UPPAAL tutorial

e What's inside UPPAAL

* The UPPAAL input languages
(i.e. TA and TCTL in UPPAAL)

Timed Automata in UPPAAL

Clock Assignments

X=n

n
Variable Assig}\{nents <=5

n|-Expr| al
Expr+ Expr]| X:=0
Expr- Expr| -
Expr* Expr| <=10

Expr/ Expr .
prlExpr| 10, 263

(ga? Expr: Expr)

Location Invariants

I
|

| inv == x <n| x <= nlinv,inv

/

|

clock natural number “and”

i=Expr X>=5, y>3
Expr:=i|i[Expr]

g4

g = glgileg

gei=x®n|x@y+n
ga:==Exprop Expr
RE{<, <=,==,>=,>}

op E{<,<=,==,>=,> =}

Clock guards

Data guards

Timed Automata in UPPAAL

Location Invariants

Clock Assignments
X=n - | inv:i=x<n|x<=nlinv,inv
Variable Assig}n@ents <=5 /f I T
i=FExpr \N
Actions:
Expr:=i|i[Expr
P |qz7e * “a” name of action
n|-Expr| - alora? guards
Expr + Expr| + one or zero per edge
Expr— Expr| puards
Expr* Expr|
Expr/Expr| ‘g1 2g3 =LY T s 9T 9T sy
g

(ga? Expr: Expr)

Networks of Timed Automata

Two-way synchronization
on complementary actions.

Closed Systems!

UPPAAL modeling language

Networks of Timed Automata with Invariants

+ urgent action channels,

+ broadcast channels,

+ urgent and committed locations,

+ data-variables (with bounded domains),

+ arrays of data-variables,

+ constants,

+ guards and assignments over data-variables and
arrays...,

+ templates with local clocks, data-variables, and
constants

+ C subset

Declarations in UPPAAL

* The syntax used for declarations in UPPAAL is similar to
the syntax used in the C programming language.

* Clocks:
— Syntax:

clock x1, .., xn ;

— Example:
- clock x, y; Declares two clocks: x and y.

Declarations in UPPAAL (cont.)

- Data variables

— Syntax:

int nl1, .. ; Integer with “default” domain.

int[l,u] nl, .. ; Integer with domain from “I” to “u”.

int nl[m], .. ; Integer array w. elements n1[0] to
n1[m-1].

— Example;

- int a, b;

- int[0,1] a, b[5];

Declarations in UPPAAL (cont.)

+ Actions (or channels):

— Syntax:

chan a, .. ; Ordinary channels.

urgent chan b, .. ; Urgent actions (described later)
— Example:

- chan a, b[2];

- urgent chan c;

Declarations UPPAAL (const.)

* Constants
— Syntax:

const int cl = nl;

— Example:
- const int[0,1] YES = 1;
- const bool NO = false;

Declarations in UPPAAL

cuments and Setting: /Desktop/uppaal-3.4.7/demo/train-gate.xml - UPPAAL - I:Ill]
File Templates View Queries Options Help

Damlaaaaga@-v.

System Editor | Simulator | Verifier |
Drag out Vi3 |
_A train-gate * For more details about this example, see 0
. * "Automatic Verification of Real-Time Communicating Systems by Constraint Solwving™,
S Train * by Wang Yi, Paul Pettersson and Mats Daniels. In Proceedings of the 7th International
S Gate * Conference on Formal Description Techniques, pages 223-238, North-Holland. 1994.
S IntQueue %y
Process assignments
@ System definition const N 5; // # trains + 1
incfo,m) el: Constants
chan appr, stop, go, leave; .
chan enpty, notempty, hd, add, rem; Bounded |ntegers
-
NG . clock x; Channels
Global declarations
=8 Train Clocks
.
A taingate int[0,N] list[N], len, i: Arrays
® Global declarations te.m - ’ W
=5 Train
Declarations
=) Gate Templates
=) IntQueue P
rocesses
Trainl:=Train{el, 1):
Train2 rain{el, 2); SYStemS
Train3:=Trainiel, 3):
Traind:=Train(el, 4):; "
= ‘&lnm;ewlz ; system
@ Declarations Trainl, Train2, Train3, Traind,
Process assignments
pe A Gate, Queue;

Templates in UPPAAL

Neme: [Train

Parandiers: [i{ONT e constid R\

+ Templates may be parameterised:

int v; const min; const max

\int[O,N] e; const id

+ Templates are instantiated to form
processes:

P:= A(i,1,5);
Q:= A(3,0,4);

Drag out , 1)
3 tain-gate 2)]
Gilobal declarations : : - : .
B ’ :\Tralnl. Train(el, 1);
Declarations Queue: =IntQueue{el) ; : - : .
55 Bate Train2:=Train(el, 2);
=% IntQueue

Declarations
Ll Proces: ments
System definition

11

Urgent Channels: Example 1

Suppose the two edges in
automata P and Q should be
taken as soon as possible.

l.e. as soon as both automata
are ready (simultaneously in
locations |1 and s1).

How to model with invariants if
either one may reach |1 or s1
first?

Urgent Channels: Example 1

P: Q:

al a?

Suppose the two edges in
automata P and Q should be
taken as soon as possible

l.e. as soon as both automata
are ready (simultaneously in
locations |1 and s1).

How to model with invariants if
either one may reach |1 or s1
first?

Solution: declare action “a” as
urgent.

13

Urgent Channels

urgent chan hurry;

Informal Semantics:

* There will be no delay if transition with urgent action can be

taken.

Restrictions:

* No clock guard allowed on transitions with urgent actions.
* Invariants and data-variable guards are allowed.

Urgent Channel: Example 2

« Assume i is a data variable.

* We want P to take the transition
from 11 to I12 as soon as i==5.

15

Urgent Channel: Example 2

* Assume i is a data variable.

* We want P to take the transition
from 11 to 12 as soon as i==5.

* Solution: P can be forced to take
transition if we add another

automaton:
~())

where “go” is an urgent channel,
and we add “go?” to transition 11212
in automaton P.

Broadcast Synchronisation

broadcast chan a, b, c[2];

» If ais a broadcast channel:
a! = Emmision of broadcast
a? = Reception of broadcast

» A set of edges in different processes can synchronize if one is
emitting and the others are receiving on the same b.c. channel.

» A process can always emit.
» Receivers must synchronize if they can.
* No blocking.

17

Urgent Location

Click “Urgent” in State Editor.

Informal Semantics:
* No delay in urgent location.

Note: the use of urgent locations reduces the number of clocks
in @ model, and thus the complexity of the analysis.

Urgent Location: Example

Assume that we model a simple

media M:

a

that receives packages on channel a
and immediately sends them on

channel b.

b

l—

@

a?

b!

P models the media using clock x. g?
3

19

Urgent Location: Example

Assume that we model a simple

media M:

a

that receives packages on channel a
and immediately sends them on

channel b.

P models the media using clock x.
Q models the media using urgent

location.

P and Q have the same behavior.

20

10

Committed Location

Click “Committed” i State Editor.

Informal Semantics:
* No delay in committed location.
* Next transition must involve automata in committed location.

Note: the use of committed locations reduces the number of
interleaving in state space exploration (and also the number of

clocks in a model), and thus allows for more space and time efficient

analysis.
21

Committed Location: Example 1

Assume: we want to model a process
(P) simultaneously sending message a
and b to two receiving processes
(when i==0).

P’ sends “a” two times at the same

time instant, but in location “n” other
automata, e.g. Q may interfear

Ry
— ~

22

11

Committed Location: Example 1

+ Assume: we want to model a process
P%ﬁ (P) simultaneously sending message
I

(a) to two receiving processes (when
j== i==)

* P’ sends “a” two times at the same
<n I time instant, but in location “n” other
automata, e.g. Q may interfear:
i==1 Q: 0 i==0 b! g

* Solution: mark location n “committed”
in automata P’ (instead of “urgent”).

23

Commiitted Locations

(example: atomic sequence in a network)

X:=X+1; © 0 o
y:=y+1

If the sequence becomes too long, you can split it ...,

12

Committed Locations

(example: atomic sequence in a network)

Semantics: the time spent on C-location should be zero !

X:=x+1

25

Commiitted Locations

(example: atomic sequence in a network)

Semantics: the time spent on C-location should be zero !

x:=x+1

y:=y+1

26

13

Committed Locations

(example: atomic sequence in a network)

Semantics: the time spent on C-location should be zero !

X:=x+1

y:i=y+1

Now, only the committed (red) transition can be taken! N

Commiitted Locations

(example: atomic sequence in a network)

x:=x+1

y:=y+1

28

14

Committed Locations

« Atrick of modeling (e.g. to model multi-way synchronization using
handshaking)

» More importantly, it is a simple and efficient mechanism for state-space
reduction!

In fact, it is a simple form of ’partial order reduction’
+ ltis used to avoid intermediate states, interleavings:
Committed states are not stored in the passed list
Interleavings of any state with a committed location will not be explored

Committed Location: Example 2

* Assume: we want to pass p-
the value of integer "k” from
automaton P to variable ”j” in ’

Q. t:=k 0

» The value of k can is passed -
using a global integer < _a?
variable "t”. ol :

* Location “n” is committed to ' °
ensure that no other automat 12

can assign “t” before the
assignment “:=t".

More Expressions

New operators (not clocks):
— Logical:
» && (logical and), || (logical or), ! (logical negation),
— Bitwise:
» A (xor), & (bitwise and), | (bitwise or),
— Bit shift:
o << (left), >> (right)
— Numerical:
* % (modulo), <? (min), >? (max)
— Compound Assignments:
o +=, .= *= [= A= <<= >>=
— Prefix or Postfix:
* ++ (increment), -- (decrement)

31

More on Types

Multi dimensional arrays
e.g. int b[2][3];
Array initialiser:
e.g. int b[2][3] :={{1,2,3}, {4,5,6} };
Arrays of channels, clocks, constants.
e.g.
- chan a[3];
— clock c[3];
—constk[3]{1,2,3};
Broadcast channels.
e.g. broadcast chan ga;

32

16

Extensions

Select statement

* Models non-deterministic
choise

e x : 1int[0,42]

Types

Record types
Type declarations
Meta variables:
not stored with state
meta int x;

Forall / Exists Expressions

e forall (x:int[0,42])
expr
true if expr is true for all values in
[0,42] of x

e exists (x:int[0,4]) expr
true if expr is true for some
values in [0,42] of x

Example:
forall
(x:int[0,4])array[x];

33

Advanced Features

Priorities on channels

chan a,b,c,d[2],e[2];
chan priority a,d[0] < default < b,e

* Priorities on processes
system A < B,C < D;
* Functions

C-like functions with return values

34

17

UPPAAL specification language

35

TCTL Quantifiers in UPPAAL

« E - exists apath (“E” in UPPAAL).

« A -forall paths (“A” in UPPAAL).

+ G -allstatesinapath (“[]1”in UPPAAL).

« F -some state in a path (“<>” in UPPAAL).

You may write the following queries in UPPAAL:
* A[lp, A<>p, E<>p, E[]p and p-->q

AG p ‘ EGp

AF p EF p
p and q are "local properties”

18

“Local Properties”

A[]P, A<>p, E<3>p, E[]pr P-—>P
where p is a local property

. data guard clock guard
automaton location [

.1 | gd| gc | p and p |
porp | not p | p imply p |
(p)

process/ name

37

E<>p —"p Reachable”

+ E<> p—itis possible to reach a state in which p is

satisfied.

&
AN

* pistrue in (at least) one reachable state.

38

19

A[]lp — "Invariantly p”

« A[] p— p holds invariantly.

p

A

» pistrue in all reachable states.

39

A<>p — “"Inevitable p”

¢ A<> p — p will inevitable become true, the automaton is
guaranteed to eventually reach a state in which p is true.

A &
5%
* pis true in some state of all paths.

40

20

E[] p — "Potentially Always p”

« E[] p— pis potentially always true.

* There exists a path in which p is true in all states.

41

p-->qg-"plead to q”

* p-->q-—if p becomes true, q will inevitably become true.
same as A[](p imply A<>q)

q

* In all paths, if p becomes true, q will inevitably become
true.

4

21

