=(1,1,1,00 mi=(l,3,0,)
ltB ltz

mi=(1,2,0,1) Mi=(1.21,0)

lts

mi=(1,3,0,1)

Exemple of PN

mo=(1,1,0,1)

mi=(1,2,0,1)
ltz &

mi=(1,1,1,00 mi=(l,3,0,)
lt3 ltz

mi=(1,2,0,1) Mi=(1.21,0)

lts

mi=(1,3,0,1)

Exemple of PN

mo=(1,1,0,1)

e

mi=(1,2,0,1)

RN

mi=(1,1,1,0) mi=(l,3,0,1)
ltB ltz

mi=(1,2,0,1) Mi=(1.21,0)

lts

mi=(1,3,0,1)

Exemple of PN

mo=(1,1,0,1)

e

mi=(1,2,0,1)

RN

mi=(1,1,1,00 mi=(l,3,0,)
ltB ltz

mi=(1,2,0,1) mMm=(121,0)

lts

mi=(1,3,0,1)

Extended Petri Nets

® A extended Petri net N=(P,T,mo) where :

® P={p|,p2,...,pn} is a finite set of places;

® T={t),ta,...,tm} is a finite set of transitions, each of which is of the form
(1,0,s,d,b) where :

% | :P =N are multi-sets of input places, I(p) represents the number
of occurences of p in .

* O :P —N are multi-sets of output places.

% s,d € Pu{L} are the source and destination places of a special arc

and beNu{+ o0} is the bound associated to the special arc.

® We partition T into TruT. where T contains regular
transitions where s=d=_.1 and b=0, and T. contains

extended transitions where s,deP and b+0.

Friday 19 March 2010

Extended Petri Nets

= A Petri net (PN) is a EPN where T.=2.

= A Petri net with transfer arcs (PN+T)
is such that for all t=(1,0,s,d,b)eTe, b=+00.

= A Petri net with non-blocking arcs (PN+NBA)
is such that for all t=(1,0,s,d,b)eTe, b=1.

= Extended Petri nets are useful to model
synchronization mechanisms in counting
abstractions such as non-blocking
synchronization, broadcast, etc.

Friday 19 March 2010

Example of PN+NBA

Example of PN+NBA

Non-blocking arcs

PN + NBA

At most one token gets
moved from the source
to the destination

Friday 19 March 2010

Example of PN+NBA

Non-blocking arcs

PN + NBA

At most one token gets
moved from the source
to the destination

Friday 19 March 2010

Example of PN+NBA

Non-blocking arcs

PN + NBA

At most one token gets
moved from the source
to the destination

Friday 19 March 2010

Example of PN+NBA

Non-blocking arcs

PN + NBA

At most one token gets
moved from the source
to the destination

Friday 19 March 2010

Example of PN+NBA

Non-blocking arcs

PN + NBA

At most one token gets
moved from the source
to the destination

Friday 19 March 2010

Example of PN+NBA

Non-blocking arcs

PN + NBA

At most one token gets
moved from the source
to the destination

Friday 19 March 2010

Example of PN+NBA

Non-blocking arcs

PN + NBA

At most one token gets
moved from the source
to the destination

Friday 19 March 2010

Example of PN+NBA

Example of PN+NBA

@\tl
Sl @

ti can be fired in this marking

Example of PN+NBA

@\tl
) @

ti can be fired in this marking

Firing t| removes one token in p|, one token in s,
add one token to p2 and one token to d.

Friday 19 March 2010

Example of PN+NBA

@\tl
@l @

ti can be fired in this marking

Example of PN+NBA

@\tl
@l @

ti can be fired in this marking
Firing t| removes one token in p|, add one token to pa.

Friday 19 March 2010

Example of PN+T

Example of PN+T

Transfer arcs
PN + T

All the tokens are
moved from the source
to the destination

Friday 19 March 2010

Example of PN+T

Transfer arcs
PN + T

All the tokens are
moved from the source
to the destination

Friday 19 March 2010

Example of PN+T

Transfer arcs
PN + T

All the tokens are
moved from the source
to the destination

Friday 19 March 2010

Example of PN+T

Transfer arcs
PN + T

All the tokens are
moved from the source
to the destination

Friday 19 March 2010

Example of PN+T

oW
S

Kd

ti can be fired in this marking

Example of PN+T

oW
o

Kd

ti can be fired in this marking
When firing t|, one token is removed from p| and added
to p2, and all the tokens in s are transfered to d.

Semantics of PN

® | et N=(PT,mO0) be a Petri net.

® |ts semantics is given by the following
transition system Tr(N)=(C,co,=) where:

® C={m|m:P—-N}
® Co=mo
e for all mi,meC, m;=my iff there exists t=(1,0)eT:

® |<m;|and

® mr=m,-|+0O.

Friday 19 March 2010

Semantics of Extended Petri nets

® Let N=(PT,mo) be an extended Petri net.

® |ts semantics is given by the following transition system
Tr(N)=(C,co,=) where: C={ m | m : P =N }, co=mo, and:

e for all mm’eC, m=m iff there exists t=(1,0,s,d,b)eT and
|<m,and m’ is computed as follows: let m|=m-|

® Compute m; as follows: if s=d=1 then m;=m|

otherwise my agrees with m| on all places but s and
d where:

® my(s)=max(0,m(s)-b)
® my(d)=min(mi(d)+m(s),m(d)+b)

® Finally m'=m;+O

Friday 19 March 2010

EPN are WSTS

® Let N=(PT,mo) be an extended Petri net. Its transition system
Tr(N)=(C,co,=) is a WSTS (C,co,=,<), where:

® < is the extension of <CNXN to tuples in NIPl, it is aWQO.

® and = is monotonic W.r.t. <.

Friday 19 March 2010

EPN are WSTS

® Let N=(PT,mo) be an extended Petri net. Its transition system
Tr(N)=(C,co,=) is a WSTS (C,co,=,<), where:

® < is the extension of <CNXN to tuples in NIPl, it is aWQO.

® and = is monotonic W.r.t. <.

m=(2,0,3,0)

Friday 19 March 2010

EPN are WSTS

® Let N=(PT,mo) be an extended Petri net. Its transition system
Tr(N)=(C,co,=) is a WSTS (C,co,=,<), where:

® < is the extension of <CNXN to tuples in NIPl, it is aWQO.

® and = is monotonic W.r.t. <.

mi=(2,0,3,0)——my=(1,1,2,1)

Friday 19 March 2010

EPN are WSTS

® Let N=(PT,mo) be an extended Petri net. Its transition system
Tr(N)=(C,co,=) is a WSTS (C,co,=,<), where:

® < is the extension of <CNXN to tuples in NIPl, it is aWQO.

® and = is monotonic W.r.t. <.

m3=(3,0,4,0)

\'4

mi=(2,0,3,0)——my=(1,1,2,1)

Friday 19 March 2010

EPN are WSTS

® Let N=(PT,mo) be an extended Petri net. Its transition system
Tr(N)=(C,co,=) is a WSTS (C,co,=,<), where:

® < is the extension of <CNXN to tuples in NIPl, it is aWQO.

® and = is monotonic W.r.t. <.

m3=(3,0,4,0)0——m4=(2,1,3,1)

\'4 \'4

S . d
o’ é'
@ @ m;=(2,0,3,0) >m2=(1,1,2,])

Friday 19 March 2010

Properties of extended Petri nets

® The reachability problem asks given a net N=(P, T,mo) and a
marking m, if mePost’(mo).

® The coverability problem asks given a net N=(P, T,mo) and a
marking m, if there exists a marking m’>m such that

m’ePost’(mo).

® The non-terminating computation problem asks given a net
N=(P, T,mo) if there exists an infinite computation in N
starting from mao.

® The place boundedness problem asks given a net N=(P, T,mo)
and a place peP if there exists a bound neNN such that for all
meReach(mo), we have that m(p)<n.

Friday 19 March 2010

Reachability is undecidable for EPN

Theorem. The reachability problem for PN+NBA
(and for PN+T) is undecidable.

Friday 19 March 2010

Reachability is undecidable for EPN

Theorem. The reachability problem for PN+NBA
(and for PN+T) is undecidable.

Proof sketch. Given a 2CM machine M, we can construction a
PN+NBA N and two markings mo,m; such that m is reachable
from mo in N iff the machine M halts.

We associate to each counter and each control state of the
2CM a place of the net.We have an additional place pcheck.

Initially, the place associated to the initial control state
contains one token, all the other places (incluing pcheck and
the two counters) are empty.

Friday 19 March 2010

Reachability is undecidable for EPN

Theorem. The reachability problem for PN+NBA
(and for PN+T) is undecidable.

Simulation of the instructions of a 2CM.

Friday 19 March 2010

Reachability is undecidable for EPN

Theorem. The reachability problem for PN+NBA
(and for PN+T) is undecidable.

Li:ci:=ci+I; goto L.
Cl

&
C

Friday 19 March 2010

Reachability is undecidable for EPN

Theorem. The reachability problem for PN+NBA
(and for PN+T) is undecidable.

Li:if ci#0 then ci:=c|-1; goto L, else goto Ls.

Friday 19 March 2010

Reachability is undecidable for EPN

Theorem. The reachability problem for PN+NBA
(and for PN+T) is undecidable.

C] LHaIt

Oo—1

6

With this additional gadget, it is clear that the machine M halts
Iff the marking “one token in halt and all other places empty” is
reachable for the initial marking.

Friday 19 March 2010

Reachability is undecidable for EPN

Theorem. The reachability problem for PN+NBA
(and for PN+T) is undecidable.

With this additional gadget, it is clear that the machine M halts
Iff the marking “one token in halt and all other places empty” is
reachable for the initial marking.

Friday 19 March 2010

Place boundedness

Theorem. The place boundedness problems for PN+NBA and
PN+T are undecidable.

Friday 19 March 2010

Place boundedness

Theorem. The place boundedness problems for PN+NBA and
PN+T are undecidable.

To prove that we need a non-trivial extension of the
proof idea in the previous undecidability result.

Friday 19 March 2010

Three algorithmic
techniques for WSTS

Technique |I:
set saturation

Backward algorithm for coverability

® The coverability problem asks given a net N=(P, T,mo) and a
marking m, if there exists a marking m’>m such that

m’ePost’(mo).

Friday 19 March 2010

Backward algorithm for coverability

® The coverability problem asks given a net N=(P, T,mo) and a
marking m, if there exists a marking m’>m such that

m’ePost’(mo).

Friday 19 March 2010

Backward algorithm for coverability

® The coverability problem asks given a net N=(P, T,mo) and a
marking m, if there exists a marking m’>m such that

m’ePost’(mo).

Friday 19 March 2010

Backward algorithm for coverability

® The coverability problem asks given a net N=(P, T,mo) and a
marking m, if there exists a marking m’>m such that

m’ePost’(mo).

Friday 19 March 2010

Backward algorithm for coverability

® The coverability problem asks given a net N=(P, T,mo) and a
marking m, if there exists a marking m’>m such that

m’ePost’(mo).

Friday 19 March 2010

Backward algorithm for coverability

® The coverability problem asks given a net N=(P, T,mo) and a
marking m, if there exists a marking m’>m such that

m’ePost’(mo).

Pre(Pre((Tm))

Friday 19 March 2010

Backward algorithm for coverability

® The coverability problem asks given a net N=(P, T,mo) and a
marking m, if there exists a marking m’>m such that

m’ePost’(mo).

Pre(Pre((Tm))

Friday 19 March 2010

Backward algorithm for coverability

® The coverability problem asks given a net N=(P, T,mo) and a
marking m, if there exists a marking m’>m such that

m’ePost’(mo).

moc’

Pre(Pre((Tm))

Friday 19 March 2010

Pre and upward-closed sets in WSTS

¢ Lemma. lLet T=(C,co,=,<) be aWSTS and U be an <-

upward closed set of configurations in T.
Pre(U) is <-upward closed.

Friday 19 March 2010

Pre and upward-closed sets in WSTS

¢ Lemma. lLet T=(C,co,=,<) be aWSTS and U be an <-

upward closed set of configurations in T.
Pre(U) is <-upward closed.

Proof. Let ciePre(U) and let us consider any c2 such that c;<ca.

We know that there exists c3eU and ¢j=cs.

Friday 19 March 2010

Pre and upward-closed sets in WSTS

¢ Lemma. lLet T=(C,co,=,<) be aWSTS and U be an <-

upward closed set of configurations in T.
Pre(U) is <-upward closed.

Proof. Let ciePre(U) and let us consider any c2 such that c;<ca.
We know that there exists czeU and cj=cs.
By monotonicity, there exists ¢4 such that c3<c4 and c;=ca.

As U is upward closed, we have that cseU and so c2ePre(U).

o/

i/

Friday 19 March 2010

Effective VWSTS

® PreUp(c) is the set of all configurations whose one-step
successors by = are larger or equal to c i.e.:

PreUp(c)={c’ |3 ¢” :c’ = c” and c=<c” }=Pre(Tc)

o AWSTST=(C,c0,=,=<) is effective (EVVSTY) if:
® given any pair of configurations c¢| and ¢z in C, one can decide if c;j=c; or not.

® given any pair of configurations c| and ¢ in C, one can decide if cj<c2 or not.

® given any configuration ceC, one can effectively compute UGen(PreUp(c)).

® |f the set of successors Post(c) of a configuration c is finite and
effectively computable, we say that the WSTS is forward

effective (FEWSTS for short).

Friday 19 March 2010

General backward for solving coverability in EWSTS

® |etT=(C,c0,=,<) be EWSTS. Let UCC be an upward
closed set and UGen(U) a finite generator for U.

® Consider now the sequence:
Eo=UGen(U)
E=UGen(PreUp(E..1) u TEi.)), for i=0.

® First, note that all elements of this sequence are computable as T is an
EWSTS.

® Second, TE;is the set of configurations of T that can reach a
configuration in U in i steps or less.

® Third, there exists a position k=0 such that for all >k, TE=TE..

Friday 19 March 2010

Termination

Assume that this is not the case.

Then, as the sequence TE; is increasing for C, there
must exist a sequence of elements

el €2 ...€nh...
such that for all i<j, 7(ei<g)).

But this is in contradiction with the fact that (5,<) is a
well-quasi ordered set !

Friday 19 March 2010

General backward for solving coverability in EWSTS

® |etT=(C,c0,=,<) be EWSTS. Let UCC be an upward
closed set and UGen(U) a finite generator for U.

® Consider now the sequence:
Eo=UGen(U)
E=UGen(PreUp(E..1) u TEi.)), for i=0.

® First, note that all elements of this sequence are computable as T is an
EWSTS.

® Second, TE;is the set of configurations of T that can reach a
configuration in U in i steps or less.

® Third, there exists a position k=0 such that for all I=k, TE=TE..

® This sequence is thus a effective algorithm to
decide coverability in EWSTS.

Friday 19 March 2010

Decidability of coverability for EWSTS

Theorem. The coverability problem is decidable for EVVSTS.

Friday 19 March 2010

Backward algorithm for coverability

® The coverability problem asks given a net N=(P, T,mo) and a
marking m, if there exists a marking m’>m such that

m’ePost(mo).

Friday 19 March 2010

Backward algorithm for coverability

® The coverability problem asks given a net N=(P, T,mo) and a
marking m, if there exists a marking m’>m such that

m’ePost(mo).
\ /

Pre(Tm) m?

Friday 19 March 2010

Backward algorithm for coverability

® The coverability problem asks given a net N=(P, T,mo) and a

/

marking m, if there exists a marking m’>m such that
m’ePost(mo).

Friday 19 March 2010

Backward algorithm for coverability

® The coverability problem asks given a net N=(P, T,mo) and a

/

marking m, if there exists a marking m’>m such that
m’ePost(mo).

Friday 19 March 2010

Backward algorithm for coverability

® The coverability problem asks given a net N=(P, T,mo) and a

marking m, if there exists a marking m’>m such that
m’ePost(mo).

/

Pre3(Tm) M6 1y M4

Friday 19 March 2010

Backward algorithm for coverability

® The coverability problem asks given a net N=(P, T,mo) and a
marking m, if there exists a marking m’>m such that

m’ePost(mo).

Friday 19 March 2010

Backward algorithm for coverability

® The coverability problem asks given a net N=(P, T,mo) and a
marking m, if there exists a marking m’>m such that

m’ePost(mo).

After a finite number of
iterations it stabilizes on a
set of markings whose
upward closure is equal to
the set of markings that
can reach a marking
covering m.

Friday 19 March 2010

Example

Pre(1(0,0,1,1))=?

(0,0,1,1)

Example

(0,0,3,0)—— 8\

(0,0,2,0)—= \\
(10,1, ——\

(0,0,1,1)

Example

UGen(Pre(Tm))
=Min{ m’eNFl | m’>l(t) Am’-I(t)+O(t)=m } (0,0,1,1)

Example

UGen(Pre(Tm))
=Min{ m’eNFl | m’>l(t) Am’-I(t)+O(t)=m } (0,0,1,1)
=intersection of two upward-closed sets !

Example

For t3

(0,0,1,0) (0,0,2,-1)

(0,0,1,1)

UGen(Pre(Tm))
=Min{ m’eNFl | m’>I(t) Am’-I(t)+O(t)=m }

Example

For t3

(0,0,1,0) (0,0,2,-1)

(0,0,1,1)

UGen(Pre(Tm))
=Min{ m’eNFl | m’>I(t) Am’-I(t)+O(t)=m }

Example

(0,0,2,0)

(0,0,1,1)
UGen(Pre(Tm))

=Min{ m’eNFl | m’>I(t) Am’-I(t)+O(t)=m }

Example

For t;

(1,0,0,0) (I,-1,1,1)

(0,0,1,1)

UGen(Pre(Tm))
=Min{ m’eNFl | m’>I(t) Am’-I(t)+O(t)=m }

Example

For t;

(1,0,0,0) (I,-1,1,1)

(0,0,1,1)

UGen(Pre(Tm))
=Min{ m’eNFl | m’>I(t) Am’-I(t)+O(t)=m }

Example

For t;

(1,0,0,0) {1,-1,1,1)

(1,0,1,1)

(0,0,1,1)
UGen(Pre(Tm))

=Min{ m’eNFl | m’>I(t) Am’-I(t)+O(t)=m }

Example

UGen(Pre(Tm))

=Min{ m’ NPl ‘ m’?l(t) /\m’-|(t)+0(t)>m } (O’O’ | ’ I)
=Min{(1,0,1,1),(0,0,2,0),(0,1,0,1)}
={(1,0,1,1),(0,0,2,0),(0,1,0,1)}

Example

UGen(Pre(Tm)uTm)
=Min({(1,0,1,1),(0,0,2,0),(0,1,0,)}u1{(0,0,1,1)} (0,0,1,1)
={(0,0,2,0),(0,1,0,1),(0,0,1,1)}

Example

UGen(Pre(Tm)uTm)
=Min({(1,0,1,1),(0,0,2,0),(0,1,0,)}u1{(0,0,1,1)} (0,0,1,1)
={(0,0,2,0),(0,1,0,1),(0,0,1,1)}

Set saturation methods for EPN

® Theorem. The coverability problem for extended Petri
net is decidable.

Friday 19 March 2010

Set saturation methods for EPN

® Theorem. The coverability problem for extended Petri
net is decidable.

Nevertheless, the worst case complexity is high:

® Theorem.The coverability problem is for
Petri nets.

® Theorem.The coverability problem is non-primitive
recursive for transfer/reset/NBA PN.

Friday 19 March 2010

Technique 2:
Tree saturation

Tree saturation

Tree saturation

Unfolding
+
Rule to stop

Objective: construct a finite tree that
represents (in some way) all the
computations of the transition system.

Tree saturation for PN

mo=(1,1,0,1)

y 0

mi=(1,2,0,1)

mi=(1,3,0,1)
t3 ltZ

mi=(1,2,0,1) Mi=(1.21,0)

lt3

mi=(1,3,0,1)

Tree saturation for PN

mo=(1,1,0,1)

/\tz

mi=(1,2,0,1)

mi=(1,3,0,1)

Friday 19 March 2010

Tree saturation for PN

mo=(1,1,0,1)

N

mi=(1,2,0,1)

RN

mi=(1,1,1,00 mi=(l,3,0,)
ltB ltz

mi=(1,2,0,1) Mi=(1.21,0)

lt3

mi=(1,3,0,1)

Tree saturation for PN

mo=(1,1,0,1)

y

mi=(1,2,0,1)

Tree saturation for PN

mo=(1,1,0,1)

mi=(1,2,0,1) (1,0,1,0)

Tree saturation for PN

mo=(1,1,0,1)

mi=(1,2,0,1) (1,0,1,0)

y

m=(1,1,1,0)

Tree saturation for PN

mo=(1,1,0,1)

mi=(1,2,0,1) (1,0,1,0)

2 e

mi=(1,1,1,0) |
(1,1,0,1)

Tree saturation for PN

mo=(1,1,0,1)

mi=(1,2,0,1) (1,0,1,0)

2 e

mi=(1,1,1,0) |
(1,1,0,1)

We are done !!!

Tree saturation for FEWSTS

® The stopping rule of the the tree saturation method is
applicable to any FEVVSTS.

Indeed, on every infinite branch of the unfolding, we are
guaranteed that there exist a node annotated with a state
that is larger than one of its ancestor ! This is a direct
consequence of WQO !

® So for every FEWSTS, there exists a finite tree, called the
finite reachability tree, obtained by the tree saturation
method:

Theorem. A finite reachability tree exists and is
effectively computable for any FEWSTS.

(easy proof using WQO+Konig’s lemma)

Friday 19 March 2010

Properties of the finite reachability

® Clearly the leafs of the FRT(T) are nodes that either have
no successors or contain a state which subsumes an
ancestor. As a consequence, we have the following
theorem.

®¢ Theorem.T=(C,co,= <) has a non-terminating

computation starting in co iff FRT(T) contains a subsumed
node.

Friday 19 March 2010

Properties of the finite reachability

® Theorem.T=(C,co,=— <) has a non-terminating

computation starting in ¢o iff FRT(T) contains a subsumed
node.

(=) .

/ \ and c| <c4
/ \ Then clearly co(cicacics)? is

an non-terminating computation in T

Friday 19 March 2010

Properties of the finite reachability

® Theorem.T=(C,co,=— <) has a non-terminating
computation starting in ¢o iff FRT(T) contains a subsumed
node.

(=)
Let co €1 €2 ... Cn ... be 2 non-terminating computation in T.

This computation has a prefix which labels a branch in
FRT(T).

This branch must end in a node that subsumes an ancestor
(it can not be a node with no successor).

Friday 19 March 2010

The non-terminating computation problem

® Theorem.The non-terminating computation problem is
decidable for the entire class of FEWSTS.

Friday 19 March 2010

Karp and Miller tree for PN

The Finite Reachability Tree should not be confused with
The Karp and Miller tree for Petri Net.

KM Tree=Unfolding+Accelerations+Stopping rules.

KM Tree is an procedure for computing an effective
representation of the set {Reach(N) of a Petri net N.

Friday 19 March 2010

KM tree for PN

mo=(1,1,0,1)

y

mi=(1,2,0,1)

KM tree for PN

mo=(1,1,0,1)

y

m;=(1,w,0,1) Acceleration!

KM tree for PN

mo=(1,1,0,1)

y

m|=(l,w,0,l)

ltz

m|=(l,w,l,0)

KM tree for PN

mo=(1,1,0,1)

y

m|=(l,w,0,l)

KM tree for PN

mo=(1,1,0,1)

y

m|=(l,w,0,l)

mi=(1,w,0,1) Stop!

KM tree for PN

mo=(1,1,0,1)

mi=(1,0,0,1) (1,0,1,0)

KM tree for PN

mo=(1,1,0,1)

mi=(1,0,0,1) (1,0,1,0)

=)
m|=(l,w,l,0) v
ltB (1,1,0,1)

KM tree for PN

mo=(1,1,0,1)

mi=(1,0,0,1) (1,0,1,0)

=)
m|=(l,w,l,0) v
ltB (1,1,0,1)

mi=(1,w,0,1) Stop!

KM tree for PN

mo=(1,1,0,1)

mi=(1,0,0,1) (1,0,1,0)

Rt

m=(l,w,1,00 . |
lt3 (1,1,0,1)

mi=(1,w,0,1)

Karp and Miller tree for PN

The Finite Reachability Tree should not be confused with The Karp
and Miller tree for Petri Net.

KM Tree=Unfolding+Accelerations+Stopping rules.

KM Tree is an procedure for computing an effective representation
of the set 1 Reach(N) of a Petri net N.

1 Reach(N) allows for deciding coverability:
Im’=mem’cPost’(m0) iff me | Reach(N).
1Reach(N) allows for deciding place boundedness:

p is bounded in N iff 3keNevme ! Reach(N)*m(p)<k.

Friday 19 March 2010

w-Markings and downward closed sets in (IN%,<)

® A w-marking is a function m : P2 Nu{w}.
® w="any number of tokens”.

® A w-marking m represents a set of “plain” markings:

Let m be an wW-marking

Im={ m’e[P—=N] | vpeP :m’(p)<m(p)}

® Theorem. For any downward-closed set of marking D,
there exists a finite set of w-marking M such that {M=D.

Friday 19 March 2010

Downward-closed sets in (N <)

‘(X|,y|)

@ <2Y2)

(W,y3)

(X3,y3)

DGen(D)={(x.y). x2y2) (wy3)} is a finite generator for D.

Friday 19 March 2010

I Reach(N) is not constructible for EPN

® Ve have seen that:

® |Reach(N) is sufficient to decide place boundedness

® Place boundedness is undecidable for EPN !

® So, |Reach(N) is not computable for EPN !

Friday 19 March 2010

I Reach(N) is not constructible for EPN

® Ve have seen that:

® |Reach(N) is sufficient to decide place boundedness

® Place boundedness is undecidable for EPN !

® So, |Reach(N) is not computable for EPN !

Still, can we have a forward algorithm for coverability ?

Friday 19 March 2010

Expand-Enlarge and
Check

Forward algorithm for coverability of WSTS

® We have just seen that {Reach(N) has always a finite
representation but it is not effectively computable.

® Nevertheless, our solution for a forward algorithm for
deciding coverability of EPN will rely on the existence of
this finite representation.

Friday 19 March 2010

Under-approx of {Reach(S)

® |et N=(PT,mo) be an extended Petri net and
T(N)=([P— N],mo,=,<) its associated WSTS.

® |et keN,and the two following families of finite sets:
Ck be the set of markings { m | m € P—[0..k] }u{mo}
L be the set of W-markings { m | m € P—[0..kJu{w}}u{mo}.

e UnderApprox(N,k)=(Ck,mo,=under) Where:

® —nder==NCkXC i.e., transitions that leads to markings
with more than k tokens are discarded.

¢ Lemma. |Reach(UnderApprox(N,k))< {Reach(N).

Friday 19 March 2010

An example
/tQ\

t3
tl P1 P3
FZ D2
i
o (2,1,1) (1,0,2)

¢
0,1,1y St —

— 3

{
\t ST (1,2,0)

Under(N,2)

Friday 19 March 2010

An example

P1

t3
pP3
P2
t!/ G l{u
to
_— 74 T
<2, 1, 1> <1,0,Z>
/tl/'
<07171> \t V\tg/

Under(N,2)

Friday 19 March 2010

Over-approx of Cover(S)

® \We define Post™: Li,— 2k as follows:

Post™(m)
={m’elk | m=wm’ or
“(Mm=ym’) and IM”*m=ym”:m’=enlarge(m” k)}

where enlarge(m”,k)(p) = m”(p) if m’(p)<k
W otherwise

® OverApprox(N,k)=(Lx,mo,=over) Where:
® (mj,m2)E=over iff macPost?™(m))

e Lemma. {Reach(N)<lReach(OverApprox(N,k)).

Friday 19 March 2010

An example

t1 P1 p3

FZ D2

i

t () O} —6—(") ()

(w,1,1) —ty—(w,0,w) (W, 1, w)—1t3—>{w,w,w)
N, e
e N /
0,1,1) —t3—(1,w,0) —t; = (w,w, 0) (w,w, 1)

s
tg >2 (tls t// \tp
\ »
(0, w, 1) ,

\/ 1

Over(N,)

Friday 19 March 2010

EEC Algorithm

k:=0;
Repeat:

“Expand”: Compute Dunder:=UnderApprox(N,k)

“Enlarge”: Compute Dover:=OverApprox(N,k)

“Check” :if DundernU# @ return “positive”;
else if DovernU=@ return “negative’
else k:=k+1;

’

Friday 19 March 2010

EEC Algorithm

k:=0;
Repeat:

“Expand”: Compute Dunder:=UnderApprox(N,k)

“Enlarge”: Compute Dover:=OverApprox(N,k)

“Check” :if DundernU# @ return “positive”;
else if DovernU=@ return “negative”
else k:=k+1;

Clearly this algorithm is sound as it uses:
-under-approximations to detect positive instances.
-over-approximations to detect negative instances.

Friday 19 March 2010

EEC Algorithm

lk:=0;

Repeat:

“Expand”: Compute Dunder:=Undert

arn positive”’;
gise if DovernU=9 return “negative”
else k:=k+1;

Clearly this algorithm is sound as it uses:
-under-approximations to detect positive instances.
-over-approximations to detect negative instances.

Friday 19 March 2010

Termination of EEC

® Yes it does always terminate !

¢ Lemma(Positive instances). Let mom)...m, be an
execution that reaches U. Let k be the maximal number
of tokens in a place of a marking in this execution.Then
UnderApprox(N,k)nU+2.

¢ Lemma(Negative instances). Let
k=max{ m(p)#w | meDGen({Reach(N))}.

1 Post?(1Reach(N))=|Post(!Reach(N)), and so
1 OverApprox(N,k)=1Reach(N).

Friday 19 March 2010

Beyond this
introduction
Bibliography

Some interesting papers

® General papers

® Parosh Aziz Abdulla, Karlis Cerans, Bengt Jonsson,Yih-
Kuen Tsay: General Decidability Theorems for
Infinite-State Systems. LICS 1996: 313-321

® Alain Finkel, Ph. Schnoebelen;: Well-structured

transition systems everywhere! Theor. Comput.
Sci. 256(1-2): 63-92 (2001)

® Gilles Geeraerts, Jean-Frangois Raskin, Laurent Van
Begin: Expand, Enlarge and Check: New
algorithms for the coverability problem of
WSTS.]. Comput. Syst. Sci. 72(1): 180-203 (2006)

Friday 19 March 2010

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/c/Cerans:Karlis.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/c/Cerans:Karlis.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/j/Jonsson:Bengt.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/j/Jonsson:Bengt.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/t/Tsay:Yih=Kuen.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/t/Tsay:Yih=Kuen.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/t/Tsay:Yih=Kuen.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/t/Tsay:Yih=Kuen.html
http://www.informatik.uni-trier.de/~ley/db/conf/lics/lics96.html#AbdullaCJT96
http://www.informatik.uni-trier.de/~ley/db/conf/lics/lics96.html#AbdullaCJT96
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/Schnoebelen:Ph=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/Schnoebelen:Ph=.html
http://www.informatik.uni-trier.de/~ley/db/journals/tcs/tcs256.html#FinkelS01
http://www.informatik.uni-trier.de/~ley/db/journals/tcs/tcs256.html#FinkelS01
http://www.informatik.uni-trier.de/~ley/db/journals/tcs/tcs256.html#FinkelS01
http://www.informatik.uni-trier.de/~ley/db/journals/tcs/tcs256.html#FinkelS01
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/g/Geeraerts:Gilles.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/g/Geeraerts:Gilles.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/b/Begin:Laurent_Van.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/b/Begin:Laurent_Van.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/b/Begin:Laurent_Van.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/b/Begin:Laurent_Van.html
http://www.informatik.uni-trier.de/~ley/db/journals/jcss/jcss72.html#GeeraertsRB06
http://www.informatik.uni-trier.de/~ley/db/journals/jcss/jcss72.html#GeeraertsRB06

Some interesting papers

® More applications

Parosh Aziz Abdulla, Aurore Annichini,Ahmed Bouajjani: Symbolic
Verification of Lossy Channel Systems: Application to
the Bounded Retransmission Protocol. TACAS [999:
208-222

Parosh Aziz Abdulla, Pritha Mahata, Richard Mayr: Dense-Timed
Petri Nets: Checking Zenoness, Token liveness and
Boundedness. Logical Methods in Computer Science 3(1): (2007)

Joel Ouaknine, James Worrell: On the Language Inclusion
Problem for Timed Automata: Closing a Decidability
Gap. LICS 2004: 54-63

Thomas Wies, Damien Zufferey, Thomas A. Henzinger: Forward
Analysis of Depth-Bounded Processes. FOSSACS 2010:
94-10

Friday 19 March 2010

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/a/Annichini:Aurore.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/a/Annichini:Aurore.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/b/Bouajjani:Ahmed.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/b/Bouajjani:Ahmed.html
http://www.informatik.uni-trier.de/~ley/db/conf/tacas/tacas99.html#AbdullaAB99
http://www.informatik.uni-trier.de/~ley/db/conf/tacas/tacas99.html#AbdullaAB99
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Mahata:Pritha.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Mahata:Pritha.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Mayr:Richard.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Mayr:Richard.html
http://www.informatik.uni-trier.de/~ley/db/journals/lmcs/lmcs3.html#AbdullaMM07
http://www.informatik.uni-trier.de/~ley/db/journals/lmcs/lmcs3.html#AbdullaMM07
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/w/Worrell:James.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/w/Worrell:James.html
http://www.informatik.uni-trier.de/~ley/db/conf/lics/lics2004.html#OuaknineW04
http://www.informatik.uni-trier.de/~ley/db/conf/lics/lics2004.html#OuaknineW04
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/w/Wies:Thomas.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/w/Wies:Thomas.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/z/Zufferey:Damien.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/z/Zufferey:Damien.html
http://www.informatik.uni-trier.de/~ley/db/conf/fossacs/fossacs2010.html#WiesZH10
http://www.informatik.uni-trier.de/~ley/db/conf/fossacs/fossacs2010.html#WiesZH10

Some interesting papers

® Relation with abstractions/Abstract interpretation/
Domain theory:

® Pierre Ganty, Jean-Francois Raskin, Laurent Van Begin: A
Complete Abstract Interpretation Framework for
Coverability Properties of WSTS.VMCAI 2006: 49-64.

® Rayna Dimitrova,Andreas Podelski: Is Lazy Abstraction a
Decision Procedure for Broadcast Protocols?
VMCAI 2008:98-11 |

® Alain Finkel, Jean Goubault-Larrecq: Forward Analysis for
WSTS, Part I: Completions. STACS 2009: 433-444

® Alain Finkel, Jean Goubault-Larrecq: Forward Analysis for
WSTS, Part Il: Complete WSTS. ICALP (2) 2009:
188-199

Friday 19 March 2010

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/g/Ganty:Pierre.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/g/Ganty:Pierre.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/b/Begin:Laurent_Van.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/b/Begin:Laurent_Van.html
http://www.informatik.uni-trier.de/~ley/db/conf/vmcai/vmcai2006.html#GantyRB06
http://www.informatik.uni-trier.de/~ley/db/conf/vmcai/vmcai2006.html#GantyRB06
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/p/Podelski:Andreas.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/p/Podelski:Andreas.html
http://www.informatik.uni-trier.de/~ley/db/conf/vmcai/vmcai2008.html#DimitrovaP08
http://www.informatik.uni-trier.de/~ley/db/conf/vmcai/vmcai2008.html#DimitrovaP08
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/g/Goubault=Larrecq:Jean.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/g/Goubault=Larrecq:Jean.html
http://www.informatik.uni-trier.de/~ley/db/conf/stacs/stacs2009.html#FinkelG09
http://www.informatik.uni-trier.de/~ley/db/conf/stacs/stacs2009.html#FinkelG09
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/g/Goubault=Larrecq:Jean.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/g/Goubault=Larrecq:Jean.html
http://www.informatik.uni-trier.de/~ley/db/conf/icalp/icalp2009-2.html#FinkelG09
http://www.informatik.uni-trier.de/~ley/db/conf/icalp/icalp2009-2.html#FinkelG09

Some interesting papers

® PhD Thesis:

® Gilles Geeraerts. Coverability and Expressiveness
Properties of WSTS. PhD Thesis. ULB. 2007.

® |aurentVan Begin. Efficient Verification of
Counting Abstraction for Parametric Systems.
PhD Thesis. ULB. 2003.

® Pritha Mahata. Model Checking Parameterized
Timed Systems. PhD Thesis, 2005.

Friday 19 March 2010

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Mahata:Pritha.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Mahata:Pritha.html
http://user.it.uu.se/~pritha/Papers/Thesis_Pritha_Mahata_2005.ps
http://user.it.uu.se/~pritha/Papers/Thesis_Pritha_Mahata_2005.ps
http://user.it.uu.se/~pritha/Papers/Thesis_Pritha_Mahata_2005.ps
http://user.it.uu.se/~pritha/Papers/Thesis_Pritha_Mahata_2005.ps

Conclusion

Conclusion

® Well-structured transition systems are a general class of
infinite state systems with decidable verification
problems.

® They are useful to model:
® parametric systems,
® |ossy channel systems,
® broadcast protocols,
® timed Petri nets,

® complements of one-clock timed languages, etc.

® We have reviewed three algorithmic tools for their
analysis.

Friday 19 March 2010

Questions

Friday 19 March 2010

