
Second Lecture:
Basics of model-checking for

finite and timed systems
Jean-François Raskin

Université Libre de Bruxelles
Belgium

Artist2 Asian Summer School - Shanghai - July 2008

Friday 20 April 12

Plan of the talk

• Labelled transition systems

• Properties of labeled transition systems:
Reachability - Safety - Büchi properties

• Pre-Post operators

• Partial orders - Fixed points

• Symbolic model-checking

• Application to TA: region equivalence, region automata,
zones

Friday 20 April 12

Plan of the talk

• Labelled transition systems

• Properties of labeled transition systems:
Reachability - Safety - Büchi properties

• Pre-Post operators

• Partial orders - Fixed points

• Symbolic model-checking

• Application to TA: region equivalence, region automata,
zones

Friday 20 April 12

Labeled transition systems

• A labeled transition system, LTS for short, is a
tuple (S,S0,Σ,T,C,λ) where:

• S is a (finite or infinite) set of states

• S0 ⊆ S is the subset of initial states

• Σ is an event or action set (finite or infinite)

• C is a (finite or infinite) set of colors

• λ : S → C is a labeling function that labels each
state with a color.

Friday 20 April 12

a

a

a a a

a a a

a

a a a

a aa

c

b

b b b

b
a

bb b

b b b
ac

c

d
c

d

A labelled transition system:

a

Friday 20 April 12

Plan of the talk

• Labelled transition systems

• Properties of labeled transition systems:
Reachability - Safety - Büchi properties

• Pre-Post operators

• Partial orders - Fixed points

• Symbolic model-checking

• Application to TA: region equivalence, region automata,
zones

Friday 20 April 12

• Reachability verification problem

Instance: a LTS (S,S0,Σ,T,C,λ), a set Goal⊆ S.
Question: is there an execution of the LTS that starts in S0 and reaches Goal ?
More formally, is there a sequence s0σ0s1σ1s2σ2...σn-1sn such that
(1) s0 ∈ S0, (2) ∀i ·0≤i<n ·T(si,σi,si+1), and (3) sn ∈ Goal ?

• The set of reachable states of a LTS (S,S0,Σ,T,C,λ) is the set of states s ∈ S
such that
 there is a sequence s0σ0s1σ1s2σ2...σn-1sn
 and (1) s0 ∈ S0, (2) ∀i ·0≤i<n ·T(si,σi,si+1), (3) sn=s.

Let Reach(S0) denote the set of reachable states.

• Clearly, there is a path that starts in S0 and reaches G iff Reach(S0)∩Goal≠∅.

Reachability

Friday 20 April 12

Reachability

S0

Friday 20 April 12

Reachability
Goal

S0

Friday 20 April 12

Reachability
Goal

S0

Reach(S0)

Friday 20 April 12

Reachability
Goal

Negative

S0

Reach(S0)

Friday 20 April 12

Reachability
Goal

S0

Reach(S0)

Friday 20 April 12

Reachability
Goal

Positive

S0

Reach(S0)

Friday 20 April 12

• Safety verification problem

Instance: a LTS (S,S0,Σ,T,C,λ), a set of states Safe ⊆ S.
Question: are all paths that starts in S0 staying within Safe.
More formally, for all sequences s0σ0s1σ1s2σ2...σn-1sn such that
(1) s0 ∈ S0, (2) ∀i ·0≤i<n ·T(si,σi,si+1),
is it the case that (3) ∀i ·0≤i≤n ·si ∈ Safe ?

• Clearly all paths that start in S0 are staying within Safe
iff Reach(S0)∩(S\Safe)=∅.

• So, the safety and reachability problems are dual problems.

Safety

Friday 20 April 12

Safety

S0

Friday 20 April 12

Safety
Safe Bad

S0

Friday 20 April 12

Safety
Bad

Reach(S0)

S0

Safe

Friday 20 April 12

Safety
Bad

Positive

S0

Reach(S0)

Safe

Friday 20 April 12

Safety
Bad

S0

Reach(S0)

Safe

Friday 20 April 12

Safety
Bad

Negative

S0

Reach(S0)

Safe

Friday 20 April 12

Büchi condition

• Büchi verification problem

Instance: a LTS (S,S0,Σ,T,C,λ), a set Goal ⊆ S.
Question: is there one execution of the LTS that starts in S0 and
passes infinitely often by the set Goal ⊆ S ?
More formally, is there an execution s0σ0s1σ1s2σ2...σn-1sn... such that
 (1) s0 ∈ S0,
 (2) ∀i ·0≤i ·T(si,σi,si+1),
 (3) ∀i≥0 ·∃j≥i such that sj ∈ Goal ?

Friday 20 April 12

Büchi condition
Goal

Init

...

...

Friday 20 April 12

Plan of the talk

• Labelled transition systems

• Properties of labeled transition systems:
Reachability - Safety - Büchi properties

• Pre-Post operators

• Partial orders - Fixed points

• Symbolic model-checking

• Application to TA: region equivalence, region automata,
zones

Friday 20 April 12

Post, Pre and Apre operators

• We will design verification algorithms for the
reachability, safety and Büchi properties.

• Our algorithms will manipulate sets of
states.

• Besides set operations, we will need to
compute the set of states that are successors
(Post), or predecessors (Pre and Apre) of a set
of states.

Friday 20 April 12

The Post : 2S × Σ → 2S
takes (1) a set of states X
 (2) an action σ
and returns the set of successors of X by σ

Post(X,σ)={ y ∈ X | ∃ x ∈ X ·T(x,σ,y) }

Friday 20 April 12

a

a

a

aa

c

b b

a

bb

b b

a

c

c

a

The Post : 2S × Σ → 2S
takes (1) a set of states X
 (2) an action σ
and returns the set of successors of X by σ

Post(X,σ)={ y ∈ X | ∃ x ∈ X ·T(x,σ,y) }

Friday 20 April 12

a

a

a

aa

c

b b

a

bb

b b

a

c

c

a

Post(X,b)=

The Post : 2S × Σ → 2S
takes (1) a set of states X
 (2) an action σ
and returns the set of successors of X by σ

Post(X,σ)={ y ∈ X | ∃ x ∈ X ·T(x,σ,y) }

Friday 20 April 12

a

a

a

aa

c

b b

a

bb

b b

a

c

c

a

Post(X,b)=

The Post : 2S × Σ → 2S
takes (1) a set of states X
 (2) an action σ
and returns the set of successors of X by σ

Post(X,σ)={ y ∈ X | ∃ x ∈ X ·T(x,σ,y) }

Friday 20 April 12

a

a

a

aa

c

b b

a

bb

b b

a

c

c

a

Post(X,b)=Y

The Post : 2S × Σ → 2S
takes (1) a set of states X
 (2) an action σ
and returns the set of successors of X by σ

Post(X,σ)={ y ∈ X | ∃ x ∈ X ·T(x,σ,y) }

Friday 20 April 12

The Pre : 2S × Σ → 2S
takes (1) a set of states X
 (2) an action σ
and returns the set of predecessors of X by σ

Pre(X,σ)={ y ∈ S | ∃ x ∈ X ·T(y,σ,x) }

Friday 20 April 12

a

a

a

aa

c

b b

a

bb

b b

a

c

c

a

The Pre : 2S × Σ → 2S
takes (1) a set of states X
 (2) an action σ
and returns the set of predecessors of X by σ

Pre(X,σ)={ y ∈ S | ∃ x ∈ X ·T(y,σ,x) }

Friday 20 April 12

a

a

a

aa

c

b b

a

bb

b b

a

c

c

a

Pre(X,b)=

The Pre : 2S × Σ → 2S
takes (1) a set of states X
 (2) an action σ
and returns the set of predecessors of X by σ

Pre(X,σ)={ y ∈ S | ∃ x ∈ X ·T(y,σ,x) }

Friday 20 April 12

a

a

a

aa

c

b b

a

bb

b b

a

c

c

a

Pre(X,b)=

The Pre : 2S × Σ → 2S
takes (1) a set of states X
 (2) an action σ
and returns the set of predecessors of X by σ

Pre(X,σ)={ y ∈ S | ∃ x ∈ X ·T(y,σ,x) }

Friday 20 April 12

a

a

a

aa

c

b b

a

bb

b b

a

c

c

a

Pre(X,b)=Y

The Pre : 2S × Σ → 2S
takes (1) a set of states X
 (2) an action σ
and returns the set of predecessors of X by σ

Pre(X,σ)={ y ∈ S | ∃ x ∈ X ·T(y,σ,x) }

Friday 20 April 12

The Apre : 2S × Σ → 2S
takes (1) a set of states X
 (2) an action σ
and returns the set of states that have all their successors by σ in X

Apre(X,σ)={ x ∈ S | ∀ y ∈ S ·T(x,σ,y) ⇒ y ∈ X }

Friday 20 April 12

a

a

a

aa

c

b a

a

bb

a b

a

c

c

a

The Apre : 2S × Σ → 2S
takes (1) a set of states X
 (2) an action σ
and returns the set of states that have all their successors by σ in X

Apre(X,σ)={ x ∈ S | ∀ y ∈ S ·T(x,σ,y) ⇒ y ∈ X }

Friday 20 April 12

a

a

a

aa

c

b a

a

bb

a b

a

c

c

a

Apre(X,a)

The Apre : 2S × Σ → 2S
takes (1) a set of states X
 (2) an action σ
and returns the set of states that have all their successors by σ in X

Apre(X,σ)={ x ∈ S | ∀ y ∈ S ·T(x,σ,y) ⇒ y ∈ X }

Friday 20 April 12

a

a

a

aa

c

b a

a

bb

a b

a

c

c

a

Apre(X,a)

The Apre : 2S × Σ → 2S
takes (1) a set of states X
 (2) an action σ
and returns the set of states that have all their successors by σ in X

Apre(X,σ)={ x ∈ S | ∀ y ∈ S ·T(x,σ,y) ⇒ y ∈ X }

Friday 20 April 12

a

a

a

aa

c

b a

a

bb

a b

a

c

c

a

Apre(X,a)=Y

The Apre : 2S × Σ → 2S
takes (1) a set of states X
 (2) an action σ
and returns the set of states that have all their successors by σ in X

Apre(X,σ)={ x ∈ S | ∀ y ∈ S ·T(x,σ,y) ⇒ y ∈ X }

Friday 20 April 12

From the Pre : 2S × Σ → 2S, the Post : 2S × Σ → 2S, and the Apre : 2S × Σ → 2S, we can define
their generalizations over the entire alphabet of actions:

The POST : 2S → 2S takes a set of states X and returns the set of states Y that are reachable in
one step from X, i.e. :

POST(X)={ y ∈ S | ∃ x ∈ X·∃ σ ∈ Σ ·T(x,σ,y) }

The PRE : 2S → 2S takes a set of states X and returns the set of states Y that can reach X in one
step, i.e. :

PRE(X)={ y ∈ S | ∃ x ∈ X·∃ σ ∈ Σ ·T(y,σ,x) }

The APRE: 2S → 2S takes a set of states X and returns the set of states Y that have all their one
step successors in X, i.e. :

APRE(X)={ y ∈ S | ∀ x ∈ S·∀ σ ∈ Σ ·T(y,σ,x) ⟹ x ∈ X }

Exercise : proof that APRE(X)=S\PRE(S\X).

PRE-POST-APRE

Friday 20 April 12

a

a

a

aa

c

b b

a

bb

b b

a

c

c

a

POST(X)=

Friday 20 April 12

a

a

a

aa

c

b b

a

bb

b b

a

c

c

a

POST(X)=

Friday 20 April 12

a

a

a

aa

c

b b

a

bb

b b

a

c

c

a

POST(X)=Y

Friday 20 April 12

a

a

a

aa

c

b b

a

bb

b b

a

c

c

a

PRE(X)=

Friday 20 April 12

a

a

a

aa

c

b b

a

bb

b b

a

c

c

a

PRE(X)=

Friday 20 April 12

a

a

a

aa

c

b b

a

bb

b b

a

c

c

a

PRE(X)=Y

Friday 20 April 12

a

a

a

aa

c

b b

a

bb

b b

a

c

c

a

APRE(X)=

Friday 20 April 12

a

a

a

aa

c

b b

a

bb

b b

a

c

c

a

APRE(X)=

Friday 20 April 12

a

a

a

aa

c

b b

a

bb

b b

a

c

c

a

APRE(X)=Y

Friday 20 April 12

How can we use the POST operator to solve the following reachability question:
Can we reach the blue states from initial states ?

a

a

a a a

a a a

a

a a a

a aa

c

b

b b b

b
a

bb b

b b b
ac

c

d
c

d
a

Friday 20 April 12

How can we use the POST operator to solve the following reachability question:
Can we reach the blue states from initial states ?
... By iterating the POST operator !

a

a

a a a

a a a

a

a a a

a aa

c

b

b b b

b
a

bb b

b b b
ac

c

d
c

d
a

Friday 20 April 12

a

a

a a a

a a a

a

a a a

a aa

c

b

b b b

b
a

bb b

b b b
ac

c

d
c

d
a

0 step

How can we use the POST operator to solve the following reachability question:
Can we reach the blue states from initial states ?
... By iterating the POST operator !

Friday 20 April 12

a

a

a a a

a a a

a

a a a

a aa

c

b

b b b

b
a

bb b

b b b
ac

c

d
c

d
a

0 or1 step

How can we use the POST operator to solve the following reachability question:
Can we reach the blue states from initial states ?
... By iterating the POST operator !

Friday 20 April 12

a

a

a a a

a a a

a

a a a

a aa

c

b

b b b

b
a

bb b

b b b
ac

c

d
c

d
a

0,1, 2 steps

How can we use the POST operator to solve the following reachability question:
Can we reach the blue states from initial states ?
... By iterating the POST operator !

Friday 20 April 12

a

a

a a a

a a a

a

a a a

a aa

c

b

b b b

b
a

bb b

b b b
ac

c

d
c

d
a

0,1, 2, 3 steps

How can we use the POST operator to solve the following reachability question:
Can we reach the blue states from initial states ?
... By iterating the POST operator !

Friday 20 April 12

a

a

a a a

a a a

a

a a a

a aa

c

b

b b b

b
a

bb b

b b b
ac

c

d
c

d
a

0,1, 2, 3, 4 steps

How can we use the POST operator to solve the following reachability question:
Can we reach the blue states from initial states ?
... By iterating the POST operator !

Friday 20 April 12

a

a

a a a

a a a

a

a a a

a aa

c

b

b b b

b
a

bb b

b b b
ac

c

d
c

d
a

0,1, 2, 3, 4, 5 steps

How can we use the POST operator to solve the following reachability question:
Can we reach the blue states from initial states ?
... By iterating the POST operator !

Friday 20 April 12

a

a

a a a

a a a

a

a a a

a aa

c

b

b b b

b
a

bb b

b b b
ac

c

d
c

d
a

0,1, 2, 3, 4, 5, 6 steps

How can we use the POST operator to solve the following reachability question:
Can we reach the blue states from initial states ?
... By iterating the POST operator !

Friday 20 April 12

a

a

a a a

a a a

a

a a a

a aa

c

b

b b b

b
a

bb b

b b b
ac

c

d
c

d
a

0,1, 2, 3, 4, 5, 6, ∞ steps - we have reached a fixed point

How can we use the POST operator to solve the following reachability question:
Can we reach the blue states from initial states ?
... By iterating the POST operator !

Friday 20 April 12

Plan of the talk

• Labelled transition systems

• Properties of labeled transition systems:
Reachability - Safety - Büchi properties

• Pre-Post operators

• Partial orders - Fixed points

• Symbolic model-checking

• Application to TA: region equivalence, region automata,
zones

Friday 20 April 12

Partial orders

• Let S be a set. A partial order over S is a relation ≤⊆S×S such that the
following properties hold:
	

 (i) reflexivity: ∀s∈S: s≤s,
	

 (ii) transitivity: ∀s1,s2,s3∈S: s1≤s2∧ s2≤s3→s1≤s3,
	

 (iii) antisymmetry: ∀s1,s2∈S: s1≤s2∧ s2≤s1→s1=s2.

• A pair (S,≤) such that ≤ is a partial order over S is called a partially
ordered set.

• Let T be a set, we note P(T) for the set of subsets of T. Example: if T={t1,t2,t3}
then P(T)={{},{t1},{t2},{t3},{t1,t2},{t2,t3},{t1,t3},{t1,t2,t3}}. Clearly, for any set T,
(P(T),⊆) is a partially ordered set.

Friday 20 April 12

Graphical representation of P(T)

⊆

(P(T), ⊆) is a partially ordered set:
⊆ is reflexive: {} ⊆ {}, {t1}⊆{t1},..., {t1,t2}⊆{t1,t2}, ...
⊆ is transitive: {t1}⊆{t1,t2}∧{t1,t2}⊆{t1,t2,t3}→{t1}⊆{t1,t2,t3}
and clearly, ⊆ is antisymmetric.

Friday 20 April 12

Lower and upper bounds

• Let (S,≤) be a partially ordered set. Let s∈S and S’⊆S,
	

 s is a lower-bound of S’ iff ∀s’∈S’⋅s≤s’.
	

 s is a upper-bound of S’ iff ∀s’∈S’⋅s’≤s.

• Let s be lower-bound for S’, we say that s is the greatest lower-
bound (glb) for S’ iff for all lower-bound s’ for S’, we have s’≤s. We
note glb(S’) the glb of S’ it it exists.

• Let s be upper-bound for S’, we say that s is the least upper-bound
(lub) for S’ iff for all upper-bound s’ for S’, we have s≤s’. We note
lub(S’) the lub of S’ it it exists.

Friday 20 April 12

R=

r1=

r2=

r3=

➭ r1 and r2 are upper bounds of R.

➭ r2 is the least upper bound of R.

➭ r3 is the only lower-bound of R and so it is
the greatest lower bound of R.

Friday 20 April 12

R=

The lub of a set of sets Ri is equal to ∪i Ri

ex: lub R = {t1,t2,t3}

The glb of a set of sets Ri is equal to ∩i Ri

ex: glb R = {t3}

Friday 20 April 12

A set of elements S’⊆S is a chain
iff

∀s,s’∈S’⋅s≤s’∨s’≤s
i.e. all pairs of elements are ordered by ≤

(increasing sequence of elements).

R={{},{t1},{t1,t2}} is a chain in P(T).
R’={{},{t1,t3}} is a chain in P(T).
R’’= {{},{t1,t3},{t2,t3}} is not a chain in P(T).

Friday 20 April 12

• A partially ordered set (S,≤) is a complete partial order
if every chain in S has a lub in S.

• A complete partial order (S,≤) is a complete lattice
if every subset S’ of S has a lub in (S,≤).

• Note that glb S’= lub{s∈S|∀s’∈S: s≤s’}, so every subset S’ in a
complete lattice has also a glb.

• Example: (P(T),⊆) is a complete lattice. Indeed, remember that the lub
of a set of sets Ri is equal to ∪i Ri and the glb of a set of sets Ri is equal
to ∩i Ri.

Friday 20 April 12

The maximal element of P(T),
i.e. the least upper-bound of P(T),

noted Max(P(T)).
The minimal element of P(T),

i.e. the greatest lower-bound of P(T),
noted Min(P(T)).

Min and Max elements in a complete lattice

Friday 20 April 12

• Let (S,≤) be a partially ordered set. A function f:S→S is monotone
(order preserving) iff ∀s,s’∈S⋅s≤s’→f(s)≤f(s’).

• Let (S,≤) be a complete partially ordered set. A function f:S→S is
continuous iff f is monotone and for all non-empty chain S’ in S:

f(lub(S’))=lub(f(S’)).

Remark. In any finite complete partially ordered set S, if f is monotone
then f is continuous.

• s∈S is a fixed point of f:S→S if f(s)=s. The set of fixed points of f is
noted Fx(f).

• Theorem (Tarski) Any monotone function on a complete lattice
has a:
	

 (i) least fixed point, lfp(f), equal to glb(Fx(f))
	

 (ii) greatest fixed point, gfp(f), equal to lub(Fx(f))

Friday 20 April 12

Let us consider f as depicted by red arrows

Clearly, f is monotone (and so continuous).

	

 Fx(f)={{t1,t3},{t1,t2,t3}}.
	

 lfp(f)={t1,t3}=glb(Fx(f)).
	

 gfp(f)={t1,t2,t3}=lub(Fx(f)).

Friday 20 April 12

S

Fx(f)

glb(Fx(f))
=lfp(f)

lub(Fx(f))
=gfp(f)

Friday 20 April 12

• Let fi be defined inductively as
	

 - for i=0: f0=f
	

 - for all i>0: fi=f(fi-1).

• Theorem (Kleene-Tarski) Let (S,≤) be a complete lattice, let f:S→S
be a continuous:
	

 lfp(f)=glb { fi(Min(S)) | i≥0 } and
	

 gfp(f)=lub { fi(Max(S)) | i≥0 }.

• This gives us an iterative schema to compute the lfp(f) (gfp(f)) of
a continuous function f:

➱ iterate the function from the Min (Max) of the set until
stabilization.

Friday 20 April 12

S

Fx(f)

glb(Fx(f))
=lfp(f)

lub(Fx(f))
=gfp(f)

Max(S)

Min(S)

...

...

Friday 20 April 12

Computation of lfp(f)

f0({})={t1,t2}
f1({})=f({t1,t2})={t1,t2}=lfp(f)

Friday 20 April 12

Computation of gfp(f)

R0=f0({t1,t2,t3})={t1,t2,t3}=gfp(f)

Friday 20 April 12

Plan of the talk

• Labelled transition systems

• Properties of labeled transition systems:
Reachability - Safety - Büchi properties

• Pre-Post operators

• Partial orders - Fixed points

• Symbolic model-checking

• Application to TA: region equivalence, region automata,
zones

Friday 20 April 12

Symbolic model-checking

• The reachability, safety, and Büchi objectives can be
solved using fixed point equations.

• Solving those equations will be done by iteration of
functions built from the Pre, Apre or Post
operators on sets of states.

• Those algorithms are called symbolic because they
manipulate sets of states directly instead of
manipulating individual states as it is done in so-
called explicit model-checking algorithms.

Friday 20 April 12

Fixed points for reachability

• Let us consider an instance of the reachability
problem given by the LTS L=(S,S0,Σ,T,C,λ), and a set of
states Goal ⊆ S;

• Goal is reachable in the LTS

iff lfp (λX. S0 ∪ POST(X)) ∩ Goal≠∅
 this is a forward algorithm

iff lfp (λX. Goal ∪ PRE(X)) ∩ S0≠∅
 this is a backward algorithm

Friday 20 April 12

a

a

a a a

a a a

a

a a a

a aa

c

b

b b b

b
a

bb b

b b b
ac

c

d
c

d
a

Reachability - Forward algorithm
lfp (λX. S0 ∪ POST(X)) ∩ Goal≠∅

Friday 20 April 12

a

a

a a a

a a a

a

a a a

a aa

c

b

b b b

b
a

bb b

b b b
ac

c

d
c

d
a

Iterative evaluation of lfp (λX. S0 ∪ POST(X))

Friday 20 April 12

a

a

a a a

a a a

a

a a a

a aa

c

b

b b b

b
a

bb b

b b b
ac

c

d
c

d
a

Iterative evaluation of lfp (λX. S0 ∪ POST(X))

Friday 20 April 12

a

a

a a a

a a a

a

a a a

a aa

c

b

b b b

b
a

bb b

b b b
ac

c

d
c

d
a

Iterative evaluation of lfp (λX. S0 ∪ POST(X))

Friday 20 April 12

a

a

a a a

a a a

a

a a a

a aa

c

b

b b b

b
a

bb b

b b b
ac

c

d
c

d
a

Iterative evaluation of lfp (λX. S0 ∪ POST(X))

Friday 20 April 12

a

a

a a a

a a a

a

a a a

a aa

c

b

b b b

b
a

bb b

b b b
ac

c

d
c

d
a

Iterative evaluation of lfp (λX. S0 ∪ POST(X))

Friday 20 April 12

a

a

a a a

a a a

a

a a a

a aa

c

b

b b b

b
a

bb b

b b b
ac

c

d
c

d
a

Iterative evaluation of lfp (λX. S0 ∪ POST(X))

Friday 20 April 12

a

a

a a a

a a a

a

a a a

a aa

c

b

b b b

b
a

bb b

b b b
ac

c

d
c

d
a

Iterative evaluation of lfp (λX. S0 ∪ POST(X))

Friday 20 April 12

a

a

a a a

a a a

a

a a a

a aa

c

b

b b b

b
a

bb b

b b b
ac

c

d
c

d
a

Iterative evaluation of lfp (λX. S0 ∪ POST(X))

Fixed point !

Friday 20 April 12

a

a

a a a

a a a

a

a a a

a aa

c

b

b b b

b
a

bb b

b b b
ac

c

d
c

d
a

Iterative evaluation of lfp (λX. S0 ∪ POST(X))

Fixed point ! It intersects Goal ! Positive instance.

Friday 20 April 12

a

a

a a a

a a a

a

a a a

a aa

c

b

b b b

b
a

bb b

b b b
ac

c

d
c

d
a

Reachability - Backward algorithm
lfp (λX. Goal ∪ PRE(X)) ∩ S0≠∅

Friday 20 April 12

a

a

a a a

a a a

a

a a a

a aa

c

b

b b b

b
a

bb b

b b b
ac

c

d
c

d
a

Iterative evaluation of lfp (λX. Goal ∪ PRE(X)) ∩ S0≠∅

Friday 20 April 12

a

a

a a a

a a a

a

a a a

a aa

c

b

b b b

b
a

bb b

b b b
ac

c

d
c

d
a

Iterative evaluation of lfp (λX. Goal ∪ PRE(X)) ∩ S0≠∅

Friday 20 April 12

a

a

a a a

a a a

a

a a a

a aa

c

b

b b b

b
a

bb b

b b b
ac

c

d
c

d
a

Iterative evaluation of lfp (λX. Goal ∪ PRE(X)) ∩ S0≠∅

Friday 20 April 12

a

a

a a a

a a a

a

a a a

a aa

c

b

b b b

b
a

bb b

b b b
ac

c

d
c

d
a

Iterative evaluation of lfp (λX. Goal ∪ PRE(X)) ∩ S0≠∅

Friday 20 April 12

a

a

a a a

a a a

a

a a a

a aa

c

b

b b b

b
a

bb b

b b b
ac

c

d
c

d
a

Iterative evaluation of lfp (λX. Goal ∪ PRE(X)) ∩ S0≠∅

Friday 20 April 12

a

a

a a a

a a a

a

a a a

a aa

c

b

b b b

b
a

bb b

b b b
ac

c

d
c

d
a

Friday 20 April 12

a

a

a a a

a a a

a

a a a

a aa

c

b

b b b

b
a

bb b

b b b
ac

c

d
c

d
a

Iterative evaluation of lfp (λX. Goal ∪ PRE(X)) ∩ S0≠∅

Friday 20 April 12

a

a

a a a

a a a

a

a a a

a aa

c

b

b b b

b
a

bb b

b b b
ac

c

d
c

d
a

Iterative evaluation of lfp (λX. Goal ∪ PRE(X)) ∩ S0≠∅

Fixed point ! It intersects S0 ! Positive instance.

Friday 20 April 12

a

a

a a a

a a a

a

a a a

a aa

c

b

b b b

b
a

bb b

b b b
ac

c

d
c

d
a

Safety - Backward algorithm
S0 ⊆ gfp (λX. Safe ∩ APRE(X))

Friday 20 April 12

a

a

a a a

a a a

a

a a a

a aa

c

b

b b b

b
a

bb b

b b b
ac

c

d
c

d
a

Iterative evaluation of gfp (λX. Safe ∩ APRE(X))

Friday 20 April 12

a

a

a a a

a a a

a

a a a

a aa

c

b

b b b

b
a

bb b

b b b
ac

c

d
c

d
a

Iterative evaluation of gfp (λX. Safe ∩ APRE(X))

Friday 20 April 12

a

a

a a a

a a a

a

a a a

a aa

c

b

b b b

b
a

bb b

b b b
ac

c

d
c

d
a

Iterative evaluation of gfp (λX. Safe ∩ APRE(X))

Friday 20 April 12

a

a

a a a

a a a

a

a a a

a aa

c

b

b b b

b
a

bb b

b b b
ac

c

d
c

d
a

Iterative evaluation of gfp (λX. Safe ∩ APRE(X))

Fixed point ! Negative instance as S0 ⊈ gfp (λX. Safe ∩ APRE(X)).

Friday 20 April 12

Fixed points for Büchi objectives

• Let consider an instance of the Büchi verification
problem given by the LTS L=(S,S0,Σ,T,C,λ), a set of states
Goal ⊆ S;

• Goal is reachable infinitely often from an initial states in L

iff

gfp(λY. lfp(λX. PRE(X) ∪ (Goal ∩ PRE(Y)))) ∩ S0≠∅
 this is a backward algorithm

Friday 20 April 12

a

a a

a

b

b

1 2

34

5

Fixed points for Büchi objectives

Friday 20 April 12

a

a a

a

b

b

1 2

34

5

Fixed points for Büchi objectives

We want to check if {3} can be reached
infinitely often from the initial state.

Friday 20 April 12

a

a a

a

b

b

1 2

34

5

Fixed points for Büchi objectives

We want to check if {3} can be reached
infinitely often from the initial state.

For that we evaluate the fixed point expression
gfp(λY. lfp(λX. PRE(X) ∪ (Goal ∩ PRE(Y))))

Friday 20 April 12

a

a a

a

b

b

1 2

34

5

Fixed points for Büchi objectives

We want to check if {3} can be reached
infinitely often from the initial state.

For that we evaluate the fixed point expression
gfp(λY. lfp(λX. PRE(X) ∪ (Goal ∩ PRE(Y))))

Y0={1,2,3,4,5}

Friday 20 April 12

a

a a

a

b

b

1 2

34

5

Fixed points for Büchi objectives

We want to check if {3} can be reached
infinitely often from the initial state.

For that we evaluate the fixed point expression
gfp(λY. lfp(λX. PRE(X) ∪ (Goal ∩ PRE(Y))))

Y0={1,2,3,4,5} lfp(λX. PRE(X) ∪ (Goal ∩ PRE(Y0)))
= lfp(λX. PRE(X) ∪ (Goal))
={1,2,3}=Y1

Friday 20 April 12

a

a a

a

b

b

1 2

34

5

Fixed points for Büchi objectives

We want to check if {3} can be reached
infinitely often from the initial state.

For that we evaluate the fixed point expression
gfp(λY. lfp(λX. PRE(X) ∪ (Goal ∩ PRE(Y))))

Y0={1,2,3,4,5} lfp(λX. PRE(X) ∪ (Goal ∩ PRE(Y0)))
= lfp(λX. PRE(X) ∪ (Goal))
={1,2,3}=Y1

Y1={1,2,3}

Friday 20 April 12

a

a a

a

b

b

1 2

34

5

Fixed points for Büchi objectives

We want to check if {3} can be reached
infinitely often from the initial state.

For that we evaluate the fixed point expression
gfp(λY. lfp(λX. PRE(X) ∪ (Goal ∩ PRE(Y))))

Y0={1,2,3,4,5} lfp(λX. PRE(X) ∪ (Goal ∩ PRE(Y0)))
= lfp(λX. PRE(X) ∪ (Goal))
={1,2,3}=Y1

Y1={1,2,3} lfp(λX. PRE(X) ∪ (Goal ∩ PRE(Y1)))
= lfp(λX. PRE(X) ∪ (Goal ∩ {1,2,3}))
={1,2,3}=Y2=Y1

Friday 20 April 12

a

a a

a

b

b

1 2

34

5

Fixed points for Büchi objectives

We want to check if {3} can be reached
infinitely often from the initial state.

For that we evaluate the fixed point expression
gfp(λY. lfp(λX. PRE(X) ∪ (Goal ∩ PRE(Y))))

Y0={1,2,3,4,5} lfp(λX. PRE(X) ∪ (Goal ∩ PRE(Y0)))
= lfp(λX. PRE(X) ∪ (Goal))
={1,2,3}=Y1

Y1={1,2,3} lfp(λX. PRE(X) ∪ (Goal ∩ PRE(Y1)))
= lfp(λX. PRE(X) ∪ (Goal ∩ {1,2,3}))
={1,2,3}=Y2=Y1

Fixed point !

Friday 20 April 12

a

a a

a

b

b

1 2

34

5

Fixed points for Büchi objectives

We want to check if {3} can be reached
infinitely often from the initial state.

For that we evaluate the fixed point expression
gfp(λY. lfp(λX. PRE(X) ∪ (Goal ∩ PRE(Y))))

Y0={1,2,3,4,5} lfp(λX. PRE(X) ∪ (Goal ∩ PRE(Y0)))
= lfp(λX. PRE(X) ∪ (Goal))
={1,2,3}=Y1

Y1={1,2,3} lfp(λX. PRE(X) ∪ (Goal ∩ PRE(Y1)))
= lfp(λX. PRE(X) ∪ (Goal ∩ {1,2,3}))
={1,2,3}=Y2=Y1

Fixed point !

As S0 ∩ Y2 ≠ ∅, the Büchi property
is verified by the LTS L

Friday 20 April 12

Trace pre-orders, Trace equivalence, Simulations,
Bisimulations and quotients

Friday 20 April 12

Traces of a LTS

• Let (S,S0,Σ,T,C,λ) be a LTS. Let s0σ0s1σ1s2σ2...σn-1sn... be such
that (1) s0 ∈ S0, (2) ∀i ·0≤i·T(si,σi,si+1), the sequence

 λ(s0)σ0 λ(s1)σ1λ(s2)σ2...σn-1λ(sn)...

is called a trace of the LTS.

• Note that two different paths in the LTS may generate the
same trace.

• The color of a state is meant to model the important
properties of that state. So the notion of trace allows us to
concentrate on the important properties of the system.

Friday 20 April 12

• We note Traces(L) the set of traces generated by the LTS L.

• Two LTS L1 and L2 are trace equivalent if

 Traces(L1)=Traces(L2)

• Trace equivalence and verification.
If we have two LTS L1 and L2 such that Traces(L1)=Traces(L2),
and L2 is (much) smaller than L1, it may be very advantageous to
do verification on L2 instead on L1. As we will see L1 may be infinite
while L2 is finite. We will illustrate that with TA.

• Unfortunately, minimizing a system using the notion of trace
equivalence is costly computationally. We will introduce now
stronger notions of equivalence than are easier to compute.

Traces of a LTS

Friday 20 April 12

Simulation relations

Friday 20 April 12

Simulation relations

• Given a LTS (S,S0,Σ,T,C,λ), a simulation relation is a
relation R⊆S×S such that

for all (s1,s2) ∈ R :
(1) s1∈S0 iff s2∈S0

(2) λ(s1)=λ(s2)
(3) ∀σ∈Σ•∀s3∈S: T(s1,σ,s3)⟹𝌄s4∈S•T(s2,σ,s4)∧(s3,s4)∈R

Friday 20 April 12

Simulation relations

• Given a LTS (S,S0,Σ,T,C,λ), a simulation relation is a
relation R⊆S×S such that

for all (s1,s2) ∈ R :
(1) s1∈S0 iff s2∈S0

(2) λ(s1)=λ(s2)
(3) ∀σ∈Σ•∀s3∈S: T(s1,σ,s3)⟹𝌄s4∈S•T(s2,σ,s4)∧(s3,s4)∈R

• When (s1,s2) ∈ R, we say that s1 is simulated by s2.

Friday 20 April 12

Simulation relations

a a a a a

a b a ba b b

Friday 20 April 12

Simulation relations

a a a a a

a b a ba b

Who can simulate who ?

b

Friday 20 April 12

Simulation relations

a a a a a

a b a ba b

This is a simulation relation

b

Friday 20 April 12

Simulation relations

a a a a a

a b a ba b

Is this the largest one ?

b

Friday 20 April 12

Simulation relations

a a a a a

a b a ba b

Is this the largest one ? NO.

b

Friday 20 April 12

Simulation relations and
bisimulations

Friday 20 April 12

Simulation relations and
bisimulations

• Given a LTS (S,S0,Σ,T,C,λ), there exists a unique largest simulation
relation R⊆S×S;

Friday 20 April 12

Simulation relations and
bisimulations

• Given a LTS (S,S0,Σ,T,C,λ), there exists a unique largest simulation
relation R⊆S×S;

• A relation R⊆S×S is symmetric iff
for all s1,s2 such that R(s1,s2) we have also R(s2,s1);

Friday 20 April 12

Simulation relations and
bisimulations

• Given a LTS (S,S0,Σ,T,C,λ), there exists a unique largest simulation
relation R⊆S×S;

• A relation R⊆S×S is symmetric iff
for all s1,s2 such that R(s1,s2) we have also R(s2,s1);

• A simulation relation R which is symmetric is called a
bisimulation.

Friday 20 April 12

Simulation relations and
bisimulations

• Given a LTS (S,S0,Σ,T,C,λ), there exists a unique largest simulation
relation R⊆S×S;

• A relation R⊆S×S is symmetric iff
for all s1,s2 such that R(s1,s2) we have also R(s2,s1);

• A simulation relation R which is symmetric is called a
bisimulation.

• Given a bisimulation relation R and two states s1,s2 such that
R(s1,s2) (note that we have also R(s2,s1) by definition), we say that s1
and s2 are bisimilar, this is noted s1 ≈R s2 (or s1 ≈ s2 if R is clear
from the context).
The relation ≈R is an equivalence relation.

Friday 20 April 12

Bisimulation

a a a

a ba b b

Friday 20 April 12

Bisimulation

a a a

a ba b b

This is a bisimulation

Friday 20 April 12

Quotient of a LTS using
bisimulation

• Let L=(S,S0,Σ,T,C,λ) be a LTS, R⊆S×S be a bisimulation
relation over the state space of L, and let ≈R be the associated
equivalence relation.

• The quotient by ≈R of L is the LTS L≈=(S≈,S0≈,Σ,T≈,C,λ≈):
 ➢ S≈ are the equivalence classes for ≈R ;
 ➢ S0≈ are the equivalence classes s for ≈R

 such that for all s∈s, s∈S0 ;
 ➢ T≈ is such that T≈(s1,σ,s2) iff ∃s1∈s1, s2∈s2:T(s1,σ,s2) ;
 ➢ λ≈ is such that λ≈(s)=λ(s) for any s∈s.

• Theorem:
Let L be a LTS and R a bisimulation over the state space of L, let L≈

be the quotient of L by ≈R, then Traces(L)=Traces(L≈).

Friday 20 April 12

Quotient of a LTS using
bisimulation

a a a

a ba b b

The LTS

Friday 20 April 12

Quotient of a LTS using
bisimulation

a a a

a ba b b

The LTS

≈

≈ ≈

Friday 20 April 12

Quotient of a LTS using
bisimulation

a a a

a ba b b

The LTS

≈

≈ ≈

The quotient by ≈

Friday 20 April 12

Quotient of a LTS using
bisimulation

a a a

a ba b b

The LTS

≈

≈ ≈

The quotient by ≈

Friday 20 April 12

Quotient of a LTS using
bisimulation

a a a

a ba b b

The LTS

≈

≈ ≈

The quotient by ≈

Friday 20 April 12

Quotient of a LTS using
bisimulation

a a a

a ba b b a b

a aa

b

The LTS

≈

≈ ≈

The quotient by ≈

Friday 20 April 12

Bisimulation is not complete for
trace equivalence

a a a

a ba b b

The LTS

≈

≈ ≈

Clearly, the two initial states
 are trace equivalent

but they are not bisimilar.

Friday 20 April 12

Plan of the talk

• Labelled transition systems

• Properties of labeled transition systems:
Reachability - Safety - Büchi properties

• Pre-Post operators

• Partial orders - Fixed points

• Symbolic model-checking

• Application to TA: region equivalence, region automata,
zones

Friday 20 April 12

Algorithmic verification of
timed automata

• We will show now how to apply the concepts that
we have introduced so far to obtain algorithms to
verify properties of timed automata;

• We will show how to use the pre-post
operators to build fixed points algorithms;

• We will show that those algorithms are
terminating by showing that they operate over
finite state time-abstract bisimulation
quotients.

Friday 20 April 12

A timed automaton

Question: Can L3 be reached ?

Friday 20 April 12

A timed automaton

Question: Can L3 be reached ?

This question can be reduced to a reachability verification
problem over the labeled transition system of the TA.

Friday 20 April 12

Labeled transition system of a TA

• The LTS=(S,S0,Σ,T,C,λ) of a TA A=(Q,Q0,Σ,P,Cl,E,L,F,Inv), is as follows:

- S is the set of pairs (q,v) where q ∈ Q is a location of A and v : Cl →ℝ≥0 such that v ⊨ Inv(q);

- S0={(q0,<0,0,...0,>) | q0 ∈ Q0 };

- T ⊆ S x (Σ∪ℝ≥0) x S defined by two types of transitions:

 Discrete transitions:
(q1,v1)→a(q2,v2) ∈ T iff there exists (q1,a,Φ,Δ,q2) ∈ E, v1 ⊨ Φ, and v2:=v1[Δ:=0].
 Continuous transitions:
(q1,v1)→δ(q2,v2) ∈ T iff q1=q2, δ∈ℝ≥0, v2=v1+δ, and ∀δ’, 0≤δ’≤δ, v1+δ ⊨ Inv(q1).

- C=2P, λ((q,v))=L(q), for any (q,v)∈Q.

• Clearly, this transition system has a (continuous) infinite number of
states. How do we handle it ?

Friday 20 April 12

• The LTS=(S,S0,Σ,T,C,λ) of a TA A=(Q,Q0,Σ,P,Cl,E,L,F,Inv), is as follows:

- S is the set of pairs (q,v) where q ∈ Q is a location of A and v : Cl →ℝ≥0 such that v ⊨ Inv(q);

- S0={(q0,<0,0,...0,>) | q0 ∈ Q0 };

- T ⊆ S x (Σ∪{Delay}) x S defined by two types of transitions:

 Discrete transitions:
(q1,v1)→a(q2,v2) ∈ T iff there exists (q1,a,Φ,Δ,q2) ∈ E, v1 ⊨ Φ, and v2:=v1[Δ:=0].
 Continuous transitions:
(q1,v1)→Delay(q2,v2) ∈ T iff q1=q2, ∃δ∈ℝ≥0, v2=v1+δ, and ∀δ’, 0≤δ’≤δ, v1+δ ⊨ Inv(q1).

- C=2P, λ((q,v))=L(q), for any (q,v)∈Q.

• Clearly, this transition system has a (continuous) infinite number of
states. How do we handle it ?

Time abstract-labeled transition system

Friday 20 April 12

x

y

0
0

1

2

1

3

2 3 4

Continuous state space

Friday 20 April 12

x

y

0
0

1

2

1

3

2 3 4

Continuous state space

Are there valuations of clocks
that behaves in a similar way ?

Friday 20 April 12

x

y

0
0

1

2

1

3

2 3 4

Continuous state space

First, let us note that
clocks are compared to constants
(that are natural numbers).

Friday 20 April 12

x

y

0
0

1

2

1

3

2 3 4

Continuous state space

First, let us note that
clocks are compared to constants
(that are natural numbers).

Max. value over
which y is compared

Max. value over
which x is compared

Friday 20 April 12

x

y

0
0

1

2

1

3

2 3 4

Continuous state space

It is important to know if x or y
reach the next natural number first.

Max. value over
which y is compared

Max. value over
which x is compared

Friday 20 April 12

x

y

0
0

1

2

1

3

2 3 4

Continuous state space

This partition is fine enough

Max. value over
which y is compared

Max. value over
which x is compared

Friday 20 April 12

x

y

0
0

1

2

1

3

2 3 4

Continuous state space

This partition is fine enough

Max. value over
which y is compared

Max. value over
which x is compared

each triangle is a region

Friday 20 April 12

x

y

0
0

1

2

1

3

2 3 4

Continuous state space

This partition is fine enough

Max. value over
which y is compared

Max. value over
which x is compared

each segment is a region

Friday 20 April 12

x

y

0
0

1

2

1

3

2 3 4

Continuous state space

This partition is fine enough

Max. value over
which y is compared

Max. value over
which x is compared

each segment is a region

Friday 20 April 12

x

y

0
0

1

2

1

3

2 3 4

Continuous state space

This partition is fine enough

Max. value over
which y is compared

Max. value over
which x is compared

each segment is a region

Friday 20 April 12

x

y

0
0

1

2

1

3

2 3 4

Continuous state space

This partition is fine enough

Max. value over
which y is compared

Max. value over
which x is compared

each of those points
is a region

Friday 20 April 12

x

y

0
0

1

2

1

3

2 3 4

Continuous state space

This partition is fine enough

Max. value over
which y is compared

Max. value over
which x is compared

Time passing

Friday 20 April 12

x

y

0
0

1

2

1

3

2 3 4

Continuous state space

This partition is fine enough

Max. value over
which y is compared

Max. value over
which x is compared

Time passing

Friday 20 April 12

x

y

0
0

1

2

1

3

2 3 4

Continuous state space

This partition is fine enough

Max. value over
which y is compared

Max. value over
which x is compared

Reseting of y

Friday 20 April 12

x

y

0
0

1

2

1

3

2 3 4

Continuous state space

This partition is fine enough

Max. value over
which y is compared

Max. value over
which x is compared

Reseting of y

Friday 20 April 12

x
0

0

1

2

1 2

Continuous state space

This partition is fine enough

L1

x
0

0

1

2

1 2
L2

discrete transition
from L1 to L2

Friday 20 April 12

x
0

0

1

2

1 2

Continuous state space

This partition is fine enough

L1

x
0

0

1

2

1 2
L2

discrete transition
from L1 to L2

Friday 20 April 12

x
0

0

1

2

1 2

Continuous state space

This partition is fine enough

L1

x
0

0

1

2

1 2
L2

discrete transition
from L1 to L2 with

reset of y

Friday 20 April 12

x
0

0

1

2

1 2

Continuous state space

This partition is fine enough

L1

x
0

0

1

2

1 2
L2

discrete transition
from L1 to L2 with

reset of y

Friday 20 April 12

• For each variable x∈Cl, let cx be the largest constant with which x is
compared in the TA.
Two valuations v1,v2:Cl→ℝ≥0 are region equivalent, noted v1 ≈ v2 iff

• same integer parts:
for all x∈Cl, int(v1(x))=int(v2(x)), or v1(x)>cx and v2(x)>cx.

• same fractional ordering:
for all x,y∈Cl with v1(x)≤cx and v1(y)≤cy,
frac(v1(x)) ≤ frac(v1(y)) iff frac(v2(x)) ≤ frac(v2(y))

• same null fractional parts:
for all x,y∈Cl with v1(x)≤cx and v1(y)≤cy,
frac(v1(x))=0 iff frac(v2(x))=0

• Theorem: a Region is a set of valuations that are time abstract
bisimilar.

Region equivalence: formal definition

Friday 20 April 12

• The following theorem is the foundation
for the automatic verification of timed
automata.

• Theorem. Let A be a timed automaton, let
L be its time-abstract labeled transition
system, let L≈ be its quotient by the region
equivalence ≈, then L≈ is finite and L≈ is
trace equivalent to L.

Region equivalence quotient of the
time-abstract LTS

Friday 20 April 12

Post operations in the
time abstract LTS

• To construct “region based” bisimulation quotient of the time-
abstract LTS of a TA (or to compute on it), we must be able to compute
the transition relation between regions.

• We consider the two types of transitions that we find in the time-abstract
LTS of a TA:

• Discrete transitions that are associated to transition edges in the
timed automaton. Let (q1,a,Φ,Δ,q2) ∈ E:
(1) Note that given a region r and a guard Φ, all valuations v1,v2∈r is
such that v1⊨Φ iff v2⊨Φ.
(2) The effect of resetting a clock on a region r gives a region r’.

• Delay transitions. Given a region r, we can compute the set of
regions r’ that contains v+t for some v∈r and some t∈ℝ.

Friday 20 April 12

x

y

0
0

1

2

1

3

2 3 4

Continuous state space

Max. value over
which y is compared

Max. value over
which x is compared

The transitions of the time-abstract transition system
can be rephrased on the regions

Friday 20 April 12

x

y

0
0

1

2

1

3

2 3 4

Continuous state space

Max. value over
which y is compared

Max. value over
which x is compared

Reseting of y

The transitions of the time-abstract transition system
can be rephrased on the regions

Friday 20 April 12

x

y

0
0

1

2

1

3

2 3 4

Continuous state space

Max. value over
which y is compared

Max. value over
which x is compared

Reseting of y

The transitions of the time-abstract transition system
can be rephrased on the regions

Friday 20 April 12

x

y

0
0

1

2

1

3

2 3 4

Continuous state space

Max. value over
which y is compared

Max. value over
which x is compared

Time passing

The transitions of the time-abstract transition system
can be rephrased on the regions

Friday 20 April 12

x

y

0
0

1

2

1

3

2 3 4

Continuous state space

Max. value over
which y is compared

Max. value over
which x is compared

Time passing

The transitions of the time-abstract transition system
can be rephrased on the regions

Friday 20 April 12

TA and the
backward approach

• The region bisimulation is stable also
for the operations that explore the state
space in a backward fashion (Pre, Apre)

• ... and so, we can also use backward
algorithms to verify TA.

Friday 20 April 12

On the use of the region
equivalence to verify

reachability properties of TA

Forward reachability analysis on a
simple example

Friday 20 April 12

Question: Can L3 be reached ?

x

y

2

1

0
1 2 x

y

2

1

0
1 2 x

y

2

1

0
1 2

L0 L1 L2

Friday 20 April 12

Question: Can L3 be reached ?

x

y

2

1

0
1 2 x

y

2

1

0
1 2 x

y

2

1

0
1 2

L0 L1 L2

Friday 20 April 12

Question: Can L3 be reached ?

x

y

2

1

0
1 2 x

y

2

1

0
1 2 x

y

2

1

0
1 2

L0 L1 L2

Friday 20 April 12

Question: Can L3 be reached ?

x

y

2

1

0
1 2 x

y

2

1

0
1 2 x

y

2

1

0
1 2

L0 L1 L2

Friday 20 April 12

Question: Can L3 be reached ?

x

y

2

1

0
1 2 x

y

2

1

0
1 2 x

y

2

1

0
1 2

L0 L1 L2

Friday 20 April 12

Question: Can L3 be reached ?

x

y

2

1

0
1 2 x

y

2

1

0
1 2 x

y

2

1

0
1 2

L0 L1 L2

Friday 20 April 12

Question: Can L3 be reached ?

x

y

2

1

0
1 2 x

y

2

1

0
1 2 x

y

2

1

0
1 2

L0 L1 L2

Friday 20 April 12

Question: Can L3 be reached ?

x

y

2

1

0
1 2 x

y

2

1

0
1 2 x

y

2

1

0
1 2

L0 L1 L2

...

...

Friday 20 April 12

Question: Can L3 be reached ?

x

y

2

1

0
1 2 x

y

2

1

0
1 2 x

y

2

1

0
1 2

L0 L1 L2

...

...

Taking the transition from L1 to L2 does not add any new states, so we have reached a fixed point.

Friday 20 April 12

Zones

• The region equivalence gives rise to a finite quotient and
guaranties that our fixed point algorithms are terminating.

• Nevertheless, the number of region is exponential in the
number of clocks as well as in the binary encoding of
constants.

• To mitigate this state explosion phenomenon, we can use efficient
data-structure to represent convex unions of regions.
Zones are such a data-structure.

• Note that the reachability problem for timed automata is
complete for PSpace, so it is believed that the state explosion
is unavoidable in the worst case.

Friday 20 April 12

x

y

0
0

1

2

1

3

2 3 4

Zones

x≥1∧ x≤3 ∧ y≤ 3 ∧ y≥1 ∧ x-y≥-2 ∧ y-x≥1

Friday 20 April 12

Zones

• Let ℂ be a finite set of clocks, a zone is defined by a set of constraints
of the form:
 (1) x-y ∼ c where x,y ∈ ℂ and c ∈ ℤ.
 (2) x ∼ c where x ∈ ℂ and c ∈ ℤ.
and ∼ ∈ { ≤,<,=,>,≥ }.

• Zones are closed under the reseting operation, the forward and
backward time passing operations, and intersection.

• Unfortunately, zones are not closed under union nor
complementation. So implementations need to maintain lists of zones.

• Zones can be canonically represented by DBM
(=Difference Bound Matrices).

Friday 20 April 12

x

y

0
0

1

2

1

3

2 3 4

Zones

x≥1∧ x≤3 ∧ y≤ 3 ∧ y≥1 ∧ x-y≥-2 ∧ y-x≥1

Friday 20 April 12

x

y

0
0

1

2

1

3

2 3 4

Zones

Reseting of y: x≥1 ∧ x≤3 ∧ y=0

Friday 20 April 12

x

y

0
0

1

2

1

3

2 3 4

Zones

Conjunction with the guard: x≤2∧y≤3

Friday 20 April 12

x

y

0
0

1

2

1

3

2 3 4

Zones

Conjunction with the guard: x≤2∧y≤3

Friday 20 April 12

x

y

0
0

1

2

1

3

2 3 4

Zones

Conjunction with the guard: x≤2∧y≤3

Friday 20 April 12

x

y

0
0

1

2

1

3

2 3 4

Zones

Conjunction with the guard: x≤2∧y≤3

Friday 20 April 12

x

y

0
0

1

2

1

3

2 3 4

Zones

x≥1∧x≤2∧y≥1∧y≤3∧x-y≥-1

Friday 20 April 12

Decidability results for TA

Friday 20 April 12

Decidability results

• As a direct consequence of our previous developments, we
have that:

• The reachability verification problem for TA w.r.t. a
set Goal which is defined as a union of regions is
decidable.

• The safety verification problem for TA w.r.t. a set Safe
which is defined as a union of regions is decidable.

• The Büchi verification problem for TA w.r.t. a set Goal
which is defined as a union of regions is decidable.

Friday 20 April 12

Decidability results

• As the reachability verification problem for TA is decidable
then the timed language emptiness problem (finite
word case) is decidable for TA.

• As the Büchi verification problem for TA is decidable then the
timed language emptiness problem (infinite word
case) is decidable for TA.

Hint to establish the result: construct a set Goal that ensures
non-zenoness and the Büchi acceptance condition of the TA.
Show that this set is a finite union of regions. As an
intermediary step you will need a generalized Büchi condition.

Friday 20 April 12

Undecidability results for TA

Friday 20 April 12

Undecidability results for TA

• The timed universality problem, i.e. does a
TA accepts all possible timed words on a alphabet,
is undecidable.

• The language inclusion problem between
timed automata is undecidable. (direct
consequence of the previous undecidability result).

Friday 20 April 12

