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Transformational vs Reactive Systems

Input

System

Output

Transformational system : computes
results.

Environnement

System

Interactive system : requests the
environment for information

Reactive system : reacts to events
from the environment.
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Features of systems

Transformational or computational system

specified by input-output relations
can be specified e.g. with pre and post conditions in Floyd-Hoare
tradition

Reactive system

not-necessarily-terminating system (generally termination, called
deadlock, is a bad system’s state),
must normally always be ready for interaction,
the interaction is the basic unit of computation,
it is generally specified by the triple : event - condition - action
the sequence of interactions provides the computation
the possible temporal ordering of actions determine the correctness,
for real-time systems ; quantitative real-time aspects must also be taken
into account.
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Embedded systems

Found in
safety-critical applications : automotive devices and controls, railways,
aircraft, aerospace and medical devices
’mobile worlds’ and ’e-worlds’, the ’smart’ home, factories ...

Features
direct interaction with the environment
environment : mechanical, electronic, ...
through sensors/actuators
multithreaded software
often application-specific hardware/processors
reconfigurable systems are emerging
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Embedded systems

uses more than 98% of the microprocessors shipped today
causes up to 40% of development costs of modern cars
enormous markets in consumer electronics, automotive & avionics
industries
growing field of applications
growing impact on competition
more “intelligent” systems
90% of new development in automotive is software
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Example : Automotive Industry

up to 100 embedded systems in modern cars
connected with busses like CAN, TT-CAN, FlexRay, MOST
Audi A8 has 90MB memory, the former model only had 3 MB
Different applications : motor optimization (fuel injection), central locking
unit, ABS (Antilock Brake System), EBD (Electronic Brake Distribution),
EPS (Electronic Power Steering), ESP (Electronic Stability Program),
parktronic,...
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Strenghts and weaknesses of embedded systems

Strenghts of embedded systems

Allows more flexible and intelligent devices

Weaknessess of embedded systems

Discrete sytems) very sensitive,
Complex) difficult to design,
Embedded) difficult to monitor,
Safety critical) must be correct.

12



Motivation
Formal verification

Brief historical facts on specification and verification

Examples of bugs in embedded systems

Examples of bugs in embedded systems

1962 : NASA Mariner 1, Venus Probe (period instead of comma in
FORTRAN DO loop)
1986/1987 : Therac-25 Incident radio-therapy device (patients died due
to a bug in the control software)
1990 : AT&T long distance service fails for nine hours (wrong BREAK
statement in C-code)
1994 : Pentium processor, division algorithm (incomplete entries in a
look-up table)
1996 : Ariane 5, explosion (data conversion of a too large number)
1999 : Mars Climate Orbiters, Loss (Mixture of pound and kilograms)
...
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Bug or feature ?

most compilers use IEEE 754 floating point numbers
but many of them have problems with that example in ANSI-C :

float q = 3.0/7.0;

if (q == 3.0/7.0) printf("no problem.");

else printf("problem!");

try it, and you will see that C has a problem !
reason : expressions in C computed in double precision, but the float q
has only single precision
no solution : avoid tests on equality
instead, check if difference is very small :

float q = 3.0/7.0;

if fabs(q-3.0/7.0) <= epsilon

printf("no problem");

else printf ("problem!");

but this “equality” is no equivalence relation
you may have x = y and y = z , but not x = z

14
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Formal verification

One of the success stories of computer science

Allows to verify large systems even systems with 10100 states
But : requires a formal semantics of the system (mathematical model)
Unfortunately, not available for most programming languages
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Formal verification : aims

Formal verification : aims
Given a formal specification and a precise system description
Check, whether the system satisfies the specification
Done by generating some sort of mathematical proof
can deal with

Correctness : no design errors
Reliability : system works all the time,
Security : no non-authorized usage,
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Classes of faults

Classes of faults
At specification : wrong/incomplete/vacuous specification
Design errors : system does not satisfy the specification
Faulty design tools : compiler generates wrong code
Fabrication faults : faults on chips or other hardware parts
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Horizontal vs. vertical verification

Informal user 
requirements

Implementation 1 Specification

Horizontal
verification

Implementation 2

Realization

Vertical
verification

Synthesis

Horizontal verification :
system vs. property ;
Vertical verification : system
vs. refined system ;
Synthesis : correctness
preserving refinement.
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Important Classes of Temporal Properties

Informal definition of some Temporal Properties

Safety properties : unwanted system states are never reached
Liveness properties : desired behavior eventually occurs
Persistence properties : after some time, desired state set is never left
Fairness properties : a request infinitely done is infinitely satisfied

Note : not all the specification logic can express all temporal properties (e.g.
CTL can not express fairness).
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Limits of Formal Verification

Limits of Formal Verification
Was the specification right ?

Often given in natural language, thus imprecise
If formally given, often hard to read
Hard to validate : simulate/verify the specification ? against what ?

Completeness of specification
Were all important properties specified ?
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Two main approaches to formal verification

Model checking

Systematically exhaustive exploration of the mathematical model
Possible for finite models, but also for some infinite models where infinite
sets of states can be effectively represented
Usually consists of exploring all states and transitions in the model
Efficient techniques
If the model has a bug : provides counter-examples

Logical inference

Mathematical reasoning, usually using theorem proving software (e.g.
HOL or Isabelle theorem provers).
Usually only partially automated and is driven by the user’s
understanding of the system to validate.
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Historical facts on specification and verification

A few dates
1936 :Alan Turing defined his machine to reason about computability
1943 :McCulloch and Pitts used Finite State Automata to model neural
cells
1956 : Kleene develops equivalence to regular expressions
1960 : Büchi develops !-automata on infinite words
1962 : Carl Petri introduced the “Petri net” model ;
1963 : McCarthy ... : operational semantics : a computer program
modeled as an execution of an abstract machine
1967-9 : Floyd, Hoare ... : axiomatic semantics : emphasis in proof
methods. Program assertions, preconditions, postconditions, invariants.
1971 : Bekic : first idea of process algebra with a parallel operator
1971 : Scott, Strachey ... : denotational semantics : a computer program
modeled as a function transforming input into output
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A few dates (cont’d)

1973 : Park, de Bakker, de Roeve, least fixpoint operators
1976 : Edsger W. Dijkstra, notion of weakest preconditions (wps)
1977 : Amir Pnueli proposed using temporal logic for reasoning about
computer program and defined LTL ;
1978 : C.A.R. (Tony) Hoare : book on the process algebra CSP
1980 : Robin Milner : book on the process algebra CCS
1980 : Edmund Clarke and Ellen Emerson defined the temporal logic
CTL ;
1982 : Pratt and Kozen, µ-calculus
1985 : David Harel and Amir Pnueli used the term “reactive system” ;
1985 : Ellen Emerson, Chin-Laung Lei : defined the temporal logic CTL⇤ ;
1986- : Symbolic model checking : BDD (Rendal Bryant), Partial order
reduction (Antti Valmari, Patrice Godefroid)
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A few dates (cont’d)

1988 : Ed Brinksma : defined LOTOS (process algebra with data)
1989 : Extended models of Process algebra (time, mobility, probabilities
and stochastics, hybrid)
1989 : Rajeev Alur and David Dill : Timed automata
1995 : Rajeev Alur et al (Thomas Henzinger) : Hybrid automata
1990- : Huge research & developments
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Turing awards in formal software development / verification

Turing Awards (From Wikipedia)

Often recognized as the "Nobel Prize of computing", the award is named after
Alan Mathison Turing, a British mathematician who is "frequently credited for
being the father of theoretical computer science and artificial intelligence".

1972 : Edsger Dijkstra
1976 : Michael O. Rabin and Dana S. Scott
1978 : Robert W. Floyd
1980 : C. Antony R. Hoare
1991 : Robin Milner
1996 : Amir Pnueli
2007 : Edmund M. Clarke, E. Allen Emerson, and Joseph Sifakis
2030 : you ?
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Verification, Model Checking, Testing

Kripke Structure

Transition system (behavior),
Transitions are atomic actions,
States are labeled with boolean
variables that hold there (others are
false),
Computations are sequences of set
of propositions corresponding to the
states reached.

p, r qp, q

Definition : Kripke structure (Given V : a set of propositions)

tuple K = (I,S,R,L) with
S : the finite set of states
I ✓ S : the set of initial states
R ✓ S ⇥ S : the set of transitions (Notation : s !

K
s0 ⌘ (s, s0) 2 R)

L : S ! 2V the label function.

30
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The Peterson algorithm

32

Multual exclusion
Peterson



Multual exclusion
Peterson

Kripke Structure for 
Peterson



Basic definitions
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Verification, Model Checking, Testing

Labeled Transition System (LTS)

Transition system : models a
system’s behavior,
Transition are atomic actions,
Transitions are labeled,
Computations are sequences of
labels corresponding to the
transitions taken.

a

b

b

c

a
b

ab

Given L : a set of labels

Definition : Labeled Transition System

tuple M = (I,S,R) with
S : the finite set of states
I ✓ S : the set of initial states
R ✓ S ⇥ L⇥ S : the set of transitions

In the first chapters we shall mainly work with Kripke structures
31
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Computation Path

Path of a Kripke Structure

An infinite path of a Kripke structure K = (I,S,R,L) is a function
⇡ : N! S with ⇡(0) 2 I and 8t .⇡(t) !

K
⇡(t+1)

A path can be seen as an infinite sequence of states ⇡ = s0s1s2 . . . such
that s0 2 I and si !

K
si+1

PathK(s) = {⇡ | ⇡(0) = s and 8t .⇡(t) !
K
⇡(t+1)}

PathK(S) =
S

s2S PathK(s)

Trace of a path ⇡ : sequence �t .L(⇡(t))

Language Lang(s) of a state s : sequence
Lang(s) := {�t .L(⇡(t)) | ⇡ 2 PathsK(s)}
Language Lang(K) :=

S
s2I Lang(s)

32
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Computation Path

In a Kripke Structure / LTS, the identifier of the states are not important
at the semantical level.
Given a path of a Kripke structure, the sequences of sets of variables
which holds give its semantics
[Given a path of a LTS, the sequences of labels of the transitions taken
give its semantics]
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Verification, Model Checking, Testing

Equivalence of Kripke structure / LTS

Are K1 and K2 the same ?
Depends on the classes of properties considered !
We first give some preorder and equivalence relations
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Equivalence of Kripke structure / LTS

Obvious candidate : Isomorphism up to renaming of the states

Isomorphic structures

K1 = (I1,S1,R1,L1) and K2 = (I2,S2,R2,L2) are isomorphic, if there is a
bijection ⇥ : S1 7! S2 with

S2 = ⇥(S1)

s1 2 I1 () ⇥(s1) 2 I2

s1 !
K1

s2 () ⇥(s1)!
K1

⇥(s2)

L1(s1) = L2(⇥(s1))

Generally much too strong equivalence !
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Simulation relation

Simulation relation

Given K1 = (I1,S1,R1,L1) and K2 = (I2,S2,R2,L2), � ✓ S1 ⇥ S2 is a
simulation relation between K1 and K2 if the following holds :

1 (s1, s2) 2 � implies L1(s1) = L2(s2)

2 8(s1, s2) 2 �, 8s0
1.s1 !

K1
s0

1, 9s0
2.s2 !

K2
s0

2 ^ (s0
1, s

0
2) 2 �

3 8s1 2 I1, 9s2 2 I2 : (s1, s2) 2 �

s1 s'1

s2 s'2

K1

K2

σ σ

K1 4S K2 ( ! ! K2 simulates K1 ! !)

K1 4S K2 := there exists a simulation
between K1 and K2

4S is a preorder
K1 'S K2 ) K1 4S K2 ^K2 4S K1 (K1 is
similar to K2)
'S is an equivalence relation
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Simulaton implies language inclusion

K1 4S K2 ) Lang(K1) ✓ Lang(K2)

Proof :

We show that 8! 2 Lang(K1)) ! 2 Lang(K2)

Let �, the simulation relation in S1 ⇥ S2 with 8s 2 I1, 9s0 2 I2.(s, s0) 2 �
Let ⇡ the path in K1 with trace !
There is a corresponding path ⇡0 in K2 with
8i 2 N.(⇡i ,⇡

0
i ) 2 � (by induction)

Hence 8i 2 N.L(⇡i) = L(⇡0
i )

which concludes the proof.
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Checking simulation preorder

Algorithm to check simulation

(s1, s2) 2 H0 () L1(s1) = L2(s2)

(s1, s2) 2 Hi+1 ()

0

BB@

(s1, s2) 2 Hi ^
8s0

1 2 S1. s1 !
K1

s0
19s0

2 2 S2.

s2 !
K2

s0
2 ^ (s0

1, s
0
2) 2 Hi

1

CCA

Until stabilization (Hi+1 = Hi )
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Computing the greatest simulation relation between K1 and K2

K1

a

b

dc

p0

p1

p3p2

K2

a

b

dc

q0

q2

q4q3

bq1

H0 = {(p0, q0), (p1, q1), (p1, q2), (p2, q3), (p3, q4)}
H1 = {(p0, q0), , (p2, q3), (p3, q4)}
H2 = {(p2, q3), (p3, q4)}
H3 = {(p3, q4)}

) no state related to p0 : K1 64S K2
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Computing the greatest simulation between K2 and K1

K1

a

b

dc

p0

p1

p3p2

K2

a

b

dc

q0

q2

q4q3

bq1

H0 = {(q0, p0), (q1, p1), (q2, p1), (q3, p2), (q4, p3)}
) stable and (q0, p0) 2 H : K2 4S K1
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Equivalence of Kripke structure / LTS

Other obvious candidate : Language equivalence

Algorithm to test language inclusion (K1 4L K2)
1 Determinisation of K2 : K0

2

2 Check if K1 4S K0
2

K1 'L K2 , K1 4L K2 ^K2 4L K1

But determinisation of Kripke structure / LTS (as finite automata) is hard
computing simulation or bisimulation is more efficient
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Bisimulation relation

Bisimulation relation

Given K1 = (I1,S1,R1,L1) and K2 = (I2,S2,R2,L2), � ✓ S1 ⇥ S2 is a
bisimulation relation between K1 and K2 (K1 'B

� K2) if the following holds :
1 (s1, s2) 2 � implies L1(s1) = L2(s2)

2 8(s1, s2) 2 �, 8s0
1.s1 !

K1
s0

1, 9s0
2.s2 !

K2
s0

2 ^ (s0
1, s

0
2) 2 �

3 8(s1, s2) 2 �, s2 !
K2

s0
2, 9s0

1.s1 !
K1

s0
1 ^ (s0

1, s
0
2) 2 �

4 8s1 2 I1, 9s2 2 I2 : (s1, s2) 2 �
5 8s2 2 I2, 9s1 2 I1 : (s1, s2) 2 �
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Bisimulation relation

s1 s'1

s2 s'2

K1

K2

σ σ

K1 'B K2

if there exists a bisimulation � between K1

and K2

K1 'B K2 ) K1 'S K2

'B is an equivalence
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Checking bisimulation

First idea
Algorithm similar to the one presented for simulation (but check both sides at
each step)

A more efficient method due to Paige & Tarjan exists
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Checking bisimulation

Basic definitions / notations
The following notations are used

I : an index set
⇢ : a partition of the set of states ⇢ = {Bi | i 2 I}
R[x ],R[X ] for a state x (resp. a set of states X ), is the set of states that are
successors of x (resp. X )

⇢0 refines ⇢ iff 8B0 2 ⇢0, 9B 2 ⇢ | B0 ✓ B
(notation ⇢0 ✓ ⇢)

A partition ⇢ is compatible with the relation R

iff 8i 2 I, 8x , y 2 Bi ,L(x) = L(y) ^
R[x ] \ Bj 6= �, R[y ] \ Bj 6= �

iff 8i 2 I, 8x , y 2 Bi ,L(x) = L(y) ^
8B,B0 2 ⇢, either B0 ✓ R�1[B], or B0 \ R�1[B] = �
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⇢ is compatible with the relation R : first criteria

A partition ⇢ is compatible with the relation R iff

8i 2 I, 8x , y 2 Bi ,L(x) = L(y) ^
R[x ] \ Bj 6= �, R[y ] \ Bj 6= �

R[x] R[y]

Bi

Bj

x y

case 1

Bj

R[x] R[y]

Bi

Bj

x y

case 2
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⇢ is compatible with the relation R : second criteria

A partition ⇢ is compatible with the relation R

iff 8i 2 I, 8x , y 2 Bi ,L(x) = L(y) ^ 8B,B0 2 ⇢,
either B0 ✓ R�1[B], or B0 \ R�1[B] = �

B

B'

R  [B]
-1

case 1

B

B'R  [B]
-1

case 2

48
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Checking bisimulation

Proposition (link between bisimulation and compatibility)

⇢ is a bisimulation iff ⇢ is compatible with R.
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Algorithm to compute the corsest partition compatible with R

Start from the partition ⇢ = {B | 8x , y 2 B.Lang(x) = Lang(y)}
and calculate the coarsest equivalence relation ⇢0 compatible with R and
which refines ⇢
Principle : refine B’ by
X1 = B0 \ R�1[B] and
X2 = B0 \ R�1[B]

B

R  [B]
-1

X1
X2

B'

50
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Simple Algorithm to compute the coarset partition compatible with R

{

r := {B | forall x,y in B.

Lang(x) = Lang(y)}; // classes

W := r // splitter

while W not empty do

{

select B in W;

suppress B in W;

call Interpred(R-1[B]); // Compute a set of (B’,X1)

// with all classes B’ in r

// incompatible with R-1[B]

// X1 is the resulting intersect.
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Simple Algorithm to compute the coarset partition compatible with R (2)

for all (B’,X1) in interpred do

{

X2 = B’\X1;

replace B’ by X1 and X2 in r;

if B’ in W then

replace B’ by X1 and X2 in W;

else

add X1 and X2 in W;

fi

}

}

}
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Simple Algorithm to compute the coarset partition compatible with R (2)

procedure interpred(X)

{

interpred := empty;

for all B’ in r do

{

X1 := B’ intersection X;

if X1 not empty and X1 <> B’ then

interpred := interpred Union {(B’,X1)};

fi

}

}
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Paige-Tarjan’s algorithm on an example

Suppose all states have the same set of propositions

54



Basic definitions
Equivalences, bisimulation and simulation relations
Quotients, products, predecessors and successors

Verification, Model Checking, Testing

Paige-Tarjan’s algorithm on an example

Paige-Tarjan’s algorithm on an example

Suppose all states have the same set of propositions
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Paige-Tarjan’s algorithm on an example

Suppose all states have the same set of propositions
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Optimized version of Paige-Tarjan’s algorithm

Complexity of Paige-Tarjan’s algorithm

The optimized version of the Paige-Tarjan’s algorithm (with a clever way to
handle splitters) has a complexity O(n log n)
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Paige-Tarjan’s algorithm for LTS

Principle of Paige-Tarjan’s algorithm for LTS

The first partition is the set of states
The refinement process uses R�1

a [B] for all label a
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Quotient structures

Given K = (I,S,R,L)
Given an equivalence relation � ✓ S ⇥ S
with (s1, s2) 2 � ) L(s1) = L(s2)

The quotient structure of K for � : K/� = (Ĩ, S̃, R̃, L̃) =
Ĩ := {{s0 2 S | (s, s0) 2 �} | s 2 I}
S̃ := {{s0 2 S | (s, s0) 2 �} | s 2 S}
(s̃1, s̃2) 2 R̃ () 8s01 2 s̃19s02 2 s̃2.(s01, s

0
2) 2 R

L̃(s̃) := L(s)
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Quotient structure : example

K K̃

A state of K/� is an equivalence class of states of K for �
Depending on the relation considered, K/� preserves various classes of
properties
Bisimilarity preserves most of the properties (see next chapters)
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Product K1 ⇥K2

Given K1 = (I1,S1,R1,L1) and K2 = (I2,S2,R2,L2) over resp. V1 and
V2

K1 ⇥K2 = (I⇥,S⇥,R⇥,L⇥) over variables V1 [ V2

S⇥ := {(s1, s2) 2 S1 ⇥ S2 | L1(s1) \ V2 = L2(s2) \ V1)}
I⇥ := S⇥ \ (I1 ⇥ I2)
R⇥ := {((s1, s2), (s01, s

0
2)) 2 S⇥ ⇥ S⇥ | (s1, s01) 2 R1 ^ (s2, s02) 2 R2

L⇥(s1, s2) := L1(s1) [ L2(s2)

K1 ⇥K2 models synchronous parallel executions
K1 ⇥K2 contains only paths that appear in K1 and K2

may have no states !
may have no transitions !
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Product of Kripke Structure

K⇥ = K1 ⇥K2

aab

q0

q2 q1
a

s0

s1

q0

q2 q1

s0

s1 s1ab a
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Existential and universal predecessors and successors

Given a relation R ✓ S1 ⇥ S2, we define
pre

R
9 (Q2) := {s1 2 S1 | 9s2.(s1, s2) 2 R ^ s2 2 Q2}

pre

R
8 (Q2) := {s1 2 S1 | 8s2.(s1, s2) 2 R ! s2 2 Q2}

suc

R
9 (Q1) := {s2 2 S2 | 9s1.(s1, s2) 2 R ^ s1 2 Q1}

suc

R
8 (Q1) := {s2 2 S2 | 8s1.(s1, s2) 2 R ! s1 2 Q1}

pre

R
9 (Q2) := the set of states that have a successor in Q2

pre

R
8 (Q2) := the set of states that have no successor in S \ Q2
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Important properties of predecessors and successors

Important properties of predecessors and successors

Duality laws
pre

R
9 (Q2) := S1 \ pre

R
8 (S2 \ Q2)

pre

R
8 (Q2) := S1 \ pre

R
9 (S2 \ Q2)

suc

R
9 (Q1) := S2 \ suc

R
8 (S1 \ Q1)

suc

R
8 (Q1) := S2 \ suc

R
9 (S1 \ Q1)

Monotonicity laws

all these functions are motonic : e.g.

Q2 ✓ Q0
2 ) pre

R
9 (Q2) ✓ pre

R
9 (Q0

2)
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Big picture of Verification, Model Checking and Testing

Given :
M : the (model) of the system developped
S : the (model) of the (correct) system to provide
� : a specification of a required property
T : a set of correct behaviors (i.e. [[T ]] ✓ [[S]])

1 Verification checks that [[M]] ' [[S]]
2 Model checking checks that [[M]] ✓ [[�]]

3 Testing checks that [[T ]] ✓ [[M]]

Generally we do not have S
Verification is difficult
Model checking may forget important properties and therefore does not
provide a full verification
Testing can show that the system has a bug but cannot prove that it is
fully correct.

Linear time versus branching time
Principle of model cheching

Linear Temporal Logic
Computation Tree Logic

Chapter 3 : Temporal logics

1 Linear time versus branching time

2 Principle of model cheching

3 Linear Temporal Logic

4 Computation Tree Logic
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Model Checking: The Basic Algorithm
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A Mutual Exclusion Algorithm

Í problem setting: find an algorithm such that
• a group of (two) concurrent processes share a common ressource
• no more than one process has access at the same time
• access to the ressource is modeled by a critical section

Í a first simplistic example :
assert two processes P0,P1 given as

1 # non -critical section

2 while (other process critical) :

3 wait()

4 # critical section

5 # return to non -critical

n

t
c

if no other
process is in
its criticial

section



Mutex: Operational Semantics

Í focus mainly “models” that are Kripke structures M = hS ,R , Li
(set of state S , transitions R ✓ S ⇥ S , labeling L : S ! 2AP , AP
is finite set of atomic predicates, no default initial states)

n0n1

t0n1 n0t1

c0n1 t0t1 n0c1

c0t1 t0c1

Í model mutex algorithm

• 2 processes P0 and P1 as before
• generate M = hS ,R , Li by product

construction
• write (global) states as s0s1 2 S ,

i.e., P0 in s0 and P1 in s1

Mutex: Specifying Properties

Safety: The protocol allows only one process to be in its critical
section at any time.

Liveness: Whenever any process wants to enter its critical section,
it will eventually be permitted to do so.

Non-Blocking:

A process can always request to enter its critical section.

No Strict Sequencing:

Processes need not enter their critical section in a strict
sequence.
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Mutex: Specifying Properties

Safety: The protocol allows only one process to be in its critical
section at any time.

Liveness: Whenever any process wants to enter its critical section,
it will eventually be permitted to do so.

Non-Blocking:

A process can always request to enter its critical section.

No Strict Sequencing:

Processes need not enter their critical section in a strict
sequence.

Mutex: Simplified Properties

Í can simplify our properties as P0 and P1 are “identical”:

Safety: The protocol allows only process to be in its critical
section at any time.

Liveness: Whenever P0 wants to enter its critical section, it will
eventually be permitted to do so.

Non-Blocking:

P0 can always request to enter its critical section.

No Strict Sequencing:

P0 needs not enter its critical section in a strict sequence
with P1.



Temporal Logics

?How to formalize these requirements?
. . . such that we have a rigorous semantics ?
. . . such that we can verify that they hold ?
. . . such that a tool can help us checking it ?

Í we need to take a look at temporal logics. . .

Linear time versus branching time
Principle of model cheching

Linear Temporal Logic
Computation Tree Logic
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Example of linear vs branching semantics

Given the Kriepke structure

p, r qp, q
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Linear time

Trace semantics

p,q p,q p,r q p,q ...

[[S]] = { traces of S}
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Branching time

Computation tree semantics

p, q

p, q

p, r

p, q

p, r

q ...

...

...

[[S]] = tree given by the unfolding of S
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Choice Linear vs Branching

Closed vs. open system ?

Closed systems : complete / self-sufficient
Open systems : interact with the (unknown) environment.

Example : Controller C of an industrial equipment E :
If E can be modeled : closed system S ⌘ C ⇥ E

If E is unknown : open system S ⌘ C and E is the environment
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Open vs. closed systems

Kripke structures vs. Labeled Transition Systems

Kripke structures generally model global states of closed systems ;
Labeled Transition Systems (LTS) generally model possible interactions
of open systems with environments.

S1

a a

cb

'`t

6'bt

S2

a

cb
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Linear vs. branching time logics

Depends also on the properties to check and the complexity of the algorithms

E.g. : for reachability properties, trace semantics is enough.
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Model checking S |= � (S is a valid model for �)

Model checking in linear semantics

[[S]] = set of traces S can have
) 8� 2 [[S]].� |= �

with [[�]] = {� | � |= �} (set of valid traces)
) [[S]] ✓ [[�]]

Model checking in branching semantics

[[S]] = computation tree of S

with [[�]] = {Tree | Tree |= �} (set of valid trees)
) [[S]] 2 [[�]]
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Informal presentation

First introduced by Amir Pnueli in 1977 :
Defines formulae which are valuated on infinite paths ;
Uses temporal operators ;
Therefore LTL is a Linear (time) temporal logic ;
The semantics of a system is given by the set of paths it can have.
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LTL syntax

Given a set of propositions P , a formula in Linear Temporal Logic (LTL) is
defined using the following grammar :

� ::= > | ? | p | ¬� | � _ � | � ^ � |�� | �U� | � Ũ�

where p 2 P .

Most of the operators are standard ;
� is the next operator ;�� is true if � is true after the first state of the
path ;
U is the until operator ; �U is true if � is true in the path in all the states
preceding one state where  is true.
Ũ is the release operator ; �Ũ is true if  is always true in the path
unless this obligation is released by � being true in a previous state.
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LTL syntax

LTL syntax

Given a set of propositions P , a formula in Linear Temporal Logic (LTL) is
defined using the following grammar :

� ::= > | ? | p | ¬� | � _ � | � ^ � |�� | �U� | � Ũ�

where p 2 P .

Derived operators

⌃� ⌘ >U� (finally).
⇤� ⌘ ¬⌃¬� ⌘ ? Ũ� (globally).
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Semantics of LTL

Semantics of LTL (on traces � = s0s1s2 . . . )

With � = �0 �i = sisi+1 . . .

� |= >
� 6|= ?
� |= p iff p 2 L(s0)
� |= ¬� iff � 6|= �
� |= �1 _ �2 iff � |= �1 _ � |= �2

� |= �1 ^ �2 iff � |= �1 ^ � |= �2

� |=�� iff �1 |= �
� |= �1U�2 iff 9i.�i |= �2 ^ 80  j < i.�j |= �1

� |= �1Ũ�2 iff 8i � 0.�i 6|= �2 ! 90  j < i.�j |= �1
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Ltl with negation only on propositions

We can restrict definition of LTL with negation only applied to atomic
proposition

restricted LTL syntax

Given a set of propositions P , a formula in Linear Temporal Logic (LTL) is
defined using the following grammar :

� ::= > | ? | p | ¬p | � _ � | � ^ � |�� | �U� | � Ũ�

where p 2 P .

Translation extended Ltl to restricted Ltl

¬(�1 U�2) ⌘ (¬�1) Ũ (¬�2)

¬(�1 Ũ�2) ⌘ (¬�1)U (¬�2)

¬� �1 ⌘ �¬�1
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LTL model checking

Principle

S |= � ⌘ [[S]] ✓ [[�]] ⌘ [[S]] \ [[¬�]] = ?
Since [[S]] and [[�]] are infinite sets, the idea is to work with automata
S is a Kripke structure

p

For ¬� ? : Büchi automata (see chapter 4)
The algorithm will be given in Chapter 6).
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Informal presentation

First introduced by Allen Emerson and Edmund Clarke in 1981 ;
Defines formulae which are valuated on infinite trees ;
Uses temporal operators ;
Therefore CTL is a branching (time) temporal logic ;
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CTL syntax

Given a set of propositions P , a formula in Computation Tree Logic (CTL) is
defined using the following grammar :

� ::= > | p | ¬� | � _ � | 9� � | 8� � | 9�U� | 8�U�

where p 2 P .

Most of the operators are standard ;
9� is the exists next operator ; 9� � is true if there is a path (from the
current state) where � is true after the first state of the path ;
U is the until operator ; 9�U is true if there is a path where � is true in
all the states preceding one state where  is true.
8� and 8U are similar but for all paths.
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Semantics of CTL

Semantics of CTL (on tree and uses traces � = s0s1s2 . . . )

s0 |= >
s0 |= p iff p 2 L(s0)
s0 |= ¬� iff s0 6|= �
s0 |= �1 _ �2 iff s0 |= �1 _ s0 |= �2

s0 |= 9� � iff 9s1.s0 !
K

s1 ^ s1 |= �

s0 |= 8� � iff 8s1.s0 !
K

s1 ! s1 |= �

s0 |= 9�1U�2 iff 9� 2 Path(s0).9i.�i |= �2 ^ 80  j < i .�j |= �1

s0 |= 8�1U�2 iff 8� 2 Path(s0).9i.�i |= �2 ^ 80  j < i .�j |= �1
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CTL syntax (cont’d)

Derived operators

9⌃� ⌘ 9>U� (exists finally).
8⌃� ⌘ 8>U� (for all finally).
9⇤� ⌘ ¬8⌃¬� (exists globally).
8⇤� ⌘ ¬9⌃¬� (for all globally).

CTL without universal quantifiers (is sometimes useful)

In every CTL formula, every universal quantifiers can be replaced using the
following equivalence :

8� � ⌘ ¬9� ¬�
8�1 U�2 ⌘ ¬9(¬�2 U (¬�1 ^ ¬�2)) ^ ¬9(⇤¬�2)

8⇤� ⌘ ¬9⌃¬�
8⌃� ⌘ ¬9⇤¬�
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CTL: Back to Mutex Example

Safety: The protocol allows only one process to be in its critical
section at any time.

Liveness: Whenever P0 wants to enter its critical section, it will
eventually be permitted to do so.

Non-Blocking:

P0 can always request to enter its critical section.

No Strict Sequencing:

P0 needs not enter their critical section in a strict
sequence with P1.

CTL: Back to Mutex Example

Safety: 'safety ⌘ AG¬(c0 ^ c1)

Liveness: Whenever P0 wants to enter its critical section, it will
eventually be permitted to do so.

Non-Blocking:

P0 can always request to enter its critical section.

No Strict Sequencing:

P0 needs not enter their critical section in a strict
sequence with P1.
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CTL: Back to Mutex Example

Safety: 'safety ⌘ AG¬(c0 ^ c1)

Liveness: 'liveness ⌘ AG (t0 ! AF c0)

Non-Blocking:

'nblock ⌘ AG (n0 ! EX t0)

No Strict Sequencing:

P0 needs not enter their critical section in a strict
sequence with P1.

CTL: Back to Mutex Example

Safety: 'safety ⌘ AG¬(c0 ^ c1)

Liveness: 'liveness ⌘ AG (t0 ! AF c0)

Non-Blocking:

'nblock ⌘ AG (n0 ! EX t0)

No Strict Sequencing:

'nss ⌘ EF (c0 ^ E (c0U(¬c0 ^ E (¬c1Uc0))))
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CTL model checking

Principle

For every state s in K, decorate s with all the subformulae �i of � such
that s |= �i

More efficient algorithms use a translation of CTL formulae into
µ-calculus formulae (see chapter 5) and a symbolic model checking
algorithm (see chapter 6).
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Motivation
Büchi automata

Properties of Büchi automata
From Ltl to Büchi automata

Need to extend Finite automata

Finite and infinite words
Given an alphabet ⌃
⌃⇤ is the set of words of finite length
an infinite word w is defined by a mapping w : N 7! ⌃

Need to extend Finite automata
In the 50s, finite automata define languages on finite words.
Need a formalism to define languages on infinite words
Julius Richard Büchi studied the problem) Büchi automata
We will see the link between Büchi automata and LTL
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Motivation
Büchi automata

Properties of Büchi automata
From Ltl to Büchi automata

Büchi automaton

A = (⌃,Q, I,R,F) where
⌃ = {⌃1,⌃2, . . . ,⌃m} is the set of input symbols
Q = {q1, q2, . . . , qn} is the set of states
I ✓ Q is the set of initial states
R ✓ Q⇥ � ⇥Q is the transition relation
F ✓ Q is the set of accepting states

Deterministic Büchi automaton

I = {q1}
|{q0 | 9q 2 Q,� 2 ⌃.(q,�, q0) 2 R}| = 1
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Buchi acceptance condition

inf (�)

Given an infinite sequence of states �. inf (�) is the set of states that appear
infinitely often in �

w accepted by A
An infinite word w is accepted by the automaton A if there exists an infinite
path ⇢ : ⇢ : N 7! Q such that

⇢(0) 2 I (the path starts at an initial state)
8i 2 N.(⇢(i),wi , ⇢(i + 1)) 2 R
inf(⇢) \ F 6= ?

Informally, A accepts w with a path which runs infinitely often through an
accepting state.

L(A)

L(A) = {w | w accepted by A}

Examples of Büchi automata

s0

a,b

L(A1) = (a + b)!

s1

a,b

s0

b

a

L(A2) = a⇤b(a + b)!

s1

b

s0

b

a

a

L(A3) = a⇤b(b + aa⇤b)! = a⇤(ba⇤)!

s1s0

a

a,b

b

L(A4) = (a + b)⇤a(b(a + b)⇤a)! =
((a + b)⇤ab)!



Other types of acceptance conditions

Other types of acceptance conditions

Büchi : F ✓ Q,
inf(⇢) \ F 6= ?
Generalized Büchi : F ✓ 2Q,
i.e. F = {F1, . . . ,Fm}
For each Fi , inf(⇢) \ Fi 6= ?
Rabin : F ✓ 2Q ⇥ 2Q,
i.e. F = {(G1,B1) . . . , (Gm,Bm)}
For some pair (Gi ,Bi) 2 F , inf(⇢) \Gi 6= ? ^ inf(⇢) \ Bi = ?
Streett : F ✓ 2Q ⇥ 2Q,
i.e. F = {(G1,B1) . . . , (Gm,Bm)}
For all pairs (Gi ,Bi) 2 F , inf(⇢) \Gi = ? _ inf(⇢) \ Bi 6= ?
Parity : with Q = {0, 1, 2, . . . , k} for some natural k , A accepts ⇢iff the
smallest number in Inf (⇢) is even (where Inf (⇢) is the set of states that
occur infinitely often).
Muller : F ✓ Q,
|inf(⇢) \ F| = 1

!-regular languages

For nondeterministic automata, all define the !-regular languages :
S

i ↵i�
!
i

where ↵i and �i are finite-word regular languages and ! denotes infinite
repetition
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From Ltl to Büchi automata

Properties of Büchi automata

Büchi automata are closed under union
Given A1 and A2 with disjoint states set Q1 and Q2

It is easy to define A with
union of states,
union of initial states
union of accepting states
union of transition relation

L(A) = L(A1) [ L(A2)
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Properties of Büchi automata

Büchi automata are closed under intersection

Given the Büchi automata A1 = (⌃,Q1, I1,R1,F1) and
A = (⌃,Q2, I2,R2,F2)
We can define A = (⌃,Q, I,R,F) with

Q = Q1 ⇥ Q2 ⇥ {1, 2},
I = I1 ⇥ I2 ⇥ {1},
F = {F1 ⇥ Q2 ⇥ {1}
8s, s0 2 Q1, t , t 0 2 Q2, a 2 ⌃, i, j 2 {1, 2} :
((s, t , i), a, (s0, t 0, j)) 2 R () (s, a, s0) 2 R1, (t , a, t 0) 2 R2, and

1 i = 1, s 2 F1, and j = 2 or
2 i = 2, t 2 F2, and j = 2 or
3 neither 1 or 2 above applies and j = i

L(A) = L(A1) \ L(A2)
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Properties of Büchi automata

Büchi automata are closed under complementation

difficult ! (not seen here)

Nonemtyness for Büchi automata : easy to decide

Check if some accepting state is accessible from an initial state and
nontrivially from itself
Complexity : linear time
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From generalized Büchi to Büchi

From generalized Büchi to Büchi

Given A = (⌃,Q, I,R,F) where F = {F1, . . . ,Fk}
A0 = (⌃,Q0, I0,R0,F 0) where

Q0 = Q⇥ {1, . . . , k}
I0 = I ⇥ {1}
R0 is defined by ((s, j), a, (t , i)) 2 R0 if
(s, a, t) 2 R and

i = j if s 62 Fi
i = (j mod k) + 1 if s 2 Fi

F 0 = F1 ⇥ {1}
A ⌘ A0
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From generalized Büchi to Büchi, example

s1s0

b

a

a

b

1 2

F = {{s0}, {s1}}

s1,1s0,1

b

a

b

s1,2s0,2
b

a

aa b

F = {(s0, 1)}
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From Ltl to Büchi automata

Büchi automaton of an LTL formula �

Given a (restricted) LTL formula �.
We want to build a Büchi automaton A� with

w 2 L(A�) () w |= �

Büchi automaton for ⌃p

s1

{},{p}

s0

{p}

{}
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From Ltl to Büchi automata

Construction of the Büchi automaton of an Ltl formula �

Principle on the construction of A�

A state of A� is a set of “compatible” subformulae of �
A transition between two states of A� is possible when it does respect
this “compatibility”
Initial states of A� are the one which contains �
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From Ltl to Büchi automata

Construction of A�

Construction of A�

4 steps :
1 Construction of the local automaton for �
2 Construction of the eventualities automaton for �
3 Composition of both automaton to build a Generalized Büchi automaton
4 Tranformation for the result into a simple Büchi automaton

125

Motivation
Büchi automata

Properties of Büchi automata
From Ltl to Büchi automata

Construction of the local automaton for A�

Closure of �

� 2 cl(�)

�1 ^ �2 2 cl(�)) �1,�2 2 cl(�)

�1 _ �2 2 cl(�)) �1,�2 2 cl(�)

�� 2 cl(�)) � 2 cl(�)

�1 U�2 2 cl(�)) �1,�2 2 cl(�)

�1 Ũ�2 2 cl(�)) �1,�2 2 cl(�)
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Construction of the local automaton for A�

States of A�

The set of states are all “compatible” subset of cl(�) :
�1 ^ �2 2 s ) �1 2 s ^ �2 2 s

� 2 s () ¬� /2 s

�1 _ �2 2 s ) �1 2 s _ �2 2 s

�1 U�2 2 s ) �1 2 s _ �2 2 s

�1 Ũ�2 2 s ) �2 2 s

Transition between states of the local automaton for A�

The set of transitions are all “compatible” ones, i.e. if (s, t) 2 R� then
If��1 2 s ) �1 2 t

If �1 U�2 2 s ^ �2 62 s ) �1 U�2 2 t

If �1 Ũ�2 2 s ^ �1 62 s ) �1 Ũ�2 2 t

Construction of local automaton for A�

The local automaton for p U q

¬p,¬q,
¬(pUq)

p, ¬q,
pUq

¬p,q,
pUq

p,q,
pUq

p,¬q,
¬(pUq)

local automaton for p U q (without label on transitions)



Construction of local automaton for A�

The local automaton for p U q

¬p,¬q,
¬(pUq)

p, ¬q,
pUq

¬p,q,
pUq

p,q,
pUq

p,¬q,
¬(pUq)

{p,q}

{p,q}

{p,q}

{p,q}

{p,q}

{q}

{q}

{q}
{q}

{q}

{}

{}

{}

{}

{}

{p}

{p}

{p}

{p}

{p}

local automaton for p U q

Motivation
Büchi automata

Properties of Büchi automata
From Ltl to Büchi automata

Construction of eventualities automaton for A�

Goal : check that all the �1 U�2 are “finalized”, i.e. for each �1 U�2 find a
state where �2 is true.

eventualities of � : ev(�)

subset of cl(�) of the form �1 U�2

Eventualities automaton for �

E = (2ev(�),R, {?}, {?}) with
(s,A, t) 2 R(A 2 2cl(�)) if

s = ?) 8�1 U�2 2 ev(�) : �1 U�2 2 t iff �2 /2 A

s 6= ?) 8�1 U�2 2 s : �1 U�2 2 t iff �2 /2 A
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Construction of eventualities automaton for A�

The eventualities automaton for p U q

pUq{ }

{p,q,pUq}
{¬p,q,pUq}

{¬p,¬q,¬(pUq)}
{p,¬q,¬(pUq)}

{¬p,q,pUq}
{p,q,pUq}

{p,¬q,pUq}

{p,¬q,pUq}

eventualities automaton for p U q
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Construction of A� for p U q

Since, there is only
one until operator in
� = p U q, the
composition of the
local and eventualities
automata gives directly
a simple Büchi
automaton

{p,¬q,
pUq},
{pUq}

{¬p,q,
pUq},
{pUq}

{p,¬q,
pUq},

{ }

{p,q,
pUq},
{pUq}

{p,¬q,
¬(pUq)},

{ }

{¬p,¬q,
¬(pUq)},

{ }

{¬p,q,
pUq},

{ }

{p,q,
pUq},

{ }
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Order and partially ordered sets (posets)

Order
Order : binary relation over D with the properties of

Reflexivity
Antisymmetry
Transitivity

Total order : order with 8x , y 2 D.x v y _ y v x

Partial order set (or poset)

Pair (D,v) where D is a set and v a binary order relation over D

Example of posets

 on N is poset (with a total order)
(N⇥ N,v) with (x , y) v (x 0, y 0) () x  x 0 ^ y  y 0

(2S ,✓) with a set S

Elements of Lattice theory
µ-calculus

(least) upper bound and (greatest) lower bound

Given a poset (D,v)

Bounds
m 2 D is an upper bound of M ✓ D if 8x 2 M.x v m
m 2 D is the least upper bound (lub, sup(M),tM) of M ✓ D if

8x 2 M.x v m and
8y 2 D.(8x 2 M.x v y) ! m v y

remarks :
upper bound may not exists
M may have an upper bound, but not a least upper bound

lower bound and greatest lower bounds (glb, inf (M),uM,) are defined
analogously
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Properties of bounds

Properties of bounds

t(
S

i2I Ai) = t(
S

i2I tAi)

u(
S

i2I Ai) = u(
S

i2I uAi)

A ✓ B implies tA v tB

A ✓ B implies uB v uA
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(Complete) Lattice

(Complete) Lattice

Given a poset (D,v)
(D,v) is a directed set if all {x , y} ✓ D have a lower and upper bounds in D
(D,v) is a lattice if all {x , y} ✓ D have t{x , y} and u{x , y}
(D,v) is a complete lattice if for all non empty M ✓ D have t M and u M

In a lattice, for every finite set Mfin

t({e} [ Mfin) = t{e,tMfin}
u({e} [ Mfin) = u{e,uMfin}

In a lattice, tMfin and uMfin exist for finite Mfin

In a complete lattice, we define ? := uD and > := tD
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Example of lattice and complete lattice

Example of lattice and comlete lattice

Every total order is a lattice
(N,) is a lattice
(N [ {>},v) with n v m () n  m _ m = > is a complete lattice
(2S ,✓) with a finite set S is a complete lattice

Example : with S = {1, 2, 3}

{1} {2} {3}

{1,2} {1,3} {2,3}

{1,2,3}

{}

Elements of Lattice theory
µ-calculus

Algebraic properties of Lattices

Given x , y

Commutativity : x u y = y u x (x t y = y t x)
Associativity : x u (y u z) = (x u y) u z ( x t (y t z) = (x t y) t z)
Absorption : x u (x t y) = x (x t (x u y) = x)
Idempotency : x u x = x (x t x = x)
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Important lattice : The set of subset of a set S

In the lattice (2S ,✓)
S1 t S2 = S1 [ S2

S1 u S2 = S1 \ S2

? := {} and > := S
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Monotonic and Continuous Functions and fixpoint

Monotonic and Continuous Functions and fixpoint

Given complete lattices (D,vD) and (E ,vE)

given a function f : D ! E
f is monotonic if x vD y ! f (x) vE f (y)

f is continuous if f (tM) = tf (M) and f (uM) = uf (M) hold for every
directed set M 6= {}
x 2 D is a fixpoint of f : D ! D if f (x) = x holds

Properties (with D a complete lattice)

Every continuous function is monotonic
If D is finite, every monotonic function is continuous
Every monotonic function f : D ! D has fixpoints
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Computation of Fixpoints

Computation of Fixpoints (Tarski-Knaster Theorem)

Given D a complete lattice and continuous f : D ! D
We write µx .f (x) and ⌫x .f (x) the least resp. greatest fixpoint of f

The sequence pi+1 := f (pi) with p0 := ? converges to µx .f (x)

The sequence qi+1 := f (qi) with q0 := > converges to ⌫x .f (x)

µx .f (x) = u({x 2 D | f (x) v x})
⌫x .f (x) = t({x 2 D | f (x) v x})

Computation of fixpoints with finite complete lattice

Given a finite lattice (D,v) and a continuous function f

µx .f (x) = f m(?) for some natural number m

⌫x .f (x) = f M(>) for some natural number M
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What is the µ-calculus ?

What is the µ-calculus ?

Class of temporal logics
Used to describe and verify properties of Kripke structures or Labeled
Transitions Systems
Uses fixpoint operators
Many temporal logics can be translated into µ-calculus (e.g. LTL, CTL,
CTL⇤)
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Syntax of the µ-calculus

Note : the following definition is a possible µ-calculus ; other operators, could
be defined

Set of µ-calculus formulae Lµ

Given variables V, x 2 V,�, 2 Lµ

> | ? | x | ¬� | � ^  | � _  | h i� | [ ]� | µx .� | ⌫x .�
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Semantics of the µ-calculus

Semantics I
Given

the Kripke structure K = (I,S,R,L) on variables V
a fixpoint-free formula � 2 Lµ over variables V

[[�]]K gives the set of states which satisfies �
[[>]]K := S
[[?]]K := ?
[[x ]]K := {s 2 S | x 2 L(s)}
[[¬�]]K := S \ [[�]]K
[[� ^  ]]K := [[�]]K \ [[ ]]K

[[� _  ]]K := [[�]]K [ [[ ]]K

[[h i�]]K := pre

R
9 ([[�]]K) (set of states which have a succesor in [[�]])

[[[ ]�]]K := pre

R
8 ([[�]]K) (set of states which have all succesors in [[�]])
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Semantics of the µ-calculus

Modified structure KQ
x

Given the Kripke structure K = (I,S,R,L) and
a set of states Q ✓ S,
intuitively, KQ

x corresponds to the Kripke structure K where we have
“added” a proposition x which is true in states Q.
To simplify we suppose x is not used as a simple proposition
KQ

x := (I,S,R,LQ
x ) with

LQ
x (s) :=

⇢
L(s) : if s /2 Q
L(s) [ {x} : if s 2 Q

With this definition we have [[x ]]KQ
x
:= Q

f (Q) := [[�]]KQ
x

is a state transformer (maps each set of states to a set of
states)
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Examples :

Example of [[�]]KQ
x

q

s0

s1

q

q

p,q

s2

s3s4

s5

With K and � = h i(x _ p)
Q [[�]]KQ

x

? {s3}
{s3} {s2, s3}
{s2, s3} {s1, s2, s3, s4}
{s1, s2, s3, s4} {s0, s1, s2, s3, s4}
{s0, s1, s2, s3, s4} {s0, s1, s2, s3, s4}

For Q = {s0, s1, s2, s3, s4},
Q = [[�]]KQ

x
(Q is a fixpoint for [[�]]KQ

x
)
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Examples :

Example of [[�]]KQ
x

q

s0

s1

q

q

p,q

s2

s3s4

s5

With K and � = [ ](x ^ q)
Q [[�]]KQ

x

S {s0, s1, s2, s3}
{s0, s1, s2, s3} {s0, s1, s2}
{s0, s1, s2} {s0, s1}
{s0, s1} {s0}
{s0} ?
? ?

For Q = ?,
Q = [[�]]KQ

x
(Q is a fixpoint for [[�]]KQ

x
)
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Examples :

Example of [[�]]KQ
x

p

s0 s1

With K and � = ¬x
Q [[�]]KQ

x

? S
S ?
{s0} {s1}
{s1} {s0}

No fixpoint here !
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Semantics of the µ-calculus

Semantics II
Given

[[>]]K := S
[[?]]K := ?
[[x ]]K := {s 2 S | x 2 L(s)}
[[¬�]]K := S \ [[�]]K
[[� ^  ]]K := [[�]]K \ [[ ]]K

[[� _  ]]K := [[�]]K [ [[ ]]K

[[h i�]]K := pre

R
9 ([[�]]K) (set of states which have a succesor in [[�]])

[[[ ]�]]K := pre

R
8 ([[�]]K) (set of states which have all succesors in [[�]])

[[µx .�]]K is the least fixpoint of f (Q) := [[�]]KQ
x

[[⌫x .�]]K is the greatest fixpoint of f (Q) := [[�]]KQ
x
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Existence of fixpoints

Existence of fixpoints

Not every function has fixpoints
We have seen that not every state transformer has fixpoint
Since K has a finite set of state, a sufficient condition to have fixpoint is
f (Q) := [[�]]KQ

x
is monotonic

It is the case if x has only positive occurrences of �
i.e. x is always nested in an even number of negations.
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Example of µ-calculus formulae

Properties specified by µ-calculus formulae

Invariance (� always true) : ⌫x .(� ^ [ ]x)

Reachability (� reachable) : µx .(� _ h ix)
Persistence (� is reachable and then remains always true) :
µy .[⌫x .(� ^ [ ]x) _ h iy ]
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µ-calculus model checking

Principle

Compute the set of states in K, which satisfy subformulae �i of �
K |= � () I ✓ [[�]]K

see chapter 6.

155

Ltl model checking
Ctl model checking

µ-calculus model checking

Chapter 6 : Model Checking

1 Ltl model checking

2 Ctl model checking

3 µ-calculus model checking
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µ-calculus model checking

From previous chapter

LTL syntax

Given a set of propositions P , a formula in Linear Temporal Logic (LTL) is
defined using the following grammar :

� ::= > | ? | p | ¬� | � _ � | � ^ � |�� | �U� | � Ũ�

where p 2 P .

Principle of LTL model checking

S |= � ⌘ [[S]] ✓ [[�]] ⌘ [[S]] \ [[¬�]] = ?
Since [[S]] and [[�]] are infinite sets, the idea is to work with automata
S is a Kripke structure

p

For ¬� ? : Büchi automata (see chapter 4)
Check that L(S ⇥ B¬�) = ?
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LTL model checking

Complexity of the LTL model checking

The size of the Büchi automaton for ¬� is (in the worst case), in O(2|�|)

The size of S ⇥ B¬� is in O(|S|.|B¬�|)
Cheching if L(S ⇥ B¬�) = ? is linear in the size of S ⇥ B¬�

The resulting complexity is in O(|S|.2|�|) (linear in the size of the
system, exponential in the size of the formula)
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From previous chapter

CTL syntax

Given a set of propositions P , a formula in Computation Tree Logic (CTL) is
defined using the following grammar :

� ::= > | p | ¬� | � _ � | 9� � | 8� � | 9�U� | 8�U�

where p 2 P .

Principle of CTL model checking

For all state s in K, decorate s with all the subformulae �i of � such that
s |= �i
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µ-calculus model checking

CTL without universal quantifiers

CTL without universal quantifiers (is sometimes useful)

In every CTL formula, every universal quantifiers can be replaced using the
following equivalence :

8� � ⌘ ¬9� ¬�
8�1 U�2 ⌘ ¬9(¬�2 U (¬�1 ^ ¬�2)) ^ ¬9⇤¬�2)

8⇤� ⌘ ¬9⌃¬�
8⌃� ⌘ ¬9⇤¬�
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CTL model checking

Idea : extend the labeling L(s) with all subformulae �i of � such that s |= �i

Structure of the algorithm

Inductive :
basis :

> is true in all states ;
? is false in all states ;
L(s) gives the sets of propositions true in s ;

Induction : 6 cases :
¬� 2 L(s) iff � /2 L(s)
�1 _ �2 2 L(s) iff �1 2 L(s) _ �2 2 L(s)
9 � � 2 L(s) iff 9t 2 suc

R
9 (s).� 2 L(t)

8 � � 2 L(s) iff 8t 2 suc

R
8 (s).� 2 L(t)

9�1 U�2 : see algorithm below
8�1 U�2 : see algorithm below
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Algorithm for s |= 8�1 U �2

Require: 8t 2 S.¬marked(t) ^ 8i 2 {1, 2}.(�i 2 L(t) () t |= �i)
Ensure: return true ^ (8�1 U�2 2 L(s) () s |= 8�1 U�2)

if (8�1 U�2) 2 L(s) then
return true

else if ¬marked(s) then
if �2 2 L(s) then

L(s)( (8�1 U�2)
return true

else if �1 /2 L(s) then
return false

else
marked(s) true
if 8t 2 suc

R
9 (s).t |= 8�1 U�2 then

L(s)( (8�1 U�2)
return true

else
return false

end if
end if

else
return false

end if



Algorithm for s |= 9�1 U �2

Require: 8t 2 S.¬marked(t) ^ 8i 2 {1, 2}.(�i 2 L(t) () t |= �i)
Ensure: return true ^ (9�1 U�2 2 L(s) () s |= 9�1 U�2)

if (8�1 U�2) 2 L(s) then
return true

else if ¬marked(s) then
if �2 2 L(s) then

L(s)( (9�1 U�2)
return true

else if �1 /2 L(s) then
return false

else
marked(s) true
if 9t 2 suc

R
9 (s).t |= 9�1 U�2 then

L(s)( (9�1 U�2)
return true

else
return false

end if
end if

else
return false

end if

Ltl model checking
Ctl model checking

µ-calculus model checking

Ctl Model checking

More efficient method

A more efficient symbolic method is defined through a CTL to µ-calculus
translation (see below)
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From previous chapter

µ-calculus syntax

Given variables V, x 2 V,�, 2 Lµ

> | ? | p | x | ¬� | � ^  | � _  | h i� | [ ]� | µx . | ⌫x . 

Principle of the µ-calculus model checking

Compute the set of states in K, which satisfy subformulae �i of �
K |= � () I ✓ [[�]]K
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Algorithm which computes Statesµ(�)

Case � ⌘
> : return S
? : return ?
x : return {s 2 S | x 2 L(s)}
¬�1 : return S \ Statesµ(�1)
�1 ^ �2 : return Statesµ(�1) \ Statesµ(�2)
�1 _ �2 : return Statesµ(�1) [ Statesµ(�2)
h i�1 : return pre

R
9 (Statesµ(�1))

[ ]�1 : return pre

R
8 (Statesµ(�1))

µx . : Q1 := {}; ⌫x . : Q1 := S;
repeat
Q0 := Q1;

L := LQ1
x ;

Q1 := Statesµ( );
until Q0 = Q1;
return Q0;

repeat
Q0 := Q1;

L := LQ1
x ;

Q1 := Statesµ( );
until Q0 = Q1;
return Q0;

Ltl model checking
Ctl model checking

µ-calculus model checking

CTL model checking through a translation into the µ-calculus

CTL to µ-calculus (Clarke and Emerson 1981)

9� � = h i�
8� � = [ ]�

9�1 U�2 = �2 _ (�1 ^ h i(9�1 U�2)) = µZ .[�2 _ (�1 ^ h iZ )]

8�1 U�2 = �2 _ (�1 ^ [ ](8�1 U�2)) = µZ .[�2 _ (�1 ^ [ ]Z )]

9⌃�1 = �1 _ h i9⌃�1)) = µZ .[�1 _ h iZ ]

8⌃�1 = �1 _ [ ]8⌃�1)) = µZ .[�1 _ [ ]Z ]

9⇤�1 = �1 ^ h i9⇤�1 = ⌫Z .[�1 ^ h iZ ]

8⇤�1 = �1 ^ [ ]8⇤�1 = ⌫Z .[�1 ^ [ ]Z ]
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CTL model checking through a translation into the µ-calculus

CTL to µ-calculus with no use of the [ ] operator

Through the replacement of every universal quantifiers :
8� � ⌘ ¬9� ¬�
8�1 U�2 ⌘ ¬9(¬�2 U (¬�1 ^ ¬�2)) ^ ¬9⇤¬�2)

8⇤� ⌘ ¬9⌃¬�
8⌃� ⌘ ¬9⇤¬�

CTL to µ-calculus (Clarke and Emerson 1981)

9� � = h i�
8� � = [ ]�

9�1 U�2 = �2 _ (�1 ^ h i(9�1 U�2)) = µZ .[�2 _ (�1 ^ h iZ )]

8�1 U�2 = �2 _ (�1 ^ [ ](8�1 U�2)) = µZ .[�2 _ (�1 ^ [ ]Z )]

9⌃�1 = �1 _ h i9⌃�1)) = µZ .[�1 _ h iZ ]

8⌃�1 = �1 _ [ ]8⌃�1)) = µZ .[�1 _ [ ]Z ]

9⇤�1 = �1 ^ h i9⇤�1 = ⌫Z .[�1 ^ h iZ ]

8⇤�1 = �1 ^ [ ]8⇤�1 = ⌫Z .[�1 ^ [ ]Z ]

Symbolic model checking with BDD
Model checking with partial order reduction

Model checking with symmetry reduction
Bounded model checking

Chapter 7 : Symbolic and efficient Model Checking

1 Symbolic model checking with BDD

2 Model checking with partial order reduction

3 Model checking with symmetry reduction

4 Bounded model checking
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Plan

1 Symbolic model checking with BDD

2 Model checking with partial order reduction

3 Model checking with symmetry reduction

4 Bounded model checking
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Binary encoding of set of states

Binary encoding of set of states

Global state = { value of each variable } (including the current program
execution point)
Suppose : only static global variables, each variable has a fixed number
of bits,

) A state defined by a conjunction which gives the value of each boolean
variable v = (v1, v2, . . . , vn) (e.g. with n = 5 : v1 ^ ¬v2 ^ v3 ^ v4 ^ ¬v5

A set of states p defined as a predicate.
_

i2{1..|v|}

^

1jn

`ij

with `ij = either vj or ¬vj

E.g.
(v1 ^ ¬v2 ^ v3 ^ ¬v4 ^ v5) _ (¬v1 ^ v2 ^ ¬v3 ^ v4 ^ v5)

Suppose p an encoding of this formula for p
We note : p = �(v)p = �(v1, v2, v3, v4, v5)p



Binary encoding of a transition relation

Binary encoding of a transition relation

A transition = p ⇥ p0

A transition defined by a conjunction of 2n litterals : e.g.

(v1 ^ ¬v2 ^ v3 ^ ¬v4 ^ v5) ^ (¬v 0
1 ^ v 0

2 ^ ¬v 0
3 ^ v 0

4 ^ v 0
5)

A transition relation : set of transitions encoded as a predicate.
_

i2{1..|R|}

^

1jn

`ij ^ `0ij

with `ij = either vj or ¬vj `
0
ij = either v 0

j or ¬v 0
j

E.g.
(v1 ^ ¬v2 ^ v3 ^ ¬v4 ^ v5) ^ (¬v 0

1 ^ v 0
2 ^ ¬v 0

3 ^ v 0
4 ^ v 0

5) _
(v1 ^ v2 ^ ¬v3 ^ ¬v4 ^ v5) ^ (v 0

1 ^ v 0
2 ^ ¬v 0

3 ^ ¬v 0
4 ^ v 0

5)

Suppose R : an encoding of R
We note R = �(v , v 0)R : = �(v1, v2, v3, v4, v5, v 0

1, v
0
2, v

0
3, v

0
4, v

0
5)R

Symbolic model checking with BDD
Model checking with partial order reduction

Model checking with symmetry reduction
Bounded model checking

Computing [[h i�]] through its encoding

Computing h i�
Given p(v) the binary predicate of [[�]]
and �(v , v 0)R the binary predicate of the transition relation R of the
system K
The binary predicate of [[h i�]] =
�(v)9v 0(R(v , v 0) ^ p(v 0))

Given p an encoding of [[�]] (the set of global states which satisfy � in K ;
and R an encoding of the transition relation R of the system K
p’ = p[vi  v 0

i ]

The encoding of [[h i�]] = �v .9v 0(R ^ p’)
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Examples

Example 1 : computing the predicate for [[h i¬b]] in K

s1 = ¬b

s2 = b

R = ((¬b ^ b0) _ (b ^ ¬b0)
_(b ^ b0)) = (b _ b0)

s1 s2

b=0 b=1

h i¬b

= 9b0((b _ b0) ^ ((¬b)[b  b0]))

= 9b0((b _ b0) ^ ¬b0)

= 9b0(b ^ ¬b0)

= (b ^ ¬0) _ (b ^ ¬1)
= b (state s2)
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Examples

Example 2 : computing the predicate for [[9⌃b]] = [[µy .(b _ h iy)]] in K

s1 = ¬b

s2 = b

R = ((¬b ^ b0) _ (b ^ ¬b0)
_(b ^ b0)) = (b _ b0)

s1 s2

b=0 b=1

f (0) = b _ h i0 = b

f 2(0) = b _ h ib =
b _ 9b0.((b _ b0) ^ b0)
= b _ (b _ 1)
= 1 (all states)

f 3(0) = b _ h i1 = 1
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CTL model checking revisited

[�] : predicate of a CTL formula �

Given [s] the predicate for s 2 S

>
W

s2S [s]
p

W
s2S|p2L(s)[s]

¬� ¬[�]
�1 _ �2 [�1] _ [�2]
9� �1 EvalEX ([�1])
9�1 U�2 EvalEU([�1], [�2])
9⌃�1 EvalEF ([�1])
9⇤�1 EvalEG([�1])

where [s] is the predicate corresponding to state s.
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CTL model checking revisited

[�] : predicate of a CTL formula � (cont’d)

EvalEX (p) := 9v 0(R ^ p’)

EvalEU(p,q) :=
y = ?
y’ = q _ (p ^ EvalEX (y)
while(y 6= y’)

y = y’
y’ = q _ (p ^ EvalEX (y)

return y

EvalEF (p) :=
y = ?
y’ = p _ EvalEX (y)
while(y 6= y’)

y = y’
y’ = p _ EvalEX (y)

return y

EvalEG(p) :=
y = [>]
y’ = p ^ EvalEX (y)
while(y 6= y’)

y = y’
y’ = p ^ EvalEX (y)

return y
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Binary Decision Diagram

Note
Slides done with the help of a tutorial from Henrik Reif Andersen (see web)

Motivation
data structure which gives a compact and efficient encoding of
proposition boolean formulae
The logic operations can directly be done on them

Known results
Cook’s Theorem : Satisfiability of Boolean expressions is NP-complete
Shannon expansion : given a boolean expression t with a variable x :
t = x ! t [1/x ], t [0/x ] (with x ! y0, y1 = (x ^ y0) _ (¬x ^ y1)
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Formula as decision tree

Decision tree of (x1 $ y1) ^ (x2 $ y2) with the order in the variables
x1 < y1 < x2 < y2

x1

y1

x2

y2 y2y2y2

x2

y1

1 0 0 1 1 0 0 10 0
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Formula as BDD

BDD of (x1 $ y1) ^ (x2 $ y2) with the order in the variables
x1 < y1 < x2 < y2

x1

y1

x2

y2 y2

y1

10
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Examples of BDD

1

BDD for 1

x2

x1

1

BDD for 1 with two redundant tests

x2

1

BDD for 1 with one redundant test
(and one removed from the preceding

example)

x2

x3

x1

10

BDD for x1 _ x3 with one redundant
test
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ROBDD (Reduced Order Binary Decision Diagram) (or just BDD)

Constraints to have a correct ROBDD

x

zy

x < y and x < z (1
and 0 are greater than
any variables)

x

zy

x

Nodes must be unique

y

x

Only non-redundant
test must be present
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Binary Decision Diagram

Binary Decision Diagram (BDD)

Given ordered variables X = (x1, x2, . . . , xn), a BDD is a rooted, directed,
acyclic graph (V ,E) with

one or two terminal nodes of out-degre zero labeled 0 or 1 (0 and 1 if
both are present)
v 2 V \ {0, 1} are non-terminal vertices with out-degre two and has
attributes

var(v) 2 X
low(v) 2 V
high(v) 2 V

8u, v 2 V with v = low(u) or v = high(u) : var(u) < var(v)

var(u) = var(v), low(u) = low(v), high(u) = high(v) implies u = v

low(u) 6= high(u)
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Properties of ROBDD

Canonicity

For a given order in x1, x2, . . . xn

there is a unique ROBDD for a
given formula (or any equivalent
formula)

Depending on the order in the
variables the ROBDD of a formula
can have a very different size

ROBDD for x1 $ y1 ^ x2 $ y2 with
the order x1 < x2 < y1 < y2

x1

x2

y1

y2y2

x2

01

y1 y1y1
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Constructing and manipulating ROBDDs

ROBDD for x1 $ x2 ^ x3 $ x4 with the order x1 < x2 < x3 < x4

x1

x2

x3

x4 x4

x2

10

Implementation with an array
u var low high
0 5
1 5
2 4 1 0
3 4 0 1
4 3 2 3
5 2 4 0
6 2 0 4
7 1 5 6
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Building a ROBDD

Makenode(H,max , b, i, `, h) : adding a node if it does not exist yet

Requirement for efficiency
a hash table H : (i, `, h) 7! u ;
member(H, i, `, h) true iff (i, `, h) 2 H :
lookup(H, i, `, h) return the position u of (i, `, h) in b ;
insert(H, i, `, h, u) insert in H for (i, `, h) its position u in b
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Building a ROBDD

Makenode(H,max , b, i, `, h) : returns the “good” node (added if needed)

Require: H : (i , `, h) 7! u,
Require: b the BDD in construction,
Require: max its current size,
Ensure: adds (i, `, h) in b if needed and returns its position in b

if ` = h then
return `

else if member(H, i, `, h) then
return lookup(H, i, `, h)

else
max  max + 1
b.var(max) i
b.low(max) `
b.high(max) h
insert(H, i, `, h,max)
return max

end if
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Building a ROBDD

Build(t) maps a boolean expression t into a ROBDD

Ensure: build in b the ROBDD for t {Depth first and construction in
postorder}
function build 0(t , i) =
if i > n then

if t = ? then
return 0

else
return 1

end if
else
` build 0(t [0/xi ], i + 1) {Builds low son}
h build 0(t [1/xi ], i + 1) {Builds high son}
return makenode(H,max , b, i, `, h) {Builds node (if needed)}

end if
end {build 0}

H  emptytable
max  1
b.root  build 0(t , 1)
return b

Symbolic model checking with BDD
Model checking with partial order reduction

Model checking with symmetry reduction
Bounded model checking

Build Example

Build(x1 $ x2)

1 ↔ x2, 20 ↔ x2, 2

x1 ↔ x2, 1

0 ↔ 0, 3 0 ↔ 1, 3 1 ↔ 0, 3 1 ↔ 1, 3

x2x2

x1

0 1 
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Operations on ROBDD R = A op B

All binary operators are implemented by the same general algorithm
APPLY (op, u1, u2) where

op specifies the operator
u1 and u2 are the ROBDD for the boolean expressions tu1 and tu2

APPLY : 3 cases
1 (xi ! h1, `1) op (xi ! h2, `2) = (xi ! (h1 op h2), (`1 op `2))

2 xi < xj : (xi ! h1, `1) op (xj ! h2, `2) = (xi ! (h1 op (xj !
h2, `2)), (`1 op (xj ! h2, `2))

3 xi > xj : symmetric to case 2
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Operations on ROBDD R = A op B

Principle of APPLY

Case 1

xi xi
op

l1 l2h1 h2

+

xi

op

l1 l2 h1 h2

op

Case 2 (i < j)

xi xj
op

l1 l2h1 h2

+

xi

op

l1 h1

op

xj

l2 h2

xj

l2 h2
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Algorithm APPLY

APPLY (op, b1, b2) (begin)

function app(u1, u2) =
if G(u1, u2) 6= empty then

return G(u1, u2)
else

if u1 2 {0, 1} ^ u2 2 {0, 1} then
res  op(u1, u2)

else if var(u1) = var(u2) then
res  
makenode(var(u1), app(low(u1), low(u2)), app(high(u1), high(u2)))

else if var(u1) < var(u2) then
res  makenode(var(u1), app(low(u1), u2), app(high(u1), u2))

else {var(u1) > var(u2)}
res  makenode(var(u2), app(u1, low(u2)), app(u1, high(u2)))

end if
G(u1, u2) res
return res

end if
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Algorithm APPLY

APPLY (op, b1, b2) (end)

for all i  max(b1) ^ j  max(b2) do
G(i, j) empty

end for
b.root  app(b1.root , b2.broot)
return b
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Operations on ROBDD

RESTRICT(u,j,b) (ROBDD for u[b/xj ])

function res(u)
if var(u) > j then

return u
else if var(u) < j then

return makenode(var(u), res(low(u)), res(high(u)))
else if b = 0 then

return res(low(u))
else

return res(high(u))
end if{res}
return res(u)
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Example of restrict

u[0/x2]

x1

x2x2

x3

1 0

)

x1

x3

1 0
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Operations on ROBDD

Existential quantification(ROBDD for 9x .t)
9x .t = t [0/x ] _ t [1/x ]

9x2.u

t

x1

x2x2

x3

1 0

t [0/x2]

x1

x3

1 0

t [1/x2]

x1

x3

1 0

9x2.t

1

.

Model checking with BDD

Example of model checking with BDD

0

0

0

1

1

1

1

0

Transition relation R

b0 0 0 0 1 1 1
b1 0 1 1 0 0 1
b0

0 0 1 1 1 1 0
b0

1 1 1 0 1 0 1

b1

b0

b'0

b'1

1 0

b1

b'0



Model checking with BDD

Example : BDD of 9� p = �v .9v 0.R ^ p0

0

0

0

1

1

1

1

0

p = ¬b0

b0 0 0
b1 0 1

b0

1 0

R

b1

b0

b'0

b'1

1 0

b1

b'0

R ^ p0

b1

b0

b'0

b'1

1 0

b1

Model checking with BDD

Example : BDD of 9� p = �v .9v 0.R ^ p0

0

0

0

1

1

1

1

0

p = ¬b0

b0 0 0
b1 0 1

b0

1 0

R ^ p0

b1

b0

b'0

b'1

1 0

b1

9� p = �v .9v 0.R ^ p0

b1

b0

1 0

b1
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Example 2 : set of states that reach a state where p holds

9⌃p = µX .(p _ h iX )

0

0

0

1

1

1

1

0

p = ¬b0

b0 0 0
b1 0 1

b0

1 0

X p _ h iX
? p
p p _ h ip
p _ h ip p _ h i(p _ h ip) = >
> >

1

Model checking with BDD

Example 3 : BDD of suc

R
9 (p) = �v 0.9v .R ^ p

0

0

0

1

1

1

1

0

p = ¬b0

b0 0 0
b1 0 1

b0

1 0

R

b1

b0

b'0

b'1

1 0

b1

b'0

suc

R
9 (p) = 9v .R^p

b'1

1 0

b'0
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Example : BDD of suc

⇤
9(p)

0

0

0

1

1

1

1

0

p = ¬b0

b0 0 0
b1 0 1

b0

1 0

suc

R
9 (p) = 9v .R^p

b'1

1 0

b'0

(¬b0 ^ b1) _ b0

i
W

i=0..n suc

i
9(p)

0 ¬b0

1 >

1
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Checking safety properties

Nothing “BAD” can happen

⌘ No bad states are reachable from an initial state
suc

⇤
9(I) \ BAD = ? (forward search)

I

BAD
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Checking safety properties

Nothing BAD can happen

⌘ No bad states are reachable from an initial state
pre

⇤
9(BAD) \ I = ? (backward search)

I

BAD

207

Symbolic model checking with BDD
Model checking with partial order reduction

Model checking with symmetry reduction
Bounded model checking

Plan

1 Symbolic model checking with BDD

2 Model checking with partial order reduction

3 Model checking with symmetry reduction

4 Bounded model checking
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Asynchronous computation and interleaving semantics

Note
Slides done with the help of a tutorial from Edmund Clarke (see web)

Example : 3 independant events (asynchronous systems) P = a || b || c

c

c

cc

a

aa

a

b

b b

b

With n processes : 2n states / n! orderings
(exponential) = state explosion problem

If the temporal formula may depend
on the order of the events taken,
checking all interleavings is important
(2n states, n! paths).
If not, selecting any order is
equivalent (N + 1 states, 1 path).

) Partial order reduction : aimed at
reducing the size of the state space that
needs to be searched.
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Partial order reduction methods

Idea

Among the enabled events, select
one to trigger first.
A restricted graph is constructed
The remaining subset of behaviors is
sufficient to prove the property.

c

c

cc

a

aa

a

b

b b

b
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Formal presentation of a transition of a system

The Kripke structure is the low level model of the system analyzed
At a higher level, we can have concurrent systems which can have

Independant events (e.g. : assignments to local variables), or
Dependant events (e.g. assignments to shared variables, synchronizations,
. . .)

System = 2 concurrent processes

P1 ⌘ x := 1; x := 2 endproc
P2 ⌘ y := 3; y := 4 endproc
local states of P1 : {P10 ⌘ Initial,P11 ⌘ after(x := 1),P12 ⌘ after(x := 2)
local states of P2 : {P20 ⌘ Initial,P21 ⌘ after(y := 3),P22 ⌘ after(y := 4)

) here each assignment is a “transition” : e.g. hP10,P20i ! hP11,P20i and
hP10,P21i ! hP11,P21i is due to the transition x := 1
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Formal presentation of a transition of a system

System = 2 concurrent processes with a “rendez-vous” (synchronization) on
action a

S ⌘ P1|{a}P2 with
P1 ⌘ b; a; c endproc
P2 ⌘ d ; a; e endproc

) a, b, c, d , e are the possible
transitions of the system.

d

d

b

b

e

e

c

c

a
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Formal presentation of a transition of a system

Therefore a “transition” must be formally seen as a binary relation between
states of the Kripke structure
)We extend the definition of Kripke structure

Definition : state transition system

K = hI,S, T ,Li where
T is the set of transitions ↵ ✓ S ⇥ S
I,S,L are defined like in “normal” Kripke structures

One transition of a state transition system can be seen as a set of transitions
of the “corresponding” Kripke structure (see examples before).

213

Symbolic model checking with BDD
Model checking with partial order reduction

Model checking with symmetry reduction
Bounded model checking

Basic definitions

Basic definitions

A transition ↵ is enabled in a state s if there is a state s0 such that
↵(s, s0) holds
Otherwise ↵ is disabled in s.
enabled(s) : set of transitions enabled in s

A transition ↵ is deterministic if for every state s, there is at most one s0

such that ↵(s, s0)

When ↵ is deterministic we write s0 = ↵(s)

A path is a finite or infinite sequence

⇡ = s0
↵0! s1

↵1! . . .

such that for every i : ↵i(si , si+1) holds.
Any prefix of a path is a path
|⇡| (length of ⇡) : number of transitions in ⇡

Note : we only consider deterministic transitions (this is natural)
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Reduced state graph

Intuition of the algorithm

Explore (on the fly) a reduced state graph
This can be done in depth first or breadth first search
This can be compatible with symbolic model checking
Since the state graph is reduced it uses less memory and takes less time
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Depth first search algorithm

Depth-First-Search Algorithm

1 ;

2 set ;

3 ;

4 procedure

5 ;

6 while is not empty do

7 let ;

8 ;

9 ;

10 if then

11 ;

12 set ;

13 ;

14 end if;

15 ;

16 end while;

17 set ;

18 end procedure

11
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Depth first search algorithm

Principle of the algorithm

Standard depth first search (DFS)
The key point is the selection of the ample set
If ample(s) = enable(s) : normal DFS
If ample(s) ⇢ enable(s) : reduced DFS

Notes
The algorithm is “correct” if

it terminates with a positive answer when the property holds
it produces a counterexample otherwise

The counterexample may differ from the one obtained using the full state
graph.
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Ample sets

Required properties for ample(s)

1 When ample(s) is used instead of enabled(s), enough behaviors must
be retained so that DFS gives correct results.

2 Using ample(s) instead of enabled(s) should result in a significantly
smaller state graph.

3 The overhead in calculating ample(s) must be reasonably small.
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Dependence and independence

Definitions
An independence relation I ✓ T ⇥ T is a symmetric, antireflexive
relation such that for s 2 S and (↵,�) 2 I :

Enabledness : If ↵,� 2 enabled(s) then ↵ 2 enabled(�(s))
Commutativity : ↵,� 2 enabled(s) then ↵(�(s)) = �(↵(s))

The dependency relation D is the complement of I , namely
D = (T ⇥ T ) \ I

Notes :
The enabledness condition states that a pair of independent transitions
do not disable one another.
However, that it is possible for one to enable another.
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Potential problems

Pseudo indenpendant transitions

Potential Problems

Suppose that and commute:

It does not matter whether is executed before or vice versa in

order to reach the state from .

It is tempting to select only one of the transitions originating

from .

This is not appropriate for the following reasons:

Problem 1: The checked property might be sensitive to the

choice between the states and , not only the states and .

Problem 2: The states and may have other successors in

addition to , which may not be explored if either is eliminated.

16

If ↵(�(s)) = �(↵(s)) two problems may occur
Problem 1 : The checked property is sensible of the order between ↵
and �
Problem 2 : choosing e.g. ↵ first can enable new transitions not possible
through the path with � first
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Visible and invisible transition

Visible and invisible transition

Given the set of propositions P and a subset AP0 ✓ P
A transition ↵ is invisible with respect to AP0 if
8s, s0 2 S.s0 = ↵(s)) L(s) \ AP0 = L(s0) \ AP0

A visible transition is one not invisible
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Stuttering equivalence

Stuttering equivalence

p, q

p, q

p, q

qp,qp,qp,

qp,qp,

qp,

qp,

qp,

qp,

Two infinite paths � = s0
↵0! s1

↵1! . . . and ⇢ = r0
�0! r1

�1! . . . are stuttering
equivalent (� ⇠st ⇢) if there are two infinite sequences of integers

0 = i0 < i1 < i2 < . . . and 0 = j0 < j1 < j2 < . . .

such that for every k � 0
L(sik ) = L(sik +1) = · · · = L(sik+1�1) = L(rjk ) = L(rjk +1) = · · · = L(rjk+1�1)

Can also be defined for finite paths
222
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Stuttering Equivalence

Stuttering equivalence example

Potential Problems

Suppose that and commute:

It does not matter whether is executed before or vice versa in

order to reach the state from .

It is tempting to select only one of the transitions originating

from .

This is not appropriate for the following reasons:

Problem 1: The checked property might be sensitive to the

choice between the states and , not only the states and .

Problem 2: The states and may have other successors in

addition to , which may not be explored if either is eliminated.

16

Suppose ↵ is invisible
L(s) = L(s1)

L(s2) = L(r)
Consequently

s s1 r ⇠st s s2 r

(The paths s s1 r and s s2 r are stuttering equivalent) 223
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LTL and stuttering equivalence

Definition : LTL formula � invariant under stuttering

if and only if, for each pair of paths ⇡ and ⇡0 such that ⇡ ⇠st ⇡
0

⇡ |= � () ⇡0 |= �

Definition : LTLX

LTL without the next operator

Theorem
Any LTLX property is invariant under stuttering
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Stuttering equivalent systems

Definition : stuttering equivalent systems

Given two transition systems K1 and K2 and suppose they have initial state
resp. s0 and s0

0.
K1 is stuttering equivalent to K2 if and only if

For each path � of K1 which starts in s0, there is a path �0 of K2 starting
in s0

0 such that � ⇠st �
0

For each path �0 of K2 which starts in s0
0, there is a path � of K1 starting

in s0 such that � ⇠st �
0

Corrollary

For two stuttering equivalent transition systems K1 and K2 (with initial states
resp. s0 and s0

0) and every LTLX property �

K1 |= � () K2 |= �
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DFS algorithm and ample sets

Commutativity and invisibility will allow us to devise an algorithm which
selects ample sets
so that for every path not considered, there is a stuttering equivalent
path that is considered
Therefore, the reduced state space is stuttering equivalent to the full
state space.

Definition : fully expanded state s

a state s is fully expanded when

ample(s) = enabled(s)
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Construction of ample sets

Four conditions for selecting ample(s) to preserve satisfaction of LTLX

formulae

Condition C0
ample(s) = ? () enables(s) = ?
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Construction of ample sets

Condition C1
Along every path in the full state graph that starts at s :
a transition that is dependent on a transition in ample(s) can not be
executed without one in ample(s) occurring first

Normally we should check C1 on the full state space
) we need a “way” of checking that C1 holds without actually constructing
the full state graph (see below).
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Construction of ample sets

Lemma

The transitions in enabled(s) \ ample(s) are all independent of those in
ample(s)

Possible forms of paths

From C1 we can see that any path can have two possible forms
1 �0 �1 . . . �m ↵ where ↵ 2 ample(s) and each �i is independent of all

transitions in ample(s) including ↵
2 An infinite sequence of �0 �1 . . . where each �i is independent of all

transition in ample(s)
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Construction of ample sets

Since �i are independent from ↵ they do not disable it
In particular for case 1, we have

Correctness of Reduction (Cont.)

In the first case, assume that the sequence of transitions

reaches a state .

This sequence will not be considered by the DFS algorithm.

By applying the enabledness and commutativity conditions

times, we can construct a sequence , that also

reaches .

Thus, if the reduced state graph does not contain the sequence

that reaches , we can construct from another

sequence that reaches .

29

We want paths with ↵ first
stuttering equivalent to the
one with ↵ last.
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Construction of ample sets

Condition C2 (invisibility)

If s is not fully expanded then every ↵ 2 ample(s) is invisible

For paths of the form �0 �1 . . . that starts at s with no �i in ample(s)
↵ �0 �1 . . . is stuttering equivalent to �0 �1 . . .
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Problem with correctness condition

C1 and C2 are not sufficient to guarantee that the reduced state graph is
stuttering equivalent to the full one.
Some transition could be delayed forever

� visible (change a proposition p

� independent from invisible ↵i

Problem with Correctness Condition

C1 and C2 are not yet sufficient to guarantee that the reduced

state graph is stuttering equivalent to the full state graph.

In fact, there is a possibility that some transition will actually be

delayed forever because of a cycle in the constructed state graph.

Assume that is independent of the transitions , and and

that , and are interdependent.

The process on the left can execute the exactly once.

Assume there is one proposition , which is changed from

to by , so that is visible.

The process on the right performs the invisible transitions ,

and repeatedly in a loop.

32

The process on the right performs the invisible ↵i forever !
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Construction of ample sets

Condition C3 (Cycle closing condition)

A cycle is not allowed if some transition � is enabled in every states in
this cycle but where none of these states s include � in ample(s)
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Have we avoided our potential problems

Potential problems

Potential Problems

Suppose that and commute:

It does not matter whether is executed before or vice versa in

order to reach the state from .

It is tempting to select only one of the transitions originating

from .

This is not appropriate for the following reasons:

Problem 1: The checked property might be sensitive to the

choice between the states and , not only the states and .

Problem 2: The states and may have other successors in

addition to , which may not be explored if either is eliminated.

16

Problem 1 : The checked property is
sensible of the order between ↵ and �
Problem 2 : choosing e.g. ↵ first can
enable new transitions not possible
through the path with � first

234



Have we avoided our potential problems ?

Potential problems

Potential Problems

Suppose that and commute:

It does not matter whether is executed before or vice versa in

order to reach the state from .

It is tempting to select only one of the transitions originating

from .

This is not appropriate for the following reasons:

Problem 1: The checked property might be sensitive to the

choice between the states and , not only the states and .

Problem 2: The states and may have other successors in

addition to , which may not be explored if either is eliminated.

16

Problem 1 : The checked property is
sensible of the order between ↵ and �

Analysis of potential problem 1

Assume ample(s) = {�}
and s1 is not in the reduced graph
By condition C2, � must be invisible

) s s2 r ⇠st s s1 r

We are only interested in stuttering invariant properties
Both sequences cannot be distinguished

Have we avoided our potential problems ?

Potential problems

Problem 2 Again

Assume that there is a transition enabled from .

Note that cannot be dependent on . Otherwise, the sequence

violates C1.

Thus, is independent of . Since it is enabled in , it must also

be enabled in state .

Assume that , when executed from , results in state and

when executed from results in state .

Since is invisible, the two state sequences and

are stuttering equivalent.

Therefore, properties that are invariant under stuttering will not

distinguish between the two.

36

Problem 2 : choosing
e.g. ↵ first can enable
new transitions not
possible through the
path with � first

Analysis of potential problem 2

Assume � enabled in s1

� is independent of �. Otherwise, the sequence ↵ � violates C1
Then, � is enabled in r

Assume s1
�! s0

1 and r �! r 0

(� is invisible) s s1 s0
1 ⇠st s s2 r r 0

) properties invariant under stuttering will not distinguish between the two.
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Heuristic for ample sets

Model of a program

Assume that the concurrent program is composed of processes
pci(s) : program counter of process Pi

pre(↵) : set of transitions whose execution may enable ↵
dep(↵) : set of transitions dependent of ↵
Ti : set of transitions of process Pi

Ti(s) = Ti \ enabled(s) : set of transitions of process Pi enabled in s

currenti(s) : set of transitions of process Pi enabled in some s0 such that
pci(s0) = pci(s)
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Heuristic for ample sets

Dependency relation for different models of computations

Pairs of transitions that share a variable, which is changed by at least
one of them are dependent
Pairs of transitions belonging to the same process are dependent
Two send transitions that use the same message queue are dependent.
Two receive transitions that use the same message queue are
dependent.
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Heuristic to construct ample sets

Obvious candidate for ample(s)

set Ti(s) (transitions enabled in s for process Pi )
Since the transition Ti(s) are interdependent, an ample set must either
include all Ti(s) or no transition from Ti(s)

To construct ample(s) : start to take an non emty Ti(s)

Check whether ample(s) = Ti(s) satisfies condtion C1 (see below)
If Ti(s) is not good : take another non empty Tj(s) (and hope to find a
good one)
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Heuristic to construct ample sets

Two cases where ample(s) = Ti(s) violates C1

The problem occurs when a transition ↵, interdependent to transitions in
Ti(s), is enabled.
Possible causes

1 ↵ belongs to process Pj with (j 6= i) : a necessary condition is that
dep(Ti(s)) \ Tj 6= ? (can be checked effectively)

2 ↵ (the first transition that violates C1) belongs to process Pi (↵ 2 Ti )
- Suppose ↵ is executed from state s0

- The path between s and s0 are independent of Ti(s), and hence from
other processes

- Therefore pci(s0) = pci(s) and ↵ 2 currenti(s)

- ↵ /2 Ti(s)

- ↵ 2 currenti(s) \ Ti(s)

- (↵ disabled in s ; enabled in s0) : 9� 2 pre(↵) in the sequence from s to
s0

- Thus, a necessary condition is that
9j 6= i.pre(currenti(s) \ Ti(s)) \ Tj 6= ? (can be checked effectively)
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Plan

1 Symbolic model checking with BDD

2 Model checking with partial order reduction

3 Model checking with symmetry reduction

4 Bounded model checking
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Example of symmetry reduction

Example in B

The B-method [Abr96] is

A language to write high level specifications of software systems with
properties (invariant) they must satisfy
A refinement method to design system
A development environment with theorem proving tools to prove the
invariants and refinements are valid and obtain code

Critique

It is very difficult to write a complete formal specification and derive the
code
It is difficult for non formalists to read and understand the specifications
Specifications may be wrong (even with correct proofs) !
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Some solution : PROB animator & model-checker

Code

Test Case
Generation

Formal
Model

Animation

Model Checking

Domain

Expert

PROB

allows a quick validation and debug of
the models
make the models comprehensible to
domain expert
allows people to build partial
specifications

Features
Animation and model checking tool
kernel written in prolog
Applied successfully to industrial
examples (Volvo, Nokia, Clearsy, . . .)
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PROB and the State explosion problem

State space to analyse may have an exponential size)

Possible Model Checking reduction techniques

Symbolic Model Checking
Partial order reduction
Symmetry reduction (promising)
. . .

General Goal

Symmetry reduction techniques
to model check
B specifications

Basic principle

Work with a quotient state space of the system (modulo symmetry
equivalence)
Linked with the isomorphism problem Example
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Motivation

Sometimes Symmetry reduction is not enough

Hard problem (see Wikipedia : graph isomorphism for more information)
For some practical examples too expensive

Our work
) Alternative solutions ?
) Approximate methods ?

Efficient approximate analysis method
with symmetry reduction
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B in a nutshell

Basic concepts : set theory with predicate logic

Logical predicates
basic datatypes : integer, natural, . . .
Pairs (x 7! y )
Given sets : explicitely enumerated
Deferred sets : elements not given a priori

Relations, functions, . . .

dom(x), ran(x), image (r [S]), , inverse (R�1), composition (R0 ; R1),
restrictions (U C R,U C� R,R B U,R B� U), . . .
partial function (x 7! y ), total function (x ! y ), injection ( 7⇢,⇢),
surjection ( 7⇣,⇣), bijection (⇢⇣)
sequences, records, trees, . . .

Operations

Transform the state of a machine
Must preserve the invariant
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A simple login

Simple login

MACHINE LoginVerySimple
SETS Session
VARIABLES active
INVARIANT active ✓ Session
INITIALISATION active := ?
OPERATIONS
res  Login = ANY s WHERE s 2 Session ^ s /2 active THEN

res := s || active := active [ {s} END;
Logout(s) = PRE s 2 active THEN

active := active � {s} END
END
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Instantiate the deferred sets : e.g. Session = 3

active={}

initialise_machine({})

active={Session1} active={Session2} active={Session3}

active={Session1,Session2}

active={Session1,Session3}

Logout(Session1)

active={Session2,Session3}

Logout(Session2)

Logout(Session3)

active={Session1,Session2,Session3}

Logout(Session1)Logout(Session2)

Logout(Session1)Logout(Session3)

Logout(Session2)

Logout(Session3)

Login-->(Session1)

Logout(Session2)
Logout(Session3)

Logout(Session1)

Login-->(Session1) Login-->(Session2)
Login-->(Session3)

Login-->(Session1)

Login-->(Session2)

Login-->(Session1) Login-->(Session3)

Login-->(Session2)

Login-->(Session3)

Login-->(Session2)

Login-->(Session3)

2 3 4

1

5

8

7

6

Symmetry

Informally, two
states are
symmetric - the
invariant has the
same truth value in
both states, - both
can execute the
same sequences
of operations
(possibly up to
some renaming of
data values in the
parameters)

Back to introduction

In practice to be efficient

On the fly analysis Does not keep the state space



Second running example : the dining philosopher

Dining Philosopher (without protocol)

MACHINE Philosophers
SETS Phil; Forks
CONSTANTS lFork , rFork
PROPERTIES
lFork 2 Phil ⇢⇣ Forks ^ rFork 2 Phil ⇢⇣ Forks ^
card(Phil) = card(Forks) ^ 8pp.(pp 2 Phil ) lFork(pp) 6= rFork(pp)) ^
8st .(st ⇢ Phil ^ st 6= ? ) rFork�1[lFork [st]] 6= st)
VARIABLES taken
INVARIANT
taken 2 Forks 7! Phil ^
8xx .(xx 2 dom(taken) ) (lFork(taken(xx)) = xx _ rFork(taken(xx)) = xx))
INITIALISATION taken := ?
OPERATIONS
TakeLeftFork(p, f ) =

PRE p 2 Phil ^ f 2 Forks ^ f /2 dom(taken) ^ lFork(p) = f
THEN taken(f ) := p END;

TakeRightFork(p, f ) =
PRE p 2 Phil ^ f 2 Forks ^ f /2 dom(taken) ^ rFork(p) = f
THEN taken(f ) := p END;

DropFork(p, f ) =
PRE p 2 Phil ^ f 2 Forks ^ f 2 dom(taken) ^ taken(f ) = p
THEN taken := f C� taken END

END

Symbolic model checking with BDD
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Symmetry and deferred sets

Observations
Elements of deferred sets are not specified a priori and have no name
or identifier.
Inside a B machine one cannot select a particular element of such
deferred sets.
for any state of B machine, permutations of elements inside the
deferred sets preserve
- the truth value of B predicates and the invariant
- the structure of the transition relation [LBST07].
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Graph Canonicalisation

Graph Canonicalisation

Orbit problem : decide if two states are symmetric
Tightly linked to detecting graph isomorphisms (after converting states
into graphs)
Currently has no known polynomial algorithm.
Most efficient general purpose graph isomorphism program : nauty
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Current symmetry methods

Example of isomorphic graphs

a g

b h

c i

d j

1

5 6

2

8

4 3

7

Isomorphism
f (a) = 1
f (b) = 6
f (c) = 8
f (d) = 3
f (g) = 5
f (h) = 2
f (i) = 4
f (j) = 7
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Example of isomorphic graphs

Example of isomorphic graphs

a g

b h

c i

d j

1

5 6

2

8

4 3

7

1

5 6

2

8

4 3

7
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Canonical form of a graph

coding the graph

a g

b h

c i

d j

Isomorphism
c(a) = 0
c(b) = 1
c(c) = 2
c(d) = 3
c(g) = 4
c(h) = 5
c(i) = 6
c(j) = 7

Adjacency matrix
0 0 0 0 1 1 1 0
0 0 0 0 1 1 0 1
0 0 0 0 1 0 1 1
0 0 0 0 0 1 1 1
1 1 1 0 0 0 0 0
1 1 0 1 0 0 0 0
1 0 1 1 0 0 0 0
0 1 1 1 0 0 0 0

G = 0000111000001101000010110000011111100000110100001011000001110000

Example of canonical form : the order which gives the smallest
encoding ;
n! possible orderingS.
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When symmetry is not efficient enough : symmetry markers

Analysis without symmetry : Holzmann’s bitstate hashing [Hol88]

Approximate verification technique
Computes a hash value for every reached state
State with the same hash value is not analysed any further
Ideal hashing function : two different values for two different states
In practice

collisions : some reachable states are not checked (not exhaustive
analysis)
very efficient

Same idea with symmetry ?

Hashing function invariant to symmetry
replace hashing function by marker
Two symmetric states have the same marker
Efficient computing of the marker
Possible collisions : minimise their number
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Definition of Marker of a state s

Main idea
State s seen as a graph
Marker m(s) expresses the structure of s

Two symmetric states! same marker
The other way may be wrong (collision)

Everything completely identified except elements of deferred sets.

) Must compute markers of elements d of deferred sets.
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Markers for elements of deferred sets

Existing vertex invariant of the corresponding graph

Number of incoming edges
Number of outgoing edges
. . .

) find something more precise and still efficient.

Marker of an element d of a deferred set
must include the set of places where it is used
) Compute multiset of paths leading to d in the current state

Efficiency :
Worst case O(n2) (n = nb of vertices in the graph of the global state)
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Definition of Markers

paths

c

r

el

left right

State s

Deferred Set D

c

r

Symmetry Marker ms(s)

{| 〈c〉, 〈r, el, left〉 |}

d1 d2

d1 {d1 !→ d2}

{ {| 〈c〉, 〈r, el, left〉 |}

!→ {| 〈r, el, right〉 |} }

c ∈ D r ∈ D ↔ D

Proposition 1

Let s1, s2 be two states. If s1 and s2 are permutation states of each other then
m(s1) = m(s2).
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Example of what our markers can distinguish

with the deferred set D = {d1, d2} and variables x , y

s1 = h{d1 7! 0}, {d1}i, s3 = h{d2 7! 0}, {d2}i m(s1) = m(s3)

p

s1 = h{d1 7! 0)}, {d1}i, s2 = h{d2 7! 0)}, {d1}i m(s1) 6= m(s2)

p
s4 = h{d1 7! 1, d2 7! 2}, {d1 7! 1, d2 7! 2}i,
s5 = h{d1 7! 2, d2 7! 1}, {d1 7! 1, d2 7! 2}i m(s4) 6= m(s5)

p

d1 1

d2 2

s4

d1 1

d2 2

s5
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Example of what our markers can and cannot distinguish

Two dining philosophers

s1 = p1 leftTakes(f ) , s2 = p1 rightTakes(f ) m(s1) 6= (s2)

p
Each has one fork (see figures) m(s1) = m(s2) X

rFork rForklFork lFork

taken taken

(a)

lFork lForkrFork rFork

taken taken

(b)

260



Symbolic model checking with BDD
Model checking with partial order reduction

Model checking with symmetry reduction
Bounded model checking

When are symmetry markers precise

Proposition 2

If each value v in s1 and s2 is either :
a value not containing any element from one of the sets D1, . . . ,Di , or
a value not containing a set, or
a set of values {x1, . . . , xn} ✓ Dk for some 1  k  i , or
a set of pairs {x1 7! y1, . . . , xn 7! yn} such that either all xi are in
NonSym and all yi are elements of some deferred set Dj , or all xi are in
NonSym and all yi are elements of some deferred set Dj .

Then m(s1) = m(s2) implies that there exists a permutation function f
over {D1, . . . ,Di} such that f (s1) = s2.

) In that case our symmetry marker method provides a full verification.

In practice covers a lot of cases.
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Empirical Evaluation

Machine Card Model Checking Time Number of Nodes Speedup over
wo flood markers wo flood markers wo flood

Russian 1 0.05 0.05 0.05 15 15 15 1.04 1.04
2 0.32 0.21 0.21 81 48 48 1.51 0.97
3 1.32 0.46 0.34 441 119 119 3.92 1.35
4 8.73 1.90 0.89 2325 248 248 9.81 2.13
5 54.06 12.18 2.05 11985 459 459 26.35 5.94

scheduler0 1 0.01 0.01 0.01 5 5 5 0.98 0.99
2 0.07 0.05 0.05 16 10 10 1.59 1.06
3 0.28 0.07 0.06 55 17 17 4.60 1.12
4 0.98 0.20 0.14 190 26 26 7.15 1.43
5 4.52 0.75 0.27 649 37 37 16.87 2.81
6 20.35 4.74 0.48 2188 50 50 42.60 9.93
7 114.71 43.47 0.80 7291 65 65 143.61 54.43

scheduler1 1 0.01 0.01 0.01 5 5 5 1.09 1.12
2 0.05 0.06 0.05 27 14 14 1.12 1.26
3 0.41 0.11 0.09 145 29 29 4.50 1.17
4 2.96 0.34 0.18 825 51 51 16.62 1.93
5 23.93 1.70 0.37 5201 81 81 64.24 4.56
6 192.97 13.37 0.70 37009 120 120 275.75 19.10
7 941.46 167.95 1.22 297473 169 169 771.39 137.61

Peterson 2 0.28 0.28 0.15 49 27 27 1.87 1.89
3 8.80 2.00 1.73 884 174 174 5.08 1.16
4 861.49 60.13 20.66 22283 1134 1134 41.69 2.91

Philosophers 2 0.11 0.05 0.04 21 8 7 3.02 1.30
3 1.56 0.15 0.05 337 13 11 28.83 2.80
4 123.64 5.99 0.15 11809 26 20 799.36 38.73

Towns 1 0.01 0.01 0.01 3 3 3 1.03 1.00
2 0.37 0.33 0.34 17 11 11 1.08 0.97
3 63.95 12.78 12.95 513 105 105 4.94 0.99

USB 1 0.21 0.20 0.22 29 29 29 0.96 0.90
2 8.42 4.74 6.17 694 355 355 1.36 0.77
3 605.25 277.59 232.93 16906 3013 3013 2.60 1.19



Symbolic model checking with BDD
Model checking with partial order reduction

Model checking with symmetry reduction
Bounded model checking

Comparison of execution time

Model Checking time (in seconds) for scheduler0 ; log scale
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Symbolic model checking with BDD
Model checking with partial order reduction

Model checking with symmetry reduction
Bounded model checking

Related works

Symmetry detection (Generally, specified by hand)

Ip and Dill [ID96] : scalarset : tool Mur� [DDHY92].
Clarke, Jha et al [CEFJ96, Jha96] data symmetry with BDD
extension of scalarset : untimed [BDH02, DMC05] and timed [HBL+03]
Emerson & Sistla [ES96, ES95] and tool SMC [SGE00]

) In B : symmetry arises naturally with the deferred sets

Efficient identification of equivalent states

Vertex invariants in the tool Nauty
already discussed in [ES96] : very simple hashing function invariant to
symmetry

) To our knowledge, the first elaborate approach and evaluation of an
efficient approximation method.
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Symbolic model checking with BDD
Model checking with partial order reduction

Model checking with symmetry reduction
Bounded model checking

Plan

1 Symbolic model checking with BDD

2 Model checking with partial order reduction

3 Model checking with symmetry reduction

4 Bounded model checking
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Beyond BDDs

 BDDs are still too large
 variable order must be uniform along all considered paths
 need to find “right” ordering

Í idea
• use symbolic encoding by propositional formula
• rely on highly optimized SAT solver to do dfs-exploration

Boolean formula that is satisfied, if the underlying transition system
realizes a finite trace that reaches a given set of states

idea:
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Bounded Reachability

Í given a model M = hS ,R , Li over AP

Í we define the following predicate on states

• Reach(s, s 0) iff R(s, s 0)

Í now JMKk =
Vk�1

i=0 Reach(si , si+1)

Í if s0, s1, s2, . . . , sk 2 JMKk then. . . explain. . .

what do you now about the SAT problem and SAT-solvers ?
(hint: look at your notes from the INFO-F302 lecture)
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express the following properties by a propositional formulae
1 p is valid up to depth k

iff the formula ' is unsatisfied

2 Fp holds up to depth k

iff the formula ' is unsatisfied

explain the following formula
3 if the following formula ' is unsatisfied, then . . .

' ⌘ Vk�1
i=0 Reach(si , si+1) ^

Wk�1
l=0 (sl = sk ^

Vk
j=l

V
Fi2F Fi (sj))

where F encodes a set of states.
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Bounded Model Checking Algorithm

' satisfiable in JMKk ?

test k < ct

M |= '

M 2k '

M, ', k = 0

k ++

SAT

UNSAT

yn

ct is an apriori given com-
putation threshold

BMC: Completeness Threshold

For each model M and each LTL formula ' there exists a k 2 N
such that if ' is satisfied in JMKk then M |= '.

Theorem:

Í how to find this k ?

fl finding smallest k is as hard as model checking itself /

Í approximate it !
• ct is the (c)omputation (t)hreshold,

the minimal k needed to show a property

what would be a ct for Gp formulae ?

what would be a ct for Fp formulae ?
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Í approximate it !
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the minimal k needed to show a property
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BMC: Complexity ?

Í underlying SAT question is solvable in O(k ⇥ (|M|+ |'|)
(due to relying on fixpoint based translation)

Í k can be as large as the diameter of M, this can be exponential

Í thus SAT is ExpTime /
Í SAT-based BMC is at least 2ExpTime //
Í automata-based approach would only be ExpTime///
Í however SAT solvers today are extremely efficient for BMC and

most errors can be already found with small k ,,,
can you give a reason for the latter ?
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CSP

Chapter 8 : Specification Languages and Formal Description
techniques

1 CSP
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Formal methods

Example of formal methods (from Wikipedia)

Abstract State Machines (ASMs)
Alloy
B-Method
Process calculi or process algebrae

CCS
CSP
LOTOS
⇡-calculus

Actor model
Esterel
Lustre
Petri nets
RAISE
VDM
VDM-SL
VDM++
Z notation
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Plan

1 CSP
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Process calculi (from wikipedia)

A process calculus or process algebra

provide a tool for the high-level description of interactions,
communications, and synchronizations between a collection of
independent agents or processes
models open or closed systems
provide algebraic laws that allow process descriptions to be manipulated
and analyzed,
permit formal reasoning about equivalences between processes (e.g.,
using bisimulation, failure-divergence equivalence, ...).
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Essential features of process algebra

Essential features of process algebra

communication via synchronization or message-passing rather than as
the modification of shared variables
Describing processes and systems using a small collection of primitives,
and operators for combining those primitives
Defining algebraic laws for the process operators, which allow process
expressions to be manipulated using equational reasoning
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Basic concepts in a process algebra

Basic concepts in a process algebra

Events :
internal to the process it belongs to (often denoted ⌧ , ✏ or i)
external : will take place in a synchronization with one or several other
process(es).

operators : e.g.
parallel composition of processes
sequentialization of interactions
choice
hiding of interaction points
recursion or process replication
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CSP
Formal description language together with a formal method
Process algebra
CSP initial semantics is called Failures-Divergences model
CSP has also an operational semantics

History

First presented in Hoare’s original 1978 paper
Hoare, Stephen Brookes, and A. W. Roscoe developed and refined the
theory of CSP into its modern, process algebraic form.
The theoretical version of CSP was initially presented in a 1984 article
by Brookes, Hoare, and Roscoe, and later in Hoare’s book
Communicating Sequential Processes, which was published in 1985.
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CSP

Note
This section is taken from Jeremy Martin’s PhD thesis
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Syntax

6 CHAPTER 1. CSP AND DEADLOCK

1.1 The CSP Language

The basic syntax of CSP is described by the following grammar

Process STOP

SKIP

event Process

Process Process

Process alph alph Process

Process Process

Process Process

Process Process

Process event

Process

name

name Process

Here event ranges over a universal set of events, , alph ranges over subsets of ,

ranges over a set of function names, and name ranges over a set of process names.

A process describes the behaviour of an object in terms of the events in which it

may engage. The simplest process of all is STOP. This is the process which represents

a deadlocked object. It never engages in any event. Another primitive process is SKIP

which does nothing but terminate successfully; it only performs the special event ,

which represents successful termination.

An event may be combined with a process using the prefix operator, written . The

process bang UNIVERSE describes an object which first engages in event bang then

behaves according to processUNIVERSE. If we want to give this new process the name

CREATION we write this as an equation

CREATION bang UNIVERSE

Processes may be defined in terms of themselves using the principle of recursion.

Consider a process to describe the ticking of an everlasting clock.

CLOCK tick CLOCK

CLOCK is a process which performs event tick and then starts again. (This is a some-

what abstract definition. No information is given as to the duration or frequency of

ticks. We are simply told that the clock will keep on ticking.)
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A vending machine example

The system is the synchronization of the vending machine VM and the
Tea Drinker TD

1.1. THE CSP LANGUAGE 9

(where, for technical reasons, must be finite) offers exactly one event from to its

environment, the choice being non-deterministic.

Sometimes it is useful to be able to restrict the definition of a process to a subset of

relevant events that it performs. This is done using the hiding operator ( ). The process

CREATION bang

behaves likeCREATION, except that each occurrence of event bang is concealed. Note

that it is not permitted to hide event .

Concealment may introduce nondeterminism into deterministic processes. It may

also introduce the phenomenon of divergence. This is a drastic situationwhere a process

performs an endless series of hidden actions. Consider, for instance, the process

CLOCK tick

which is clearly a divergent process.

It is conventional to extend the notation to , where is a finite set of events.

Finally let us briefly consider process relabelling. Let be an alphabet transfor-

mation function , which satisfies the property that only finitely many events

may be mapped onto a single event. Then the process can perform the event

whenever can perform event . As an example consider a function new which maps

tick to tock. Then we have

new CLOCK tock new CLOCK

Some important algebraic laws which govern CSP processes are given in figures 1.1

and 1.2, which vary in complexity. They are taken from [Hoare 1985], [Brookes 1983],

and [Brookes and Roscoe 1985a]. (In some cases the syntax has been modified to con-

form to the version of CSP described above.) Note that this is not a complete list. The

following example illustrates the use of these laws.

Consider a process to describe a vending machine which sells tea for a price of one

coin and coffee for two coins.

VM coin tea VM coin coffee VM

After inserting a coin, a customer can control the future behaviour of the machine by

either inserting another coin, or taking a cup of tea.

We now define a process which describes a particular customer who loves tea and

is prepared to pay for it. Coffee he will tolerate, but only if it is provided free of charge.

TD coin tea TD coffee TD
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10 CHAPTER 1. CSP AND DEADLOCK

To illustrate the use of algebraic laws to simplify CSP process definitions, consider

what happens when the tea drinker tries to use the vending machine. Both processes

have alphabet coin,coffee,tea .

SYSTEM VM coin,coffee,tea coin,coffee,tea TD

coin tea VM coin coffee VM

coin,coffee,tea coin,coffee,tea

coin tea TD coffee TD

coin

tea VM coin coffee VM

coin,coffee,tea coin,coffee,tea

tea TD

using law 1.22 with coin coin,coffee coin

coin tea VM coin,coffee,tea coin,coffee,tea TD

using law 1.22 with tea,coin tea tea

coin tea SYSTEM

The system has been reduced to a very simple sequential definition. We see that

although no coffee will be consumed in this situation, the system will never deadlock.

The account of the CSP language given here is incomplete. Only the core language

has been consideredwith certain ‘advanced’ operators omitted. The language described

corresponds to the modern version of CSP, as given in [Formal Systems 1993], which

differs slightly from the language presented in Hoare’s book [Hoare 1985].
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Axiomatic laws

1.1. THE CSP LANGUAGE 11

Figure 1.1: Laws of CSP I

SKIP SKIP (1.1)

STOP STOP (1.2)

(1.3)

(1.4)

(1.5)

(1.6)

(1.7)

SKIP (1.8)

(1.9)

(1.10)

(1.11)

(1.12)

(1.13)

(1.14)

(1.15)

(1.16)

(1.17)

(1.18)

(1.19)

STOP (1.20)

STOP (1.21)
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Axiomatic laws (cont’d)

1.1. THE CSP LANGUAGE 11

Figure 1.1: Laws of CSP I
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Axiomatic laws (cont’d)

12 CHAPTER 1. CSP AND DEADLOCK

Figure 1.2: Laws of CSP II

Let

Then

where
if

otherwise

and
if

otherwise

and

assuming and (1.22)

(1.23)

SKIP SKIP (1.24)

STOP STOP (1.25)

(1.26)

(1.27)

if (1.28)

(1.29)

if (1.30)

(1.31)

if (1.32)

STOP STOP (1.33)

(1.34)

if (1.35)

(1.36)

(1.37)

(1.38)

(1.39)
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Axiomatic laws (cont’d)

12 CHAPTER 1. CSP AND DEADLOCK

Figure 1.2: Laws of CSP II
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Axiomatic laws (cont’d)

12 CHAPTER 1. CSP AND DEADLOCK

Figure 1.2: Laws of CSP II
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Basic definitions (examples)

1.2. THE FAILURES-DIVERGENCESMODEL 13

1.2 The Failures-Divergences Model

In the preceding section the concept of communicating processes was introduced infor-

mally and the corresponding algebraic laws were stated without mathematical justifica-

tion. In this section a precise semantic definition of CSP processes is given fromwhich

the laws can be deduced. This is known as the Failures-Divergences model. Here a

process is defined in terms of important observable properties – traces, failures and

divergences.

A trace of a process is any finite sequence of events that it may initially perform.

For instance

coffee,coffee,coffee coin,tea traces

The following useful operations are defined on traces

Catenation:

Restriction: , trace restricted to elements of set

Example:

Replication: trace repeated times.

Example:

Count: number of occurrences of event in trace

Example:

Length: the length of trace .

Example:

Merging: merge the set of all possible interleavings of trace with trace

Example: merge

A complication to trace interleaving is that the event requires the joint par-

ticipation of both traces. This means that a trace which contains cannot be

interleaved with one that does not.

Examples: merge

merge
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14 CHAPTER 1. CSP AND DEADLOCK

The failures of a process describe the circumstances under which it might deadlock.

Each failure of a process consists of a pair where is a trace of and is

a set of events which if offered to by its environment after it has performed trace ,

might be completely refused. For instance

coin,tea,coin,tea,coin,coin tea,coin failures VM

This describes a situation where the vending machine VM has dispensed two cups of

tea and then accepted two coins. At this point the machine is willing only to dispense

coffee. If a user arrives who wants tea, and is only prepared to take a cup of tea or to

insert another coin then deadlock will ensue.

The concept of failures is commonly used to write specifications for the behaviour

of CSP processes. Consider the following specification.

failures in out out

This states that whenever process has performed the event in more often than the

event out it must guarantee not to refuse event out. This might form part of the overall

specification for a buffer.

The divergences of a process are a list of the traces after which it might diverge, e.g.
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Putting the first four axioms into words tells us that every process starts off with an

empty trace (axiom 1). In order to perform trace , it must be able to perform any prefix

of (axiom 2). A subset of a refusal set is also a refusal set (axiom 3). If the process

can refuse the events in , and cannot perform any of the events in as its next step,

then it may also refuse (axiom 4). These are all basic intuitive properties of

processes.

Axiom 5 states that a set may be refused if all its finite subsets may be refused. This

is to allow for the possibility of being an infinite set without complicating the theory.

Axioms 6 and 7 state that once a process diverges it may subsequently perform any

trace imaginable and will behave in a totally nondeterministic manner. This is a rather

harsh treatment of the phenomenon of divergence. If we put ourCLOCK in a vacuum to

hide its ticking we would not expect such dramatic behaviour. It is, however, a conve-

nient means to make the theory work better based on the assumption that the possibility

of divergence is catastrophic (see [Roscoe 1994]).

There is a natural partial order (see appendix A) on the set of all processes given

by

The interpretation of this is that process is worse than if it can deadlock or

diverge whenever can. This ordering is in fact a complete partial order. The bottom,

or worst, element represents the process which always diverges, corresponding to

the decision to treat this form of behaviour as the least desirable. It is a chaotic process

which can do absolutely anything in a totally unpredictable manner. It is defined as

follows.

failures

divergences

The failures and divergences of the fundamental CSP terms are defined in figures

1.3 and 1.4. (These are the same as in [Brookes and Roscoe 1985a], except that the

definitions of parallel composition and interleaving are modified to reflect the fact that

in the modern version of CSP these operators implicitly require the cooperation of both

processes in performing the event.) This covers all closed, non-recursive CSP terms.

All of the CSP operators can be shown to be well-defined. In other words, if you

apply any of them to existing CSP processes, the resulting object will itself be a process:

its failures and divergences obeying the seven axioms of the model. They are also con-

tinuous, with respect to . This is important because it means that any recursive CSP

equation of the form has a solution, by Tarski’s fixed point theorem (see

appendix A). The least solution is given by

N

The system P1 is worse than P2 : it can deadlock or diverge whenever P2 can.

One particular process : the chaos process (= bottom of the complete lattice)
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Figure 1.3: Denotational Semantics for CSP I
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Figure 1.4: Denotational Semantics for CSP II
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Figure 1.4: Denotational Semantics for CSP II
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1.3 Operational Semantics

So far we have encountered two ways of looking at communicating processes: firstly

as algebraic expressions and secondly in terms of abstract mathematical sets based on

their observable behaviour. There is no obvious way of seeing from either of these rep-

resentations how our processes might be realised on a machine. We need a more con-

crete approach – an operational model. The operational semantics of CSP is a mapping

from CSP expressions to state transition systems. A state transition system is a labelled

digraph where each vertex represents a state in which the process may rest. The out-

going arcs from each vertex represent the events that the process is ready to perform

when in the associated state. The destination vertex of each of these arcs represents

the new state that the process attains by performing the associated event. There is one

particular vertex that is marked as the initial state of the process. A special event is

used to represent concealed events or internal decisions. States which have outgoing

-labelled arcs are called unstable. Those which do not are called stable.

Transition systems for certain processes that we have previously encountered are

shown in figure 1.5. Note that recursion is represented here by the presence of circuits

in the digraphs.

Figure 1.5: State Transition Systems
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The operational semantics of CSP is defined by a set of inference rules which define

a mapping from closed CSP terms to transition systems. Each clause consists of a (pos-

sibly empty) set of assertions and a conclusion presented in the form
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Figure 1.6: Operational Semantics for CSP I

Primitive processes:

SKIP STOP

Prefix:

External choice:

Internal choice:

Sequential Composition:
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Figure 1.6: Operational Semantics for CSP I
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Figure 1.7: Operational Semantics for CSP II

Parallel Composition:

Interleaving:

Hiding:

Alphabet Transformation:

Recursion:
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Figure 1.7: Operational Semantics for CSP II

Parallel Composition:

Interleaving:

Hiding:

Alphabet Transformation:

Recursion:

312



CSP

CSP

Extentions
Parameterized processes

24 CHAPTER 1. CSP AND DEADLOCK

1.4 Language Extensions

The core CSP syntax described above is very abstract, and lacks certain useful features

found in conventional sequential and parallel programming languages. The extensions

outlined below are useful for writing more detailed specifications.

Sometimes we define processes with parameters, such as

BUFF in out in out BUFF in out

This is a process-schema, rather than an actual process. It defines a CSP process for

each combination of parameter values. CSP parameters may be integers, real numbers,

events, sets, matrices, etc.

A communication is a special type of event described by a pair , where is the

name of the channel on which the event takes place, and is the value of the message

that is passed.

The set of messages communicable on channel is defined

type

Input and output are defined as follows. A process which first outputs on channel

, then behaves like is defined

Outputs may involve expressions of parameters such as . The

expressions are evaluated according to the appropriate laws.

A process which is initially prepared to input any value communicable on the

channel , then behave like is defined.

type

It is usual for a communication channel to be used by at most two processes at any

time: one for input and the other for output. However this restriction is not enforced in

the modern version of CSP.

Another important aspect to real programming languages is the use of conditionals.

Let be a boolean expression (either true or false). Then

(“ if else ”)

is a process which behaves like if the value of expression is true, or like other-

wise.

These extensions are useful for specifying fine detail during the later stages of pro-

gram refinement. At the design stage we shall tend to stick to abstract, non-determinis-

tic definitions of processes. The deadlock issue will be addressed at this point. In this

way we shall build robust programs for which deadlock-freedom cannot be compro-

mised by implementation decisions made at a later stage.

type of a channel
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Note
These slides have been given by Jan Tretmans in 2006 during a seminar in
Rennes
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Testing

Testing:

checking or measuring some quality characteristics

of an executing object

by performing experiments

in a controlled way

w.r.t. a specification

IUT

teste
r

specification
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Types of Testing

unit

integration

system

efficiency

maintainability

functionality

white box black box

Level of detail

Accessibility

Characteristics

usability

reliability

module

portability
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Automated Model-Based TestingModel-BasedAutomated Testing

model

IUT

IUT
confto
model

TTCNTTCNtest
cases

pass fail

test

tool

test
generation

tool

test
execution

tool

IUT passes  tests

IUT confto model

!
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Approaches to Model-Based Testing

Several modelling paradigms:

! Finite State Machine

! Pre/post-conditions

! Labelled Transition Systems

! Programs as Functions

! Abstract Data Type testing

! . . . . . . .

Labelled Transition Systems
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Model-Based Testing for LTS

test
execution

test
generation

  tests

model

IUT

confto

Involves:

•   model / specification

•   implementation IUT
    + models of IUTs

•   correctness

•   test cases

•   test generation

•   test execution

•   test result analysis

 pass / fail

=
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Labelled Transition System    " S, L, T, s0 #

?coin

?button

!alarm     ?button

!coffee

states

actions transitions
T $ S % (L&{'}) % S

initial state
s0 ( S

Models of Specifications:
Labelled Transition Systems
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?dub

 !choc 

?kwart

!tea

 !coffee

?dub
?kwart

?dub
?kwart

?dub
?kwart

 !choc  

?dub

!tea

Example Models

 !coffee

?dub

!tea

?dub

 !coffee

?dub

(Input-Enabled) Transition Systems
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i ioco s   =def  )* ( Straces (s) :  out (i after *)  $  out (s after *)

Intuition:

i ioco-conforms to s, iff

•  if  i  produces output  x  after trace  *,
   then  s  can produce  x  after  *

•  if  i  cannot produce any output after trace  *,
   then  s  cannot produce any output after  *   ( quiescence  + )

Correctness
Implementation Relation  ioco
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i ioco s   =def  )* ( Straces (s) :  out (i after *)  $  out (s after *)

Correctness
Implementation Relation  ioco

p  +    p =   ) !x ( LU &{'} .   p  !x

out ( P ) =  { !x ( LU | p  !x    ,  p(P }  &  { + | p   +    p,  p(P }

Straces ( s ) =   {  *  ( (L&{+})*  |  s    *      }

p after * =   {  p’  |   p    *     p’  }
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?dub

 !choc 

?kwart

!tea

 !coffee

?dub
?kwart

?dub
?kwart

?dub
?kwart

 !choc  

?dub

!tea

ioco ioc
o

Implementation Relation  ioco

 !coffee

?dub

!tea

s

ioc
o ioco

+
?dub

 !coffee

?dub
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Genealogy of ioco

Labelled Transition Systems

IOTS 
(IOA, IOSM, IOLTS)

Testing
Equivalences
(Preorders)

Refusal Equivalence
(Preorder)

Canonical Tester
conf Quiescent Trace Preorder

Repetitive Quiescent
Trace Preorder

(Suspension Preorder)

ioco

ioconf
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Model-Based Testing for LTS

test
execution

test
generation

  tests

model

IUT

confto

Involves:

•   model / specification

•   implementation IUT
    + models of IUTs

•   correctness

•   test cases

•   test generation

•   test execution

•   test result analysis

 pass / fail

=
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Test Cases

, ‘quiescence’ label  -

, tree-structured

, finite, deterministic

, final states pass and fail

, from each state  .  pass, fail :

• either one input  !a

• or all outputs ?x and -

 ?coffee

!dub

!kwart

?tea

 ?coffee?tea

 -

!dub

 -

pass

failfail

failpass

Model of a test case
  =  transition system :
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Algorithm

To generate a test case from transition system specification s0

compute T(S), with S a set of states, and initially S = s0 after / ;

1 end test case

pass

For T(S), apply the following recursively, non-deterministically:

2 supply input

!a

T( S after ?a . 0 )

ioco Test Generation Algorithm

allowed outputs or +:       !x ( out ( S )

forbidden outputs or +:   !y 1 out ( S )

3 observe output

fail

T ( S after !x )

fail

allowed outputsforbidden outputs
?y

- ?x



   16  ©   Jan Tretmans

 ?coffee

failpass

- ?tea
?choc

failfail

Test Generation Example

test

 ?coffee

failfail

- ?tea

?choc

pass

!dub

s

!tea

 ?dub

!coffee
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Test Execution Example

Two test runs :

t 23 i  dub tea   pass 23 i'

fail 23 i''t 23 i  dub  choc
i fails t

 !choc  

?dub

!tea

i

 ?coffee

failpass

- ?tea
?choc

failfail

test

 ?coffee

failfail

- ?tea

?choc

pass

!dub

i' i''
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Test Result Analysis
Completeness of ioco Test Generation

For every test  t  generated with algorithm we have:

! Soundness :
t  will never fail with correct implementation

i ioco s       implies        i passes t

! Exhaustiveness :
each incorrect implementation can be detected
with a generated test t

i ioco s       implies       4 t :   i fails t

   19  ©   Jan Tretmans

Formal Testing with Transition Systems

exec :
TESTS %

IMPS 5  6
(OBS)

gen : LTS 5
6(TTS)

Ts   $ TTS

s ( LTS

IUT (IMPS

ioco

iIUT (IOTS

passes :
IOTS %
TTS 5

{pass,fail}

Proof soundness and exhaustiveness:

)i(IOTS .

  ( )t(gen(s) . i passes t )

 ! i ioco s

Test assumption :

)IUT(IMP . 4iIUT (IOTS .

   )t(TTS . IUT passes t
                    ! iIUT passes t

pass / fail

=
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Issues with ioco LTS Testing

! Compositional/component-based testing

! Under-specification

! State-space explosion:  symbolic representations for data, . . . . .

! (Non-) Input enabledness

! Test assumption (hypothesis)

! Real-time, hybrid extensions

! Action refinement

! Paradox of test-input enabledness

! . . . . .
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“Output” Enabled Test Cases

, ‘quiescence’ label  -

, tree-structured

, finite, deterministic

, final states pass and fail

, from each state  .  pass, fail :

• either one input  !a

• or all outputs ?x and -

!dub

!kwart

?tea

 ?coffee?tea

 -

!dub

 -

pass

failfail

failpass

Model of a test case
  =  transition system :

failfail

 ?coffee
?tea

failpass

 ?coffee
?tea

failfail

 ?coffee
?tea

 ?coffee
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!x

?ok

 !err

?but

?but

?but

!err

?but

!ok

?ok

?ok
?er
r

 !x

?err

!y

?ok
?err

?ok
?err

?ok
?err

 ?but

'

!x

i1   ioco   s1

i2   ioco   s2

ioco s1||s2
i1||i2

ok
err

but

X
y

ok
err

but

X
y

Component Based Testing

'?but

?but

?but

!y

?but
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Compositional Testing

Component Based Testing

i1

i2 s2

s1

ioco

i1 ioco s1

i2 ioco s2

s1 || s2i1 || i2

If s1, s2 input enabled - s1, s2 ( IOTS - then ioco is preserved !
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Underspecification:  uioco

?a
?a

?b

 !z

?b?a

 !y !x

i ioco  s   ! )* ( Straces(s) : out ( i after *)  $  out ( s0 after *)

s0

s1 s2

out ( s0 after ?b )  =  0

but  ?b 1 Straces(s) :  under-specification :

anything allowed after  ?b

out ( s0 after ?a ?a )  =  { !x }

and  ?a ?a ( Straces(s)

but from s2 ,  ?a ?a  is under-specified :

anything allowed after ?a ?a ?
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?a
?a

?b

 !z

?b?a

 !y !x

s0

s1 s2

i uioco  s   ! )* ( Utraces(s) : out ( i after *)  $  out ( s0 after *)

Now s is under-specified in s2 for ?a :

anything is allowed.

Utraces(s)   =

  {  * ( Straces (s)   |   ) *1 ?a  *2 = *,

     ) s':   s    
*
1    s'  7  s'   

?a       }

ioco  8  uioco

Underspecification:  uioco
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 LI&LU
' '

 LI

9
?a

?a

?b

 !z

?b?a

 !y !x

s0

s1

?b

9

?a

9

s2

Alternatively, via chaos process 9
for  under-specified inputs 

Underspecification:  uioco

i uioco  s   ! )* ( Utraces(s) : out ( i after *)  $  out ( s0 after *)
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Testing Components

method
invocations

IUT
component

||

IUT
component

method
invocations

methods
invoked

method
call

IUT
component

method
returned

method
called

method
return

IUT
component

method
invocation
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Testing Components

tester

method
call

IUT
component

method
return

method
call

method
return

LI   =  offered methods calls  & used methods returns

LU  =  offered methods returns  & used methods calls

specification
s  ( 

LTS(LI, LU)
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Testing Components

tester

method
call

IUT
component

method
return

method
call

method
return

Input-enabledness:

) s of IUT,  ) ?a ( LI :   s
 ?a

No ! ?
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i uioco s   =def  )* ( Utraces (s) :  out (i after *)  $  out (s after *)

Correctness
Implementation Relation  wioco

in (s after *)       =   {  a? ( LI  |  s after *  must a?  }

i wioco s   =def  )* ( Utraces (s) :  out (i after *)  $  out (s after *)

      and    in (i after *)  :  in (s after *)

s after * must a?   =   ) s’  ( s    *     s’   7   s’   a?    )
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Variations on a Theme

i ioco  s    ! )* ( Straces(s) : out ( i after *)  $  out ( s after *)

i ;ior s    ! )* ( ( L &{+} )* : out ( i after *)  $  out ( s after *)

i ioconf s  ! )* (  traces(s)  : out ( i after *)  $  out ( s after *)

i ioco
F

 s   ! )* ( F  :           out ( i after *)  $  out ( s after *)

i uioco s   ! )* ( Utraces(s) : out ( i after *)  $  out ( s after *)

i mioco  s   multi-channel ioco

i wioco  s   non-input-enabled ioco

i sioco  s symbolic ioco

i (r)tioco  s (real) timed tioco    (Aalborg, Twente, Grenoble, Bordeaux,. . . .)

i iocor  s refinement ioco

i hioco  s hybrid ioco

. . . . . .
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?dub

 !choc 

?kwart

!tea

 !coffee

?dub
?kwart

?dub
?kwart

?dub
?kwart

 !choc  

?dub

!tea

ioco ioc
o

Implementation Relation  ioco

 !coffee

?dub

!tea

s

ioc
o ioco

+
?dub

 !coffee

?dub

;ior

; ior

; ior

;
ior
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out (i after ?dub.?dub)  = out (s after ?dub.?dub)  =  { !tea, !coffee }

i ioco s

Implementation Relation  ioco

i ioco s   =def  )* ( Straces (s) :  out (i after *)  $  out (s after *)

i

?dub

?dub

?dub ?dub

!tea

?dub

?dub

 !coffee

?dub

s

 !coffee

?dub

?dub

?dub ?dub

!tea

?dub

?dub

?dub

?dub

!tea

s ioco i

out (i after ?dub.+.?dub) = { !coffee }  . out (s after ?dub.+.?dub) = { !tea, !coffee }

i ioconf s

s ioconf i
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Variations on a Theme:  mioco

IUT

i mioco  s   ! )* ( Straces'(s) : out' ( i after *)  $  out' ( s after *)

p  +k    p =   ) !x ( Lk & {'} .  p  !x

out' ( P ) =  { !x ( LU | p  !x    ,  p(P }  &  { +k| p  +k
    p,  p(P }

Straces' ( s ) =   {  *  ( (L&{+k})* | s    *      }

LU
1

LU
3

LU
2

LI
1

LI
2
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? money

? button1 ? button2

! coffee! tea

test case

fail

! money

! button2

 ? tea

fail

? coffee  <

pass

" n: int #

[ n = 35 ] -> [ n = 50 ] ->

with data 

model

and hybrid 
and time 

c := 0

c < 10 c < 15

[ c = 5 ] ->

c := 0

d Vt  / dt = 3 d Vc / dt = 2

   Vc := 0

[Vc = 10 ] ->

  Vt := 0

 [Vt = 15 ] ->

?

Testing Transition Systems: StatusExtensions

?coin1

?coin3

?coin2

and action
refinement
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Transition System with Data

in ? n :

int

 out ! m : int
[ 0 < m < n ]

 out ! m : int
[ 0 < m < -n ]

unfolding

Disadvantages:
!infinity
!loss of information

(e.g. for test selection)

out1

out2
out1

out1
out2
out3

out1

out2
out1

out1
out2

out3

in0in-2
in-1 in3in2

in1
in-3

out2
out1

out1
out2

out3
out2

out1

out1
out2

out3
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Symbolic Data

IOSTS
sioco

STEST

symbolic
test

generation

STS

LTS IOTS
ioco

test
generation   test

execution

TEST
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Symbolic Transition System

in ? n :

int

lo

l3

l1

l2

 out ! m : int

[ 0 < m < v ]

 out ! m : int

[ 0 < m < -v ]

location

v := n
switch

gate

interaction
variable

location
variable

switch
restriction

update
mapping

STS:

!LTS with explicit
    data, variables and
    constraints

!Data:
    first order logic

!Finite, symbolic
    representation
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Symbolic Transition System

in ? n :

int

lo

l3

l1

l2

 out ! m : int

[ 0 < m < v ]

 out ! m : int

[ 0 < m < -v ]

v := n

out1

out2
out1

out1
out2
out3

out1

out2
out1

out1
out2

out3

in0in-2
in-1 in3in2

in1
in-3

semantics
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+ [ -1 ; v ; 1]

+ [true]

+ [true]+ [true]

Symbolic Quiescence

in ? n :

int

lo

l3

l1

l2

 out ! m : int

[ 0 < m < v ]

 out ! m : int

[ 0 < m < -v ]

v := n

Symbolic quiescence in location l1:

>(l1)  =    ¬4 m:int .  0 < m < -v

 ? ¬4 m:int .  0 < m < v

         =  -1 ; v ; 1

Symbolic suspension switch relation

lo l1
in? +   [ -1 ; n1 ; 1]   v:=n1

Symbolic state

( l1, [ -1 < n1 < 1 ], v:=n1 )

Semantics of symbolic state

{  ( l1, -1 ),  ( l1, 0 ),  ( l1, 1 )  }
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Symbolic Trace, After, . . .

Symbolic suspension trace

……  pair of …… ( sequence of gates,
  formula over indexed interaction
  variables and location variables ) ......

Symbolic afters

……  <symbolic state>  afters  <symbolic suspension trace>  ......

Lemma

   [[  <symbolic state>  afters  <symbolic suspension trace>  ]]

=

   [[ <symbolic state> ]]  after  [[ <symbolic suspension trace> ]]
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Symbolic ioco

in ? n :

int

lo

l3

l1

l2

 out ! m : int

[ 0 < m < v ]

 out ! m : int

[ 0 < m < -v ]

v := n

sioco
?in ? n :

int

lo

l2

l1

 out ! m : int

[ -v < m < v ]

v := n

in ? n :

int

in ? n :

int
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An Application: Coverage

in ? n :

int

lo

l3

l1

l2

 out ! m : int

[ 0 < m < v ]

 out ! m : int

[ 0 < m < -v ]

v := n

Location coverage
   lo, l1, l2, l3

Semantic state coverage

    lo, (l1,0), (l1,1), (l1,2), (l1,3), ……,
   (l1,-1), (l1,-2), (l1,-3), ……, 
   (l2,2),……, (l2,2), ……

Symbolic state coverage

( lo, [true], v:=v )

( l1, [true], v:=n1 )
( l1, [ -1 < n1 < 1 ], v:=n1 ) 
( l2, [0 < m2 < -n1], v:=n1 )
( l3, [0 < m2 < n1 ], v:=n1 )
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Concluding

! Testing can be formal, too   (M.-C. Gaudel, TACAS'95)

, Testing shall be formal, too

! A test generation algorithm is not just another algorithm :

, Proof of soundness and exhaustiveness

, Definition of test assumption and implementation relation

! For labelled transition systems :

, ioco for expressing conformance between imp and spec

, a sound and exhaustive test generation algorithm

, tools generating and executing tests:

TGV, TestGen, Agedis, TorX, . . . .
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Model based formal testing can improve the testing process :

" model is precise and unambiguous basis for testing

, design errors found during validation of model

" longer, cheaper, more flexible, and provably correct tests

, easier test maintenance and regression testing

" automatic test generation and execution

, full automation :  test  generation + execution + analysis

" extra effort of modelling compensated by better tests

Perspectives
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Thank You

Expression, substitution, proper state
Semantics and proof of a program

Proof system

Chapter 10 : Program Verification by Invariant Technique

1 Expression, substitution, proper state

2 Semantics and proof of a program

3 Proof system
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Verification of sequential programs by invariant techniques

Note
These slides are a summary of the first part of the course :
“Preuves automatiques et preuves de programmes”
given till 2007 by Prof. Jean-François Raskin

365

Expression, substitution, proper state
Semantics and proof of a program

Proof system

References

References
Verification of sequential and concurrent programs, K. R. Apt, E.-R.
Olderog, Springer-Verlag, 1991.
Logic in Computer Science, Modeling and Reasoning about Systems, R.
A. Huth, M. D. Ryan, Cambridge University Press, 1999.
The B-Book, Assigning Programs to Meanings, Cambridge University
Press, 1995.
Program Verification, Nissim Francez, Addison-Wesley Plublishing
Company, 1992.

366



Expression, substitution, proper state
Semantics and proof of a program

Proof system

Plan

1 Expression, substitution, proper state

2 Semantics and proof of a program

3 Proof system
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Variables, constants, expressions

Variables, constants, expressions

Simple variables and arrays
simple constants
relations and functions (= higher order constants)
if B then s1 else s2

Expressions s and Assertions p

Var(s) : set of variables of s

Free(p) : set of variables not bounded by a quantifier 9x or 8x
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Substitution s ⌧ u := t �

Unformally it gives the expresion s where the variable u is inductively
replaced by the expression t

Substitution s ⌧ u := t �
A formal definition of substitution can be defined (not given here).
When s contains arrays or quantifiers, the definition needs some care.
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Semantic of expressions and assertions

Semantics of expressions and assertions

The semantic value of an expression s is an element in a semantic
domain.
Notation : I[[s]] : value in the semantic domain of s.
DT domain of a type T .
DInteger = {0, 1,�1, 2,�2, . . .} ;
DBoolean = {true, false} ;
DT1⇥···⇥Tn)T = DT1 ⇥ · · ·⇥DTn )DT ,
The semantic domain

D =
S

T a type DT
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Interpretation of variables

Interpretation of variables

The semantics of variables is not fixed ; but it is given with the notion of
proper state :

� : Var ! D

with �(x) 2 DT if x is of type T .

Then if a is an array of n dimensions �(a) is a function of type
DT1 ⇥ · · ·⇥DTn ! DT , and if d1 2 DT1 , . . . , dn 2 DTn then
�(a)(d1, . . . , dn) 2 DT .
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Semantics of expressions in a proper state

I[[s]] : ⌃! D

If s is a simple variable :

I[[s]](�) = �(s)

If s is a constant of a basic type which denotes value d :

I[[s]](�) = d

If s ⌘ op(s1, . . . , sn) with the constant op of higher type which denotes
the function f :

I[[s]](�) = f (I[[s1]](�), . . . , I[[sn]](�))
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Semantics of expressions in a proper state (cont’d)

I[[s]] : ⌃! D

s ⌘ a[s1, . . . , sn] is an array :

I[[s]](�) = �(a)[I[[s1]](�), . . . , I[[sn]](�)]

s ⌘ if B then s1 else s2 :

I[[s]](�) =
⇢

I[[s1]](�) if I[[B]](�) = true;
I[[s2]](�) if I[[B]](�) = false.

s ⌘ (s1) :
I[[s]](�) = I[[s1]](�)

I[[·]] is fixed for the constants : hence I[[s]](�) is shorten by �(s).
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Semantics of expressions and assertions : update of a proper state

� ⌧ u := d �
where u is a simple or indexed variable of type T .

If u is a simple variable : � ⌧ u := d � is the proper state where u has
the value d and the value of the other variables is the same than the one
in � ;
If u ⌘ a[t1, . . . , tn] then � ⌧ u := d � is the proper state which gives the
same value than � to all variables except for a :

� ⌧ u := d � (a)(d1, . . . , dn) =
⇢

d if
V

i di = �(ti)
�(a)(d1, . . . , dn) otherwise.
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Semantics of expressions and assertions (cont’d) : states defined by an
assertion p

[[p]] = {� 2 ⌃|� |= p}
Some properties :

[[¬p]] = ⌃ \ [[p]] ;
[[p _ q]] = [[p]] [ [[q]] ;
[[p ^ q]] = [[p]] \ [[q]] ;
p ! q () [[p]] ✓ [[q]] ;
p $ q () [[p]] = [[q]].
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Substitution lemma

The restriction of a proper state � to a subset of variables X , is denoted :

�bXc

lemma
For any assertion p, expressions s, r and proper states � and ⌧ :

If �bVar(s)c = ⌧bVar(s)c then �(s) = ⌧(s) ;
If �bFree(p)c = ⌧bFree(p)c then � |= p iff ⌧ |= p.

Substitution lemma
For any assertion p, expressions s and t , u a simple or indexed variable of
same type than t , and a proper state � :

1 �(s ⌧ u := t �) = � ⌧ u := �(t)� (s) ;
2 � |= p ⌧ u := t � () � ⌧ u := �(t)�|= p

The proofs are omitted here
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Formal proof

Hoare triples

Correctness formula

{p} P {q}

Proof system :
Axioms : “given formulas” ;
Proof rules : used to establish “new” formulas from axioms or already
established formulas.
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Formal proof

Format of a rule

�1, . . . ,�n

 
where “...”

This rule says that  can be established if �1, . . . ,�n have already been
established and if “...” is verified.

Definitions
A proof is a sequence of formulas '1, . . . ,'n such that 'i is an axiom or
can be established from formulas in {'1, . . . ,'i�1} with proof rules.
A theorem is the last formula of a proof.
Given a proof system P, we denote `P  if  can be established from
the proof system P.
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A programming language and its formal semantics

Syntax

S ::= skip
|u := t
|S1;S2

|if B then S1 else S2 fi
|while B do S1 od

u is a simple or index variable, t is an expression and B is a boolean
expression.

We suppose programs are well typed.

Abbrevation :

if B then S1 fi
is the short for

if B then S1 else skip fi
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A programming language and its formal semantics

Semantics of a program

A program defines a function from initial states to final states :

M[[S]] : ⌃! ⌃ [ {?}

where ? denotes divergence.

Two approaches exist to define M[[S]] :

the denotational and
the operational approach.
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A programming language and its formal semantics

We suppose a high level operational semantics where assignments and tests
are atomic.

transitions between “configurations”

hS,�i ! hR, ⌧i

Execute S from the state � produces the state ⌧ and R is the part of the
program which remains to be excuted.

Note : to express the termination, we can have R ⌘ E (the empty program).

M[[S]] is based on the relation! on S.
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A programming language and its formal semantics

The relation! can be defined with a formal proof system (Hennessy and
Plotkin), the result is a transition system.

Proof system for a deterministic and sequential program

It is defined with the following axioms and inference rules :
1 hskip,�i ! hE ,�i
2 hx := t ,�i ! hE ,� ⌧ x := �(t)�i

3
hS1,�i ! hS2, ⌧i

hS1;S,�i ! hS2;S, ⌧i (and E ;S ⌘ S)

4 hif B then S1 else S2 fi,�i ! hS1,�i where � |= B
5 hif B then S1 else S2 fi,�i ! hS2,�i where � 6|= B
6 hwhile B do S1 od,�i ! hS1;while B do S1 od,�i where � |= B
7 hwhile B do S1 od,�i ! hE ,�i where � 6|= B

hS,�i ! hR, ⌧i is possible iff it can be deduced with the proof system.
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A programming language and its formal semantics

Definitions
A transitions sequence of S which starts in � is a finite or infinite
sequence of configurations hSi ,�ii such that

hS,�i ! hS1,�1i ! · · ·! hSi ,�ii ! . . .

An execution of S which starts in � is a transition sequence from � which
cannot be extended.
An execution of S which starts in � is divergent if the execution is infinite.

We consider as programs :
deterministic : for each pairs hS,�i there is at most one successor for! ;
non blocking : if S 6⌘ E then each � 2 ⌃, hS,�i has a successor for!
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A programming language and its formal semantics

Semantics of S

We consider two semantics :
partial correctness semantics :

M[[S]](�) = {⌧ |hS,�i !⇤ hE , ⌧i}
total correctness semantics :

Mtot [[S]](�) = {⌧ |hS,�i !⇤ hE , ⌧i} [ {?|S diverges from �}
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A programming language and its formal semantics

Some more notions :
⌦ ⌘ while true do skip od, a never ending program ;
(while B do S od)0 = ⌦ ;
(while B do S od)k+1

= if B then S; (while B do S od)k

else skip
.
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A programming language and its formal semantics

Semantic function

M[[S]], Mtot [[S]] are extended to ⌃ [ {?} with :
M[[S]](?) = ? and Mtot [[S]](?) = {?}

and to sets with :
M[[S]](X ) =

S
�2X M[[S]](�)

Mtot [[S]](X ) =
S

�2X Mtot [[S]](�)

Notation : N [[S]] stands for M[[S]] and Mtot [[S]]
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A programming language and its formal semantics

Some properties of semantic functions

N [[S]] is monotone ;
N [[S1;S2]](X ) = N [[S2]](N [[S1]](X )) ;
N [[(S1;S2);S3]](X ) = N [[S1; (S2;S3)]](X ) ;
N [[if B then S1 else S2fi]](X ) =
N [[S1]](X \ [[B]]) [N [[S2]](X \ [[¬B]]) ;
M[[while B do S1od]]
=

S1
k=0 M[[(while B do S1od)k ]]
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A programming language and its formal semantics

Definitions
For a program S

Var(S) : variables used by S

Change(S) : variables changed by S

Other properties

For any proper states � and ⌧ , if ⌧ 2 N [[S]](�) :
⌧bVar \ Change(S)c = �bVar \ Change(S)c

for any proper states � and ⌧ such that ⌧bVar(S)c = �bVar(S)c :
N [[S]](�)bVar(S)c = N [[S]](⌧)bVar(S)c
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Definition of correct program

The correctness formula {p}S{q} is true :

for the partial correctness, denoted |= {p}S{q}, iff
M[[S]]([[p]]) ✓ [[q]]

for the total correctness, denoted |=tot {p}S{q}, iff
Mtot [[S]]([[p]]) ✓ [[q]]
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Plan

1 Expression, substitution, proper state

2 Semantics and proof of a program

3 Proof system
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Proof system for the partial correctness

Fact
The previous method involves semantic definitions which are not obvious to
check.
A formal proof system can be used which directly uses correctness formulae.
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Proof system for the partial correctness

Axioms and rules of the proof system for partial correctness :

skip Ax1 : {p}skip{p}
assignment Ax2 : {p ⌧ u := t �}u := t{p}

Composition R3 : {p}S1{r}, {r}S2{q}
{p}S1;S2{q}

Test R4 : {p ^ B}S1{q}, {p ^ ¬B}S2{q}
{p}if B then S1 else S2fi{q}

Iteration R5 : {p ^ B}S{p}
{p}while B do S od{p ^ ¬B}

consequence R6 : p ! p1, {p1}S{q1}, q1 ! q
{p}S{q}
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Proof system for the partial correctness

Example of partail correctness

For

S ⌘ x := 1;
a[x ] := 2;

do we have ?

|=? {true}S{a[1] = 2}
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Proof system for the partial correctness

Example from Tony Hoare : the integer division

specification :
{x � 0 ^ y � 0}
DIV

{quo · y + rem = x ^ 0  rem < y}
the program DIV :

quo := 0;
rem := x ;
while rem � y do

rem := rem � y ;
quo := quo + 1;

end while
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Proof system for the partial correctness
To establish :

{x � 0 ^ y � 0}
DIV

{quo · y + rem = x ^ 0  rem < y}

we have to find an invariant p such that :
1 The invariant is verified when the while is reached :

{x � 0 ^ y � 0}
quo := 0; rem := x ;
{p}

2 The invariant remains true after each iteration :
{p ^ B}
rem := rem � y ; quo := quo + 1
{p}

3 When the condition in the while becomes false it implies the
post-condition :
p ^ ¬B ! quo · y + rem = x ^ 0  rem < y

Find p : p ⌘ quo · y + rem = x ^ rem � 0

Generally the invariant is found by weakening the post-condition (it cannot be
automatized).
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Proof system for total correctness

Axioms and rules for the total correctness
Axioms and rules for the partial correctness (A1-R6), together with :

iteration II R7 :
{p ^ B}S{p},
{p ^ B ^ t = z}S{t < z},
p ! t � 0
{p}while B do S1 od{p ^ ¬B}

t is called termination function.
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Total correctness Example : the integer division

Termination function ?

t ⌘ rem

The invariant used for the partial correctness was too weak.
We need the following invariant for the proof of the total correctness :

p0 ⌘ quo · y + rem = x ^ rem � 0 ^ y > 0
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Partial and total correctness

Full example : Fibonacci’s suite

Definition of Fibonacci’s suite :

F0 = 0
F1 = 1
Fn = Fn�1 + Fn�2, with n � 2

Notation fib(n) = Fn

Specification :
{n � 0}S{x = fib(n)}

Program S ⌘

x := 0;
y := 1;
count := n;
while count>0 do

h := y ;
y := x + y ;
x := h;
count := count � 1

end while
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Partial and total correctness : Fibonacci’s suite

Which intermediate formulas do we need to establish ?
1 `? {n � 0}x := 0; y := 0; count := n; {p} ;

The invariant p is true when the while is reached :
2 `? {p ^ count > 0}h := y ; y := x + y ; x := h; count := count � 1; {p} ;

The loops preserves the invariant ;
3 `? p ^ ¬(count > 0)! x = fib(n).

At the exit of the while, the postcondition is verified ;
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Partial and total correctness : Fibonacci’s suite

For the total correctness :
1 `? {t = z}h := y ; y := x + y ; x := h; count := count � 1; {t < z}

The termination function t decreases at each loop’s iteration
2 `? p ! t � 0 ;

The termination function has always a positive value when the invariant
is true.
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Partial and total correctness : Fibonacci’s suite

Which invariant do we need ?

p ⌘ x = fib(n � count)
^y = fib(n � count + 1)
^count � 0

Which termination function do we need ?

t ⌘ count
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Soundness and completeness of the proof systems

When using the proof systems ` and `Tot, we directly use correctness
formulas.
Are we sure that the proofs in ` and `Tot really means that the program is
correct ?
Two questions on ` and `Tot are important :

Are they sound : are the proven correctness formulas established from `
and `Tot valid ?
Are they complete : for any correct program, can we use these proof
systems to establish correctness ?
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Soundness and completeness of the proof systems

Recalls
Semantic definition of partial correctness :

|= {p}S{q}
iff 8� 2 [[p]] : M[[s]](�) = ? _M[[s]](�) 2 [[q]] iff M[[s]]([[p]]) ✓ [[q]]

Syntaxical definition of partial correctness :
` {p}S{q}

iff there exists a theorem in the proof system (corresponding to the
partial correctness semantics) for the correctness formula.
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Soundness of the proof systems

Definition : sound proof system

The proof system ` is sound for |= iff :

` � implies |= �, for all formula �

In our case, we want to establish that :
` is sound for the partial correctness :

` {p}S{q} implies |= {p}S{q}
`Tot is sound for the total correctness :

`Tot {p}S{q} implies |=Tot {p}S{q}
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Completeness of the proof systems

Recall
A proof system is complete if it allows to establish the proof of any valid
formula, i.e. :

|= � implies ` �, for any formula �

In our case we want to establish that :
for all partial correctness formula such that : |= {p}S{q}, we have
` {p}S{q}
for all total correctness formula such that : |=Tot {p}S{q}, we have
`Tot {p}S{q}
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Completeness of the proof systems : relative completeness

The notion of completeness that we study is relative to the assertion
language used and to its interpretation.

Hypothesis needed

The proof system is extended with all the valid assertions.
For instance we will have :

|= 3⇥ (a + b) = 3⇥ a + 3⇥ b and then ` 3⇥ (a + b) = 3⇥ a + 3⇥ b ;
|= a � b ! a⇥ a � b ⇥ b and then ` a � b ! a⇥ a � b ⇥ b ;
...

407

Expression, substitution, proper state
Semantics and proof of a program

Proof system

Completeness of the proof systems : Weakest precondition (Dijkstra)

Given the deterministic sequential program S and � a set of proper states.

Definitions : weakest (liberal) precondition

wlp(S,�) = {� | M[[S]](�) ✓ �}
wp(S,�) = {� | Mtot [[S]](�) ✓ �}

wlp = weakest liberal precondition
wp = weakest precondition
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Completeness of the proof systems : Weakest precondition (Dijkstra)

wlp(S,�) / wp(S,�)

wlp(S,�) is the set of proper states from which if S is executed , and if
the execution terminates then the final state belongs to � ;
wp(S,�) is the set of proper states from which if S is executed , the
execution does terminate and the final state belongs to �.
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Completeness of the proof systems / completeness of the assertion
language

Lemma
For any program S and assertion q,

1 there exists an assertion p such that
[[p]] = wlp(S, [[q]])

2 there exists an assertion p such that
[[p]] = wp(S, [[q]])
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Completeness of the proof systems

Properties of the operators wlp and wp

For any program S, S1, S2 and assertions p and q :
1 |= wlp(skip, q)$ q
2 |= wlp(u := t , q)$ q ⌧ u := t �
3 |= wlp(S1;S2, q)$ wlp(S1,wlp(S2, q))
4 |= wlp(if B then S1 else S2, q)$ (wlp(S1, q) ^ B) _ (wlp(S2, q) ^ ¬B)
5 |= wlp(S, q) ^ B $ wlp(S1,wlp(S, q)) , where S ⌘ while B do S1 od
6 |= wlp(S, q) ^ ¬B $ q where S ⌘ while B do S1 od
7 |= {p}S{q} iff p ! wlp(S, q)

There properties are also true with the operator wp.
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Completeness of the proof systems : completeness of the expressions
language

Second hypothesis needed

We consider that the language of expressions is expressive in the following
way :
Lemma : for any computable partial function : F : ⌃! integer, there is an
integer expression t such that for any proper state �, if F (�) is defined then :

F (�) = �(t)
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Completeness of the proof systems

Completeness theorem

The proof systems ` and `Tot are complete for the partial and total
correctness.

Proof omitted
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