
The UPPAAL Model CheckerThe UPPAAL Model Checker

Julián Proenza

Systems, Robotics and Vision Group. UIB.

SPAIN

2

Julián Proenza. UIB. Oct 2008

The aim of this presentation

• Introduce the basic concepts of model checking from a

practical perspective

• Describe the basic features of the UPPAAL model

checker

• Use examples to illustrate the practical use of

UPPAAL for the formal verification of systems

3

Julián Proenza. UIB. Oct 2008

Presentation Outline

1. The role of Model Checking in design validation

2. The UPPAAL Tool

1. Introduction

2. Modeling

3. Verification

4. A first example

5. Installation instructions

3. References

4

Julián Proenza. UIB. Oct 2008

Presentation Outline

1. The role of Model Checking in design validation

2. The UPPAAL Tool

1. Introduction

2. Modeling

3. Verification

4. A first example

5. Installation instructions

3. References

5

Julián Proenza. UIB. Oct 2008

The need for Design Validation

• Hardware and software are widely used in applications
where failure is unacceptable

• Design Validation is necessary: ensuring design
correctness at the earliest stage possible

• Traditional Techniques (rarely get exhaustive validation):

– Simulation (on an abstraction or a model of the system)

– Testing (on the actual product)

• Formal Methods (aimed at exhaustive validation)

– Deductive Verification (costly, slow and only partially automatic)

– Model Checking (for finite-state concurrent systems � automatic)

6

Julián Proenza. UIB. Oct 2008

The Model Checking Technique

• Use of Formal Methods has been considered for a

long time a very desirable task for ensuring the

correct design of a system

• The complexity of these methods made them only
accessible to specialists (mathematicians).

– Thus they were actually only used for very critical systems

• Model Checking is the first technique that is truly
accessible for “normal” engineers

– Enabling the use of formal verification in a wider spectrum of
applications (including VHDL systems)

– Applicable to (finite-state concurrent systems) sequential
circuits, communication protocols, software…

7

Julián Proenza. UIB. Oct 2008

The 3 Steps of Model Checking

1. Build a model for the system, typically as a set of automata

2. Formalize the properties to be verified using expressions in a logic

3. Use the model checker (a tool) to generate the space of all possible
states and to exhaustively check whether the properties hold in each
and everyone of the possible DYNAMIC BEHAVIOURS of the model

Model

Checker

(UPPAAL)

Formal Model

Queries

Yes

or

No (counterexample)

For each query

8

Julián Proenza. UIB. Oct 2008

Presentation Outline

1. The role of Model Checking in design validation

2. The UPPAAL Tool

1. Introduction

2. Modeling

3. Verification

4. A first example

9

Julián Proenza. UIB. Oct 2008

Introducing UPPAAL (v4.0.6)…

• UPPAAL is a tool box for validation (via graphical

simulation) and verification (via automatic model-

checking) of real-time systems.

• It consists of two main parts:

– a Graphical User Interface (GUI) (executed on the users work
station) and

– a model-checker engine (by default executed on the same
computer as the user interface, but can also run on a more

powerful server)

• It has been jointly developed by Uppsala University in

Sweden and Aalborg University in Denmark

10

Julián Proenza. UIB. Oct 2008

An overview of the tool

Menu
Icons
Tabs

11

Julián Proenza. UIB. Oct 2008

An overview of the tool
The Editor Window

12

Julián Proenza. UIB. Oct 2008

An overview of the tool
The Editor Window

With

“undo”!

13

Julián Proenza. UIB. Oct 2008

An overview of the tool
The Simulator Window (1)

14

Julián Proenza. UIB. Oct 2008

An overview of the tool
The Simulator Window (2)

15

Julián Proenza. UIB. Oct 2008

An overview of the tool
The Verifier Window (1)

16

Julián Proenza. UIB. Oct 2008

An overview of the tool
The Verifier Window (2)

2. Edit

1. Click

17

Julián Proenza. UIB. Oct 2008

An overview of the tool
The Verifier Window (3)

Click

18

Julián Proenza. UIB. Oct 2008

An overview of the tool
The Verifier Window (4)

Green

light

19

Julián Proenza. UIB. Oct 2008

An overview of the tool
The Verifier Window (5)

20

Julián Proenza. UIB. Oct 2008

An overview of the tool
The Verifier Window (6)

Red

light

21

Julián Proenza. UIB. Oct 2008

An overview of the tool
The Verifier Window (7)

Options
Diagnostic Trace

Some

22

Julián Proenza. UIB. Oct 2008

An overview of the tool
The Stored Trace (counterexample)

Replay

the trace
step by
step

23

Julián Proenza. UIB. Oct 2008

Presentation Outline

1. The role of Model Checking in design validation

2. The UPPAAL Tool

1. Introduction

2. Modeling

3. Verification

4. A first example

5. Installation instructions

3. References

24

Julián Proenza. UIB. Oct 2008

Modeling with UPPAAL

• In UPPAAL, systems are modeled using timed-
automata, which are finite state machines with clocks.

– Clocks are variables which can evaluate to a real number and

which can be defined in each automaton in order to measure
the time progress.

– All clocks evolve at the same pace in order to represent the
global progress of time.

– The actual value of a clock can be either tested or reset (not
assigned).

• Given that UPPAAL is specially designed for the

verification of real-time systems, clocks are a

fundamental modeling and verification feature.

25

Julián Proenza. UIB. Oct 2008

Structure of an UPPAAL Model

• An UPPAAL model is built as a set of concurrent
processes.

• Each process is graphically designed as a timed-
automaton.

• Since instantiations of the same automaton are

frequently needed templates are used

• A timed-automaton is represented as a graph which

has locations as nodes and edges as arcs between
locations.

endstart

26

Julián Proenza. UIB. Oct 2008

Structure of an UPPAAL Model

• An UPPAAL model is built as a set of concurrent
processes.

• Each process is graphically designed as a timed-
automaton.

• Since instantiations of the same automaton are

frequently needed templates are used

• A timed-automaton is represented as a graph which

has locations as nodes and edges as arcs between
locations.

locationlocation

edge

endstart

27

Julián Proenza. UIB. Oct 2008

Labels in Edges

• Edges are annotated with guards, updates,

synchronisations and selections

28

Julián Proenza. UIB. Oct 2008

Labels in Edges
Guards

• Edges are annotated with guards, updates,

synchronisations and selections

• A guard is an expression which uses the variables and

clocks of the model in order to indicate when the

transition is enabled, i.e. may be fired.

– Note that several edges may be enabled at an specific time but

only one of them will be fired � leading to different potential
interleavings

endstart a==1

29

Julián Proenza. UIB. Oct 2008

Labels in Edges
Updates

• An update is an expression that is evaluated as soon

as the corresponding edge is fired. This evaluation

changes the state of the system.

endstart a==1

b=0

30

Julián Proenza. UIB. Oct 2008

Labels in Edges
Synchronisations

• The synchronization is the basic mechanism used to

coordinate the action of two or more processes. Models

for instance the effect of messages

• It causes two (or more) processes to take a transition at

the same time. A channel (c) is declared, then one

process will have an edged annotated with c! and the

other(s) process(es) another edge annotated with c?

• Three different kinds of synchronizations:

– Regular channel (leading to Binary Synchronization)

– Urgent channel

– Broadcast channel

31

Julián Proenza. UIB. Oct 2008

Labels in Edges
Synchronisations: Regular Channel

• A regular channel is declared as, e.g., chan c.

– When a process is in a location from which there is a transition
labelled with c! the only way for the transition to be enabled is

that another process is in a location from which there is a
transition labelled with c? and vice versa.

– If at a specific instant there are several possible ways to have
a pair c! and c?, one of them is non-deterministically chosen

during model checking.

– The update expression on an edge synchronizing on c! is
executed before the update expression on an edge
synchronizing on c?

endstart a==1
c!

b=0

endstart a==1
c?

b=0

32

Julián Proenza. UIB. Oct 2008

Labels in Edges
Synchronisations: Urgent Channel

• An urgent channel is declared as urgent chan c.

– Urgent channels are similar to regular channels, except that it
is not possible to delay in the source state if it is possible to

trigger a synchronisation over an urgent channel.

– This means no time can pass but they can interleave with
other transitions that require no time to pass.

– Graphically they look like regular channels

– Notice that clock guards are not allowed on edges
synchronising over urgent channels

endstart a==1
c!

b=0

endstart a==1
c?

b=0

33

Julián Proenza. UIB. Oct 2008

Labels in Edges
Synchronisations: Broadcast Channel

• For a broadcast channel: broadcast chan c.

– When one process is in a location from which there is a
transition labelled with c! and one or more processes are in

locations from which there is a transition labelled with c? all
these transitions are enabled.

– However, if there are no processes in locations from which
there is a transition labelled with c?, the transition labelled with

c! is enabled anyway.

– Notice that clock guards are not allowed on edges receiving
on a broadcast channel.

– The update on the emitting edge is executed first. The update
on the receiving edges are executed left-to-right in the order

the processes are given in the system definition.

endstart a==1
c!

b=0

endstart a==1
c?

b=0

endstart a==1
c?

b=0

34

Julián Proenza. UIB. Oct 2008

Locations

• Locations can have an optional name (as seen in

previous slides)

– Names are useful to refer to the location during model checking

and when documenting the model

• Locations can be of three different types (that can

be assigned by double-clicking on the location):

– Initial

– Urgent

– Committed

– Normal (all the rest)

35

Julián Proenza. UIB. Oct 2008

Location Types
Initial

• Each template must be properly initialized, meaning it

must start in a specific location. Therefore, each

template must have exactly one location marked as

initial.

• Initial locations are identified with a double circle

endstart

Initial
location

36

Julián Proenza. UIB. Oct 2008

Location Types
Urgent

• Urgent locations freeze time; i.e. time is not allowed to

pass when a process is in an urgent location.

– The location must be left before time could pass

– Other transitions may happen before, as long as they do not

require time to pass

• Urgent locations are identified with a “U”

• Clock x will not increase as long as in loc1

urgent

location

endloc1start x=0

37

Julián Proenza. UIB. Oct 2008

Location Types
Committed

• Committed locations also freeze time; i.e. time is not

allowed to pass when a process is in one of them.

– When a model has one or more active committed locations, no

transitions other than those leaving said locations can be enabled.

– Notice that if several processes are in a committed location at the
same time, then they will interleave.

– Committed locations are useful for creating atomic sequences

• Committed locations are identified with a “C”

• Clock x will not increase as long as in loc1

Committed

location

endloc1start x=0

38

Julián Proenza. UIB. Oct 2008

Invariants

• Both initial and normal locations can have invariants.

• Invariants are conditions that must be fulfilled while the

automaton is in that location.

• They can be related to variables and clocks.

endloc1

a!=b

start

endloc1

x<=T

start x==Tx=0

39

Julián Proenza. UIB. Oct 2008

Invariants on clocks and time (1)

• To better understand the role invariants on clocks
play let us consider the following examples (proposed

at the UPPAAL tutorial)

– The goal is to achieve a similar behaviour (stay in a location

until a condition on a clock holds and then leave the location)

– First attempt without an invariant

– Note that the “observer” allows the observation of the clock
value at different instants (clearer when completing the tutorial)

loop x>=2
reset!

takenidle

x=0

reset?

40

Julián Proenza. UIB. Oct 2008

Invariants on clocks and time (1)

• To better understand the role invariants on clocks
play let us consider the following examples (proposed

at the UPPAAL tutorial)

– The goal is to achieve a similar behaviour (stay in a location

until a condition on a clock holds and then leave the location)

– First attempt without an invariant

– Note that the “observer” allows the observation of the clock
value at different instants (clearer when completing the tutorial)

loop x>=2
reset! 2

4

2 4 6 8 10 time

C
lo

c
k
 x

41

Julián Proenza. UIB. Oct 2008

Invariants on clocks and time (2)

• To better understand the role invariants on clocks
play let us consider the following examples (proposed

at the UPPAAL tutorial)

– The goal is to achieve a similar behaviour (stay in a location

until a condition on a clock holds and then leave the location)

– Second attempt without an invariant

takenidle

x=0

reset?
loop x==2

reset!

42

Julián Proenza. UIB. Oct 2008

Invariants on clocks and time (2)

• To better understand the role invariants on clocks
play let us consider the following examples (proposed

at the UPPAAL tutorial)

– The goal is to achieve a similar behaviour (stay in a location

until a condition on a clock holds and then leave the location)

– Second attempt without an invariant

loop x==2
reset! 2

4

2 4 6 8 10 time

C
lo

c
k
 x

43

Julián Proenza. UIB. Oct 2008

Invariants on clocks and time (3)

• To better understand the role invariants on clocks
play let us consider the following examples (proposed

at the UPPAAL tutorial)

– The goal is to achieve a similar behaviour (stay in a location

until a condition on a clock holds and then leave the location)

– Third attempt without an invariant (that will obviously have
the same problem!)

takenidle

x=0

reset?
loop x>=2,

x<=3

reset!

44

Julián Proenza. UIB. Oct 2008

Invariants on clocks and time (3)

• To better understand the role invariants on clocks
play let us consider the following examples (proposed

at the UPPAAL tutorial)

– The goal is to achieve a similar behaviour (stay in a location

until a condition on a clock holds and then leave the location)

– Third attempt without an invariant (that will obviously have
the same problem!)

loop x>=2,
x<=3

reset!

2

4

2 4 6 8 10 time

C
lo

c
k
 x

45

Julián Proenza. UIB. Oct 2008

Invariants on clocks and time (4)

• To better understand the role invariants on clocks
play let us consider the following examples (proposed

at the UPPAAL tutorial)

– The goal is to achieve a similar behaviour (stay in a location

until a condition on a clock holds and then leave the location)

– Finally with an invariant

takenidle

x=0

reset?
loop

x<=2

x==2
reset!

46

Julián Proenza. UIB. Oct 2008

Invariants on clocks and time (4)

• To better understand the role invariants on clocks
play let us consider the following examples (proposed

at the UPPAAL tutorial)

– The goal is to achieve a similar behaviour (stay in a location

until a condition on a clock holds and then leave the location)

– Finally with an invariant

loop

x<=2

x==2
reset! 2

4

2 4 6 8 10 time

C
lo

c
k
 x

47

Julián Proenza. UIB. Oct 2008

Invariants on clocks and time (5)

• To better understand the role invariants on clocks
play let us consider the following examples (proposed

at the UPPAAL tutorial)

– The goal is to achieve a similar behaviour (stay in a location

until a condition on a clock holds and then leave the location)

– A different behaviour with an invariant

takenidle

x=0

reset?
loop

x<=3

x>=2
reset!

48

Julián Proenza. UIB. Oct 2008

Invariants on clocks and time (5)

• To better understand the role invariants on clocks
play let us consider the following examples (proposed

at the UPPAAL tutorial)

– The goal is to achieve a similar behaviour (stay in a location

until a condition on a clock holds and then leave the location)

– A different behaviour with an invariant

loop

x<=3

x>=2
reset! 2

4

2 4 6 8 10 time

C
lo

c
k
 x

49

Julián Proenza. UIB. Oct 2008

Invariants on clocks and time (6)

• A final note: Semantically, urgent locations are

equivalent to:
– adding an extra clock, x, that is reset on every incoming edge,

and

– adding an invariant x <= 0 to the location.

endloc1

x<=0

start x=0

endloc1start

50

Julián Proenza. UIB. Oct 2008

Some modeling tricks

• They are often necessary to actually reproduce the

behaviour of our system.

• It is possible to encode “urgent transitions” with a guard

on a variable, i.e. busy wait on a variable, by using urgent

channels.

– Use a dummy automaton with one state looping with one transition
read!. The urgent transition will be x>0 read? for example.

• There is no value passing though the channels but this

is easily encoded by a shared variable:
– Define globally a variable x, and use it to write and read it. Notice

that it is not clean to do read! x:=3; and read? y:=x; but it is
better to use a commit state: read? commit state and y:=x;.

51

Julián Proenza. UIB. Oct 2008

A recommendation on modeling

• The state space grows very quickly with the model

complexity (state space explosion). It is necessary to:

– Find the suitable level of abstraction for the model

– Model only the features related to the properties to be verified

– Also omit the features that are “obviously” correct

• More specifically:

– The number of clocks has an important impact on the complexity

– The use of committed locations can reduce significantly the state
space, but it can possibly take away relevant states.

– The number of variables is also relevant and even more their

range. In particular, avoid unbounded loops on integers since the
values will then span over the full range.

• This is rather an “art” (so model checking is not so

“perfect” as it initially looks but it helps to think)

52

Julián Proenza. UIB. Oct 2008

Presentation Outline

1. The role of Model Checking in design validation

2. The UPPAAL Tool

1. Introduction

2. Modeling

3. Verification

4. A first example

5. Installation instructions

3. References

53

Julián Proenza. UIB. Oct 2008

Verifying with UPPAAL

• After using the simulator to ensure that the model

behaves as the system we wanted to model (and

sometimes also to detect some errors in the original

design), the next phase is to check that the model
verifies the properties

• Then we need to know/decide what those properties

are… and formalize them!

– Ex. from def. of consensus service: Consistency: All correct
servers agree on the same value and all decisions are final.

• After that, we have to translate those properties into

the UPPAAL query language (not one-to-one)

54

Julián Proenza. UIB. Oct 2008

The UPPAAL Query Language

• The types of properties that can be directly checked

using the UPPAAL queries are quite simple.

• UPPAAL designers have taken this approach, instead

of allowing complex queries, in order to improve the

efficiency of the tool.

• For this reason the verification of complex properties

may need the checking of many different queries and

even the addition to the model of specifically designed

“testing automata”

55

Julián Proenza. UIB. Oct 2008

Types of Queries in UPPAAL

• The specific types of properties that can be expressed

in the UPPAAL query language can be classified as:

– Reachability properties. A specific condition holds

in some state of the model’s potential behaviours

– Safety properties. A specific condition holds in all

the states of an execution path

– Liveness properties. A specific condition is

guaranteed to hold eventually (= at some moment)

– Deadlock properties. A deadlock is possible or not

in the model

56

Julián Proenza. UIB. Oct 2008

UPPAAL Reachability properties

A specific condition holds in some state of the

model’s potential behaviours

• They are always expressed in the form:

p

E<> p “Exists eventually p”

meaning there is an execution

path in which p eventually (in

some state of the path) holds

57

Julián Proenza. UIB. Oct 2008

UPPAAL Reachability properties

A specific condition holds in some state of the

model’s potential behaviours

• They are always expressed in the form:

p

E<> p “Exists eventually p”

meaning there is an execution

path in which p eventually (in

some state of the path) holds

Some
path

Some
state

58

Julián Proenza. UIB. Oct 2008

UPPAAL Safety properties

A specific condition holds in all the states of an

execution path. Two possibilities:

p

E[] p “Exists globally p”

meaning there is an execution

path in which p holds for all

the states of the path

A[] p “Always globally p”

For each (all) execution path

p holds for all the states of

the path

p

p

p

p p

pp

p p

p

p

p

59

Julián Proenza. UIB. Oct 2008

UPPAAL Liveness properties

A specific condition is guaranteed to hold eventually
(= at some moment). Two possibilities:

A<> p “Always eventually p”

For each (all) execution path

p holds for at least one state

of the path

q-->p “q always leads to p”

Any path that “starts” with a

state in which q holds reaches

later a state in which p holds

p

q

p

pp

p

p

p

60

Julián Proenza. UIB. Oct 2008

UPPAAL Deadlock properties

A deadlock is possible or not in the model.

• A state is in a deadlock if it is impossible that the

model evolves to a successor state neither by

waiting some time nor by a transition between

locations, i.e. there are no enabled transitions

• Two typical examples:
– E<> deadlock = “Exists deadlock”

– A[] not deadlock = “There is no deadlock”

• Note that the word “deadlock” can be used inside any
expression formalizing a specific property

61

Julián Proenza. UIB. Oct 2008

Some remarks on verification

• When using model checking for verifying a system, it is

usually studied whether there is any deadlock in the
model or not

– A deadlock can be evidence of a design error but not necessarily

– It could be enough to verify that deadlock only happens when
expected. E.g. :

A[] deadlock imply (cont==max and autom.end)

• Even using abstraction the state space may explode.

There are verification options that may help.

– If some options are enabled, the output of the verifier might be
that property is "maybe satisfied".�The verifier cannot determine

the truth value of the property due to the approximations used.

62

Julián Proenza. UIB. Oct 2008

Presentation Outline

1. The role of Model Checking in design validation

2. The UPPAAL Tool

1. Introduction

2. Modeling

3. Verification

4. A first example

5. Installation instructions

3. References

63

Julián Proenza. UIB. Oct 2008

A simple example from the tutorial (1)

• A mutex algorithm. Specification.

Process 1 Process 2

req1=1; req2=1;

turn=2; turn=1;

while(turn!=1 && req2!=0); while(turn!=2 && req1!=0);

//critical section //critical section

job1(); job2();

req1=0; req2=0;

64

Julián Proenza. UIB. Oct 2008

A simple example from the tutorial (2)

• A mutex algorithm. Modeling with UPPAAL.

Process 1

idle:

req1=1;

want:

turn=2;

wait:

while(turn!=1 && req2!=0);

CS:

//critical section

job1();

//and return to idle

req1=0;

CS
wait

wantidle

req2==0

turn==me

req1=0 turn=(me==1? 2:1)

req1=1

A[] not(P1.CS and P2.CS)

E<> P1.CS

65

Julián Proenza. UIB. Oct 2008

Presentation Outline

1. The role of Model Checking in design validation

2. The UPPAAL Tool

1. Introduction

2. Modeling

3. Verification

4. A first example

5. Installation instructions

3. References

66

Julián Proenza. UIB. Oct 2008

Installation Instructions

• Make sure you have the Java version 5 installed.

– E.g.: www.java.com/es/download/manual.jsp

• Go to the UPPAAL page: www.uppaal.com

• Click on the download tag and then on the link Uppaal

4.0 (current official release)

• Fill the license agreement form. Click on “Register &

Download”

• Unzip files

• To run UPPAAL double-click the file uppaal.jar

67

Julián Proenza. UIB. Oct 2008

Presentation Outline

1. The role of Model Checking in design validation

2. The UPPAAL Tool

1. Introduction

2. Modeling

3. Verification

4. A first example

5. Installation instructions

3. References

68

Julián Proenza. UIB. Oct 2008

References

Some used to create this presentation and some useful

for further reading

• UPPAAL (all available at www.uppaal.com)

– Uppaal2k: Small Tutorial. 16 October 2002

– G. Behrmann, A. David, and K. G. Larsen. A Tutorial on Uppaal

– UPPAAL Online Help

• Model Checking

– C. Baier and J.-P. Katoen. Principles of Model Checking. MIT
Press. 2008.

– E.M. Clarke, O. Grumberg and D.A. Peled. Model Checking.

The MIT Press. 2000.

