
ANTHONY DEBRUYN

BRIAN DELHAISSE

QUENTIN DELHAYE

Embedded Systems Design

The GOAT
The Gate Opener Actioned by Ticket

GILLES GERAERTS INFO-F-410

Contents

1 Introduction 3

2 The Model 3

3 The Strategy 3
3.1 Winning conditions . 3
3.2 Generated strategy . 4

4 Physical Implementation 5
4.1 Parts list . 5
4.2 Electronic schematic . 5
4.3 Electronic circuit . 5
4.4 The structure . 5

5 Pictures of the project 6

6 Future work 6

7 Conclusion 6

A Arduino Code 7

2

1 Introduction

For the course "Embedded Systems Design", we were asked to implement a system inspired from subject
in the course. We chose to use UppAal Tiga to design and create a strategy for a sas controlled by an
Arduino Uno. This sas is composed of 2 doors actioned by servomotors. Infrared sensors are used to
detect the person entering the sas. The opening of the second door of the sas is triggered by the scan of
a valid card (rectangle with holes). Once someone is inside the sas, a timer is triggered to prevent the
person to stay indefinitely inside. An alarm is activated once the timer is out.

2 The Model

In this section we will describe the physical properties that the system must satisfy, and make the link
with the model.

First we want the system to always have at least one door closed. This is ensured by the 3 available
configurations in the model: 01 meaning door 1 open and door 2 closed, 10 meaning the opposite, and
00 meaning no door open.

Secondly, we want the back door (door 2) to open only if the user present one valid card having 2
holes in it.

The user also has to be ejected after some time if he does not show a valid card. This would prevent
the user from staying indefinitely in the sas, blocking the other users. This is done by the timer in the
model for the sas and the eject message.

The sas must detect the insertion of a card, even if it is not valid. This is modeled with the cardIn
message in the UppAal Tiga systems.

An infrared sensor system has to detect the entry and exit of the user in order to react with the ap-
propriate door configuration, and (de)activate the alarm. In the model, the infrared sensors are modeled
with the infra1 & infra2 signal.

The user must be able to escape the sas at any time. This is done with the infra1 sensor. If the user
puts himself in front of the sensor, the front door opens to let him out.

The figures 1 and 2 represent these and the listings 1, 2 and 3 are their declarations.

1 chan infra1, infra2, cardIn, eject;

2 clock timeInSas;

3 const int SAS_TIMER = 10;

4 int gateConf = 1;

5 int userCard;

Listing 1: Global declarations of the systems.

1 clock x;

Listing 2: Declarations of the user model.

1 clock x;

Listing 3: Declarations of the sas model.

3 The Strategy

3.1 Winning conditions

A[] not(User.in_sas and User2.in_sas)

Both users are never in the sas at the same time.

E<> User.after_sas

It is possible for the user to reach the other side of the sas. He won’t succeed on every try, but if he
wants to, he will.

3

Figure 1: The user model

Figure 2: The sas model

A[] not (User.FAIL)

We want to verify if the user will always avoid the FAIL state. At the instant timeInSas = SAS_TIMER

the system has two choice: either take Sas.handling_user to Sas.idle, or User.in_sas to User.before_sas.
The FAIL state is thus reachable and the test is expected to fail.

control: A[] not(User.FAIL or User2.FAIL)

4

Here, we play in a controller game. Having the controller collaboration, when the system is given
the opportunity to either win or lose, well, it chooses to win.

Please bear in mind here that we suppose that the eject! signal sent by the Sas has force of
law. Hence, we know that when the controller is trying to comply with a winning condition,
our physical system will be able to overcome the quite strong hypothesis made by the simulation
tool stating that the environnement is always able to act faster than the controller. This liberty is
represented by the controllable edge between User.in_sas and user.FAIL.

3.2 Generated strategy

The following strategy has been generated using a system with only one user for readability pruposes.

Verifying property 5 at line 28

-- Property is satisfied.

$v_gameInfoPlayInitial state:

(User.before_sas Sas.idle) gateConf=1

(timeInSas==User.x && User.x==Sas.x && Sas.x==0)

Strategy to avoid losing:

State: (User.after_sas Sas.idle) gateConf=1

While you are in true, wait.

State: (User.before_sas Sas.idle) gateConf=1

While you are in true, wait.

State: (User.in_sas Sas.handling_user) gateConf=2

While you are in (timeInSas<=10), wait.

State: (User.in_sas Sas.process_card) gateConf=0

When you are in (timeInSas<=10),

take transition Sas.process_card->Sas.handling_user { 1, tau, gateConf := 2 }

State: (User.in_sas Sas.process_card) gateConf=2

When you are in (timeInSas<=10),

take transition Sas.process_card->Sas.handling_user { 1, tau, gateConf := 2 }

State: (User.in_sas Sas.handling_user) gateConf=0

While you are in (timeInSas<=10), wait.

5

4 Physical Implementation

4.1 Parts list

For our prototype, we used:

• a microcontroller: Arduino UNO.

• 5 resistances (220Ω).

• 3 leds (1red, 1yellow, 1green).

• 2 analog servo motors (FS5103B).

• 2 infrared proximity sensors short range.

• 2 photoresistors.

• 1 micro switch (DM3).

• 1 buzzer.

• 1 battery pack holder for 4x AA batteries + the 4xAA batteries.

• jump wires.

• 3 half-size protoboards.

4.2 Electronic schematic

Figure 3: Electrical diagram (modeled with Fritzing). Legend: red wires are connected to the positive
terminal (of the arduino or the external battery), black wires are connected to the ground, green wires
connect the electrical components to the analog input pins, and the blue wires connect electrical compo-
nents to digital output pins.

Once the arduino is connected to a computer or to a battery, the positive terminal of the arduino
supplies a tension of 5V to the electrical system, which can be seen on the figure 3. Because the servo

6

motors drain a lot of current, another external battery was needed to supply enough current for both
servo motors. Thus, an external battery has been connected to one of the servo. To avoid any other
problems, we connected the ground of this one to the same ground as the arduino.

The resistors in front of each led are there so that the leds don’t overdrive and burn out. The red led
is always on until a card is inserted into the system. The card will push on the lever of the micro switch
leading to the yellow led to turn on, and to the current to flow into the photoresistors.

The 2 resistors R4 and R5 with the photoresistors R6 and R7 form respectively a voltage divider. The
voltage measured differs with the intensity of the light, that is, brighter the light is smaller the resistance
of the photoresistor is. The resulting tension of those dividers are measured on the analog input pins
A0 and A1 of the arduino. If the tension of each photoresistor is between a certain value, then the
microcontroller is programmed to turn on the green led, and activate the 2nd servo motor (S2) in order
to open the last door of the sas.

If the user stays too long in the sas, the arduino can also trigger an alarm with the buzzer.
The 2 infrared proximity sensors IR1 and IR2 are there to detect if an object/person has entered or

leaved the sas, they are respectively connected to the analog input pins A4 and A5. Based on the value
measured, the microcontroller will activate one of the servo motors to close one of the gates, or to stop
the buzzer.

4.3 Electronic circuit

On the real circuit, we used 3 breadboards because of the jump wires length that were too short. The 2
left protoboards on the figure 4 are perpendicular to each other, in order to the card to be able to push
on the lever of the micro switch, and to the photoresistors to be perpendicular to the card.

Figure 4: The Circuit (modeled with Fritzing).

4.4 The structure

The sas was build using Lego bricks, and the doors are in carton and connected to the servomotors
with paperclips. We used cardboard to create some cards. A valid card has a hole in front of each
photoresistor, so that the light can pass through it and be detected by the photoresistors. The final
physical prototype can be found on the figure 5.

7

5 Pictures of the project

The final prototype can be seen on the following figure 5.

Figure 5: Final prototype

6 Future work

Since we only use one infrared sensor at each door, we do not know the direction of the passing user.
This causes problems in several situations:

• If the user stays too long in the sas and the alarm activate, another user can enter in the sas. The
alarm then stops. Now a third user can enter, and the front door closes. If one of the 2 users already
in the sas puts something in front of the sensor, the front dool closes as well. Thus any number of
people enter the sas and go to the other side with one valid card.

• The same infrared problem occurs on the other side. If one user enters the sas from the back door
when it is open, after the user has shown a valid card, the sas closes the second door. There are
then 2 users in the sas, and the front door opens again, letting the second user escape.

These 2 problems could be resolved by using 2 more sensors to detect the direction of the passing
user. Anoher solution could be to consider that the sas has only room for one person only.

7 Conclusion

This project has enabled us to understand how we design embedded systems, by using specific tools
to verify that a system respect some given proprieties. It was a rich experience to do the different parts
of a project: the design of the model, the production of the code from the generated strategies, and the
physical implementation so that we can see that our model really works in the real world.

8

A Arduino Code

As mentionned above, the following code has been produced based on the generated strategies.� �
1 #include <Servo.h>

2

3 Servo servo1; // create servo object to control a servo

4 Servo servo2;

5

6 int pos1; // variable to store the servo position

7 int pos2;

8

9 const int ledPin = 7; // the number of the LED pin

10 const int buz = 8;

11 int buzCount = 0;

12

13 int gateConf;

14 unsigned long startTime;

15 const int SAS_TIMER = 5000;

16 boolean userIn;

17

18 #define but1 A4

19 #define but2 A5

20 #define infra1 (analogRead(A4) > 550)

21 int infra1Count;

22 #define infra2 (analogRead(A5) > 500)

23 int infra2Count;

24 #define cardIn (analogRead(A0) > 0 && analogRead(A1) > 0)

25

26 void setup()

27 {

28 pos1 = 0;//Opened

29 pos2 = 90;//Closed

30 servo1.attach(9); // attaches the servo on pin 9 to the servo object

31 servo2.attach(11);

32 Serial.begin(9600);

33 servo1.write(pos1);

34 delay(150);

35 servo2.write(pos2);

36 delay(150);

37

38 // set the digital pin as output:

39 pinMode(ledPin, OUTPUT);

40 pinMode(buz, OUTPUT);

41

42 gateConf = 1;

43 userIn = false;

44 infra1Count = 0;

45 infra2Count = 0;

46 }

47

48 void changeGateConf(int conf)

49 {

50 gateConf = conf;

51 switch (conf) {

52 case 0:

53 //from 1

54 //Close gate 1

55 for(pos1; pos1 < 90; pos1 += 1) {

56 servo1.write(pos1);

57 delay(15);

58 }

59 //gate 2 already closed

60 break;

9

61

62 case 1:

63 //Open gate 1 : 0->90

64 //Close gate 2 : 180->90

65 for(pos2; pos2 > 90; pos2 -= 1) {

66 servo2.write(pos2);

67 delay(15);

68 }

69 for(pos1; pos1 > 0; pos1 -= 1) {

70 servo1.write(pos1);

71 delay(15);

72 }

73 break;

74

75 case 2:

76 //gateConf = 2

77 //Close gate 1: 90->0

78 //Open gate 2: 0->90

79

80 for(pos1; pos1 < 90; pos1 += 1) {

81 servo1.write(pos1);

82 delay(15);

83 }

84 for(pos2; pos2 < 180; pos2 += 1) {

85 servo2.write(pos2);

86 delay(15);

87 }

88 break;

89

90 default:

91 break;

92 }

93 }

94

95 boolean processCard()

96 {

97 int sensorValue = analogRead(A0);

98 int sensorValue2 = analogRead(A1);

99 if(sensorValue>200 && sensorValue<400 && sensorValue2>200 && sensorValue2<400)

100 return true;

101 else

102 return false;

103 }

104

105 void alarm(boolean on)

106 {

107 if(on) {

108 int i;

109 if(buzCount < 9) {

110 for(i=0; i<10; i++) {

111 digitalWrite(buz, HIGH);

112 delay(3);//Shorter delay = higher pitch

113 digitalWrite(buz, LOW);

114 delay(3);

115 }

116 buzCount ++;

117 } else {

118 for(i=0; i<10; i++) {

119 digitalWrite(buz, HIGH);

120 delay(18);

121 digitalWrite(buz, LOW);

122 delay(18);

123 }

124 buzCount = 0;

10

125 }

126 }

127 }

128

129 void eject()

130 {

131 digitalWrite(ledPin, LOW);

132 changeGateConf(1);

133 Serial.println("GET OUT. NOW");

134 while(!infra1) {

135 Serial.println("GET OUT. NOW");

136 alarm(true);

137 }

138 while(infra1);

139 alarm(false);

140 }

141

142 void loop()

143 {

144 //infra1!

145 if(infra1 && gateConf == 1 && !userIn) {

146 userIn = true;

147 Serial.print("userIn: ");

148 Serial.println(userIn);

149 gateConf = 0;

150 changeGateConf(gateConf);

151 startTime = millis();

152 }

153

154 if(infra2 && gateConf == 2) {

155 gateConf = 1;

156 userIn = false;

157 digitalWrite(ledPin, LOW);

158 changeGateConf(gateConf);

159 }

160

161 if(gateConf == 0 || gateConf == 2) {

162 if((millis() - startTime) <= SAS_TIMER) {

163 if(cardIn) {

164 if(processCard()) {

165 digitalWrite(ledPin, HIGH);

166 gateConf = 2;

167 changeGateConf(gateConf);

168 }

169 else

170 digitalWrite(ledPin, LOW);

171 }

172 else

173 digitalWrite(ledPin, LOW);

174 }

175 else {

176 eject();

177 userIn = false;

178 }

179 }

180

181 delay(50); // delay in between reads for stability

182 }
� �

11

	Introduction
	The Model
	The Strategy
	Winning conditions
	Generated strategy

	Physical Implementation
	Parts list
	Electronic schematic
	Electronic circuit
	The structure

	Pictures of the project
	Future work
	Conclusion
	Arduino Code

