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Motivation

* One of the most important constraint in
Controller design is correctness

* To ensure correctness, a first approach
consists in:
—Devising a (model of the) controller

—Using a verification tool to prove that the
controller is correct
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Verification

* Verification problem:

—Given a model of a system made up of and
environment and a controller, we want to
prove that the system respects a given property

oo

\

= system



UNIVERSITE LIBRE DE BQL-\&LLE%E

Synthesis

* Instead of this error-prone, trial-and-error
process, we would like to perform
synthesis of correct controllers

* Cfr. chemical synthesis:
« ... a purposeful execution of chemical
reactions to obtain a product, or several
products. » (Wikipedia)


http://en.wikipedia.org/wiki/Chemical_reaction
http://en.wikipedia.org/wiki/Chemical_reaction
http://en.wikipedia.org/wiki/Chemical_reaction
http://en.wikipedia.org/wiki/Chemical_reaction
http://en.wikipedia.org/wiki/Product_%28chemistry%29
http://en.wikipedia.org/wiki/Product_%28chemistry%29
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Synthesis

* Synthesis problem:

— Given a model of the environment, we want to
compute a (model of) a controller that will
enforce the property

* The synthesised controller is correct by
construction.

Environment I Controller

|
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Synthesis and games

* Seeing the synthesis problem through a
game metaphor will be very useful

—T
—T

ne environment is a player.

ne controller is another player.

—They compete against each other: the
controller wants to enforce the property, while
the environment wants to falsify the property.

—A correct controller is one that implements a
strategy that guarantees him to win whatever
the environment does.

* But game theory has other applications!
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Game - Intuition

* Consider the classical 4-in-a-row game
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Game - Intuition

* Players play by turn: they alternate one
after the other.
—This is a turn-based game

There are finitely many positions: at most 3(6%7) =
1.1 x 10%°



Game - Intuition

* [t has been shown that the first player to
play can always win the game.

—There exists a winning strategy for the first
player.
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—This strategy can be finitely described as a
function that assigns the optimal move to each
positions. In theory this strategy can be
implemented as an algorithm.
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Game - Intuition

* Both players have a complete view on the
current state of the game, at all times

—This is a game of perfect information.

* This is a zero-sum game: either player 1
win, or player 2 win, or there is a draw

—It is not possible that both win or loose
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Game - Intuition

* Other examples of games:

—Poker: Unlike 4-in-a-row, players do not see the
complete state of the game (some cards are

hidden).
* This is a game of imperfect information
—Penalty kick: The kicker decides to kick either

left or right of the goal. The goal keeper decides
simultaneously to jump left of right.

 The game is concurrent: players choose their move
at the same time
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Games - Intuition

e Games are best used to describe situations
where different entities compete with
each other:

—Synthesis problem: controller vs. environment

—Network routing: each ISP wants to minimise
the amount of traffic on its network

—File sharing protocols: with bittorrent, all
participants want to get the whole file asap,
while minimising bandwidth for upload.

* These last two examples are non zero-sum games

—Real-time scheduling: tasks vs. scheduler.
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* Historically, game theory has been studied
mainly by economists.

* During the last 10 years, game theory has
started to pervade computer science

UNIVERSIT

* We will be mainly interested in algorithmic
game theory, with questions like:
—Can we compute winning strategies ?

—What is the complexity of computing those
strategies ?

—How can we implement those strategies ?
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Strategic games
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* Strategic games are a very simple form of
games, where each player chooses a
strategy (independently of the others),

and gets a payoff that depends on all the
strategies

—The vector of strategies for all the players is
called a strategy profile.

* The payoff for each player is given by a
matrix

vendredi 7 mars 14



Prisoner’s dilemma

* Two gangsters get arrested by the police.
They are given two options during the trial:

—Either they confess (C) their offense

—Or they remain silent (S)

* They following matrix gives the number of
vears in jail they get in all cases:
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Prisoner’s dilemma

* Instead of a matrix that gives the cost of
each strategy (less is better), we want a
matrix that gives the payoff (more is
better)

N B Bl .
@)
I
I
—
Ul

vendredi 7 mars 14



Prisoner’s dilemma

* Instead of a matrix that gives the cost of
each strategy (less is better), we want a
matrix that gives the payoff (more is
better)
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: Prisoner’s dilemma

* There is no notion of winner/looser here:
each prisoner wants to minimise his
number of years in jail.
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Prisoner’s dilemma

* |f both prisoners can coordinate, they
better choose to remain both silent.

* But, knowing that 1 will remain silent,
2 might have an incentive to deviate and
confess to get 1 year instead of 2 (and
vice-versa)
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Prisoner’s dilemma

* |f both prisoners can coordinate, they
better choose to remain both silent.

* But, knowing that 1 will remain silent,
2 might have an incentive to deviate and
confess to get 1 year instead of 2 (and
vice-versa)
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Prisoner’s dilemma

* |f both prisoners can coordinate, they
better choose to remain both silent.

* But, knowing that 1 will remain silent,
2 might have an incentive to deviate and
confess to get 1 year instead of 2 (and
vice-versa)
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Prisoner’s dilemma

* In this case, 1 better confesses too, to save
one year in jail.
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Prisoner’s dilemma

* In this case, 1 better confesses too, to save
one year in jail.
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Prisoner’s dilemma

* In this case, 1 better confesses too, to save
one year in jail.




Prisoner’s dilemma

* In this case, 1 better confesses too, to save
one year in jail.

* So, if both players are selfish and rational
(as we assumed), the only stable solution
is not the optimal one.
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Notations
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* Let s denote a strategy profile. It is a vector
of strategies for each player.

* We note s;i the strategy of player i

* We note s.j the strategy profile of all
players but i

* For a strategy profile s, we note u(s) the
payoff of each player under the profile s

* We note uj(s) the payoff for i
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Notations - examples

e Let s = (C,S) -- player 1 chooses C, and
player 2 chooses S

e 51 =C

*s.1=(S)

* u(s) = u(ss, s-1) =(1,5)

* ui(s)=1 .
" 1 c @G
i O« « @D
; S5 1 2 2




Battle of the sexes

DE B

* A couple wants to spend the evening
together, but they must pick an activity

—The boy prefers to stay home to watch the
soccer game and have beer (G).

UNIVERSIT

—The girl wants to go out to the movies (M).

—Doing different activities is worse than anything
else for both.
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Battle of the sexes

* In this case, it is easy to observe that there
are two stable situations, which are
equivalent
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Penalty kicks

* The kicker and the goal keeper choose
simultaneously between left or right
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Penalty kicks

* The kicker and the goal keeper choose
simultaneously between left or right
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* Here, there is no stable situation
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How to play in such games ?

* What would be a notion of «best strategy»
in such games ?

* First attempt: each player picks a strategy
that maximises his worst case payoff.
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How to play in such games ?

* What would be a notion of «best strategy»
in such games ?

* First attempt: each player picks a strategy
that maximises his worst case outcome.

Prisoner’s dilemma: 1
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How to play in such games ?

* What would be a notion of «best strategy»
in such games ?

* First attempt: each player picks a strategy
that maximises his worst case outcome.

Worst-case payoff Worst-case payoff

is 1 is O
2
C
C 1 4 O
Prisoner’s dilemma: 1
S (0 4 3 3
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How to play in such games ?

* What would be a notion of «best strategy»
in such games ?

* First attempt: each player picks a strategy
that maximises his worst case outcome.

The players choose a stable strategy
profile that does not minimise the sum
of the payoffs. g

Prisoner’s dilemma: 1
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How to play in such games ?

* What would be a notion of «best strategy»
in such games ?

* First attempt: each player picks a strategy
that maximises his worst case outcome.

The players choose an unstable strategy

profile that does not maximise the sum
of the payoffs.
pay G

Battle of the sexes: B
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Dominant strategy

* Observe that in the case of the prisoner’s
dilemma, each prisoner has a dominant
strategy.

* A strategy is dominant if it gives a better
payoff than all other strategies no matter
what the other player does

—In some sense, dominant strategies allow one
player to play independently of the other player

vendredi 7 mars 14



Dominant strategy

* Definition: A strategy profile s is dominant
iff for all player i, for all strategy profile t:
ui(si,t-i) = ui(t)

* In the prisoner’s dilemma (S,S) is the
unique dominant profile.

—Check it !
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Dominant strategy

* Definition: A strategy profile s is dominant
iff for all player i, for all strategy profile t:
ui(si,t-i) = ui(t)

* In the prisoner’s dilemma (S,S) is the
unique dominant profile.

—Check it !
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Dominant strategy

* Definition: A strategy profile s is dominant
iff for all player i, for all strategy profile t:
ui(si,t-i) = ui(t)

* In the prisoner’s dilemma (S,S) is the
unique dominant profile.

—Check it !
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Dominant strategy

* Definition. A ile s is dominant
LUR{JEEN |n general, we cannot &
hope for the existence of

* Inthe p unique dominant
unique C strategies
—Check it™
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Dominant strategy

* Are there dominant strategies in the battle
of the sexes, and the penalty ?
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Penalty: K
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Nash equilibrium

* In order to capture the
notion of «stability», one
usually relies on the
notion of Nash
equilibrium, introduced
by John F.Nash in 1951

* A strategy profile is an
N.E. iff no player has an
incentive to deviate

UNIVERSITE LIBRE DE BRUXELLESE

vendredi 7 mars 14



n
w
—
-

Nash equilibrium

* Definition: A strategy profile s is a Nash
equilibrium iff for all player i, for all
player i’s strategy t;:

ui(s) = ui(ti,s-i)

* In the prisoner’s dilemma, (C,C) is an N.E.

Prisoner’s dilemma: 1
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é Nash equilibrium

* What are the N.E. in the two other games
we have considered ?
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Mixed strategies

* I[n some cases, there is no N.E. in games.
—The penalty game is a typical example
* [ntuitively, in those cases, one wants to

play by flipping a coin to choose the
strategy

* Such strategies are called mixed strategy
(opposed to pure strategies seen so far)

vendredi 7 mars 14



Mixed strategies

* Definition: a mixed strategy for playeriis
a probability distribution over his possible
choices.
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Mixed strategies

* Definition: a mixed strategy for playeriis
a probability distribution over his possible
choices.

* Example, for player G: s(L)=0.4, s(R)=0.6

1 -1 -1 1
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Mixed strategies

* Notation: let A be the matrix that
associates, to each pair of choices of the
players, the payoff of player 1. Let B be the
symmetric for player 2.

* Example:

1 -1 -1 1 B_(-l 1)
11 1 -1 1 -1
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Mixed strategies

* Definition: a best response to the mixed
strategy y of player 2 is a mixed strategy x
of player 1 s.t. xAy' is maximal
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Mixed strategies

* Definition: a best response to the mixed
strategy y of player 2 is a mixed strategy x
of player 1 s.t. xAy' is maximal

 Example: Let y=(0.4, 0.6) A = ( 11 11)

Ay’ = (-0.2, 0.2)"
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Mixed strategies

* Definition: a best response to the mixed
strategy y of player 2 is a mixed strategy x
of player 1 s.t. xAy' is maximal

 Example: Let x=(0.4, 0.6) A = ( 11 11)

Ay’ = (-0.2, 0.2)"
Now, let x=(0.9,0.1). Then, xAy'=-0.16
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Mixed strategies

* Definition: a best response to the mixed
strategy y of player 2 is a mixed strategy x
of player 1 s.t. xAy' is maximal

 Example: Let x=(0.4, 0.6) A = ( 11 11)

Ay’ = (-0.2, 0.2)"
Now, let x=(0.9,0.1). Then, xAy'=-0.16
Consider x’=(0,1). Then, x’Ay"= 0.2

* Clearly, x’ is a best response toy
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Mixed strategies

* Definition: a pair of mixed strategies (x,y)
is @ Nash equilibrium iff they are a best
response to each other.
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Mixed strategies

* Definition: a pair of mixed strategies (x,y)
is @ Nash equilibrium iff they are a best
response to each other.

 Example with the penalty game: choosing
(0.5, 0.5) for both players is a Nash
equilibrium
—Prove it !

—Prove that the pure N.E. we had computed
before in the prisoner’s dilemma respect the
def. of best response.

vendredi 7 mars 14
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Nash equilibrium - applications

* Microgrid management

—The system consists of N households connected
to a single Distribution Manager (DM).

—The system models a small neighbourhood.

—Houses must collaborate to balance the
electricity consumptions and avoid peak.

1) 10y n»
1N 1) BNy




Nash equilibrium - applications

* Microgrid management

—An algorithm has been proposed for the
houses:

UNIVERSITE LIBRE DE BQL-\&LLE%E

* When a house generates a load, it evaluates its
cost.

* The cost depends on the current total load of the
system.

* If the cost is below a fixed threshold t, the house
executes the load

e Otherwise, it executes the load with some fixe
probability

H. Hildmann and F. Saffre. Influence of variable supply and load flexibility on demand- side management. In Proc. 8th International Conference on the
European Energy Market (EEM’11), pages 63-68, 2011.
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Nash equilibrium - applications

* Microgrid management

—Obviously, each house wants to maximise its
value, defined as:
V = loads executing / cost of execution

UNIVERSITE LIBRE DE B?LV\ELLE%E

—A desirable property of the system is that no
house has an incentive to deviate from the
agreed algorithm

* In this case the possible strategies of the players
are to deviate (or not) from the algorithm

* The profile in which no house deviates should be
an N.E.

H. Hildmann and F. Saffre. Influence of variable supply and load flexibility on demand- side management. In Proc. 8th International Conference on the
European Energy Market (EEM’11), pages 63-68, 2011.

vendredi 7 mars 14



Nash equilibrium - applications

* Microgrid management

—A team from Oxford has shown that a deviation
consisting in ignoring the threshold might be
profitable for individual houses.

UNIVERSITE LIBRE DE BRUXELLESE
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T. Chen, V. Forejt, M. Kwiatkowska, D. Parker and A. Simaitis. Automatic Verification of Competitive Stochastic Systems. Formal Methods in System Design,
pages 1-32, Springer. February 2013.
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Nash equilibrium - applications

* Microgrid management

—A team from Oxford has shown that a deviation
consisting in ignoring the threshold might be
profitable for individual houses.
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1 2 3 4 5 6 7 8
Number of households

T. Chen, V. Forejt, M. Kwiatkowska, D. Parker and A. Simaitis. Automatic Verification of Competitive Stochastic Systems. Formal Methods in System Design,
pages 1-32, Springer. February 2013.
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Nash equilibrium - applications

* Microgrid management

—One possible solution: allow the DM to cancel

one job per step each the cost exceeds the
threshold
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T. Chen, V. Forejt, M. Kwiatkowska, D. Parker and A. Simaitis. Automatic Verification of Competitive Stochastic Systems. Formal Methods in System Design,
pages 1-32, Springer. February 2013.
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Nash equilibrium - applications
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* Managing power of wireless devices:

—Consider a set of wireless devices that
communicate to a base station

—The higher the emitting power of the device,
the higher the bandwidth

—If a protocol fixes a maximal emitting power,
each device has an incentive to deviate, unless
the protocol punishes it.

UNIVERSITE LIB
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Nash equilibrium - applications
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* File sharing in peer-to-peer systems:

—Each peer owns some parts of the file
—All peers want to acquire the file

UNIVERSITE LIB

—In the bittorrent protocol, each peer uploads
only to the other peers that have contributed
most

—Do peers have an incentive to deviate ?

—Yes | bittorrent is not a Nash equilibrium

*|s it an epsilon-N.E. ?

vendredi 7 mars 14
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Games graphs

* We consider again games with two players

* We will us graphs with two types of nodes
—Some nodes are controlled by player A
—The other nodes are controlled by B

* A play will be a path in the graph

* Deciding where to move next is the
responsibility of the player who controls
the node

ars 14



Game graphs

 Example:

—B plays with rond nodes

—A plays with square nodes
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Game graphs

» Definition: An arena is a tuple {Q, qo, E)

where:

—Q=QauQg (With QaNQp=3) is the set of nodes.

Nodes in Qa (resp. Qg) are controlled by player
A (B)

* goeQ is the initial node
* ECQxQ is the set of edges.

vendredi 7 mars 14



Game graphs

» Definition: A play in an arena £Q, qo, E)

Is an infinite sequence rirars... s.t. ri=qo et
Vi=1: (ri, ris1)€E . It is thus an infinite path
in the graph, starting from qo.

12341751751 751..
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Winning conditions
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* To determine who wins the play, we will
use so-called Muller conditions:

* Let p be a play in an arena:

—Inf(p) = set of nodes that appear infinitely often
in p
—Occ(p) = set of nodes that appear in p

 Example: for
p1=12341751751(751)¥

—Inf(p)={1,5,7}
—0cc(p)=1{1,2,3,4,5,7}

vendredi 7 mars 14



Winning conditions

e Let us fix a set F of sets of nodes of the
arena, and a play p

* [n general, there are two kinds of Muller
conditions:
—Weak conditions: p is winning iff Occ(p)eF

—Strong conditions: p is winning iff Inf(p)eF

 We will focus on certain kinds of weak
conditions, i.e. safety and reachability
conditions.

vendredi 7 mars 14



Winning conditions

* Example:

—1234(175)® wins for the weak condition
{{1,2,3,4, 5, 7},{1,5,7}} and for the strong one
{{1,5,71,{1,2}}

—1234(175)* looses for the strong condition
{{1,2,3},{1,2,3,5,7}} and for the weak condition

ul,4}}

vendredi 7 mars 14
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Games on graphs

* Definition: An infinite game is a
pair {G,d) where:

—G Is an arena

—& is a Muller condition for one of the players



Safety

e If the Muller condition is a weak cond. of
the form {S’|S’CS} for a given set S, we

have a safety game (S = safe states).

—e.g.: F={{1,2,3},{1,2},{1,3},{2,3},{1},{2},{3}}, with
Q={1,2,3,4,5}. We win if we visit only states 1,
2 or 3 (we we don’t have to see them all)

 Example: A pump has to maintain a

certain level of liquid in a tank. The safe

level is specified by an upper and a lower

bound (no under or overflow).
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Reachability
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* [f the Muller condition is a weak cond. of
the form {S|qeS} for some vertex g, then

we have a reachability game.
—e.g.: F={{1},{1,2},{1,3}, {1,2,3}}, with Q={1,2,3}.
We win if we force the game to reach 1.

 Example: A system has to initialise, and

we should ensure that it visits at least

once an “init completed” state, to make

sure it does not deadlock during the

initialisation phase.
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Example

* With the following arena and the strong
condition {{1,5,7}} for player B

Does B have winning strategy !

]
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Example

* With the following arena and the strong
condition {{1,5,7}} for player B

Does B have winning strategy !




Example

* \With this arena and the strong condition
{S|{2,7}CS} for B

Does B have winning strategy !
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Example

Yes !

« With this arena and the str Lmtm I:al;ernzt;
{S|{2,7}<S} for B S S

Does B have winning strategy !
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Example

Yes !

« With this arena and the str ';rotm I:al;ernzt;
{S|{2,7}<S} for B S S

VWVe need
memory !

4
/_

Does B have winning strategy !
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Strategies

* Definition: A strategy for player X in an
arena Q, qo, E) is a function

f: Q*Qx—Q s.t. for all cgeQ*Qx:
(q,f(0q))€E.

* Intuitively, for all play prefix oq ending in a
node controlled by X, f(oq) gives the next
location to play.

* This possible only if the edge (q, f(cq))
exists
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Strategies

* Definition: A play p=rirars... respects a
strategy f (for X) iff: for all i: ri € Qx implies
ris1 = f(rara...ri)

* Intuitively, anytime we visit an X location,

we chose the successor given by the
strategy.
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Strategies

* Definition: A strategy f (for X) in an arena
A is winning for X in the game G= {A,d)

iff
for all play p of G: if p is played according
to f, then p is winning for ¢.

 Whatever the adversary of X does, X is
certain to win, because the objective ¢ is
fulfilled in the resulting play.
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Example

 Example: For this arena and the strong condition
{{1,5,7}} for player B

UNIVERSITE LIBRE DE BRUXELLE

 Winning strategy:
—voeQ*:f(ol)=7

—voeQ*:f(c5)=1
(05) We could have chosen
—voeQ*:f(03)=4"—
any successor here
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Example

 Example: For this arena and the strong condition
{{1,5,7}} for player B

UNIVERSITE LIBRE DE BRUXELLE

 Winning strategy: The strategy depends
IR oL (s YA Oy on the current state

—voeQ*:f(o5)=1
\03) We could have chosen
—voeQ*:f(03)=4"——
any successor here

75
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 Example: With this arena and the strong condition

{S1{2,7}<S} for player B
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* Winning strategy for B:
—voeQ*:f(ol)=7 if3i: 0=2and V j>i: oj ¢ {2,7};
f(01)=2 otherwise
—voeQ*:f(05)=1
—voeQ*:f(o3)=4

<
D
>
Q.
=
Il N BN I
Q.



S

UNIVERSITE LIBRE DE BRUXELLE

<
D
>
Q.
<l 0 BN B

=0

Example

A

 Example: With this arena and the strong condition
{S|{2,7}<S} for player B

 Winning strategy for B:

—voeQ*:f(ol)=7if3i:0i=2and V j>i: 0; ¢ {2,7};

f(01)=2 otherwise
—voeQ*:f(05)=1
—voeQ*:f(o3)=4

The strategy depends on

the history !

ars 14
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Strategies

* In general, a strategy can use all the
information given by the prefix played so
far.

UNIVERSITE LIBRE DE BRUXELLE

* We want at least a computable strategy,
but some (simple) cases are more
Interesting in practice:

—If the strategy can be computed by a finite
automaton, we have a finite state strategy

—If the strategy depends on the current location
only, we have a positional strategy

vendredi 7 mars 14
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Example

 Example: For this arena and the strong condition

{{1,5,7}} for player B
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4
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 Winning strategy:
—voeQ*:f(ol)=7
—voeQ*:f(05)=1
—voeQ*:f(o3)=4
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Example

 Example: For this arena and the strong condition
{{1,5,7}} for player B

UNIVERSITE LIBRE DE BRUXELLE

 Winning strategy:
—voeQ*:f(ol)=7
—voeQ*:f(05)=1
—voeQ*:f(o3)=4

Positional strategy !

78
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* Winning strategy for B:
—voeQ*:f(ol)=7 if3i: 0=2and V j>i: oj ¢ {2,7};
f(01)=2 otherwise
—voeQ*:f(05)=1
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Example

 Example: With this arena and the strong condition
{S|{2,7}<S} for player B

UNIVERSITE LIBRE DE BRUXELLE

 Winning strategy for B:
—voeQ*:f(ol)=7if3i:0i=2and V j>i: 0; ¢ {2,7};
f(01)=2 otherwise
—voeQ*:f(05)=1 Finite state strategy !
—voeQ*:f(o3)=4
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Example

 Example: With this arena and the strong condition
{S1{2,7}<S} for player B

reen: B plays 2
 Winning strategy for B: S Py
after next |

\OH 25@%@@ blue: B plays 7 after
ﬁ»@“l@@ next |

Remembers current location




Positional strategies

* A positional strategy f for player X is a function
that associates to each node of X a successor
node (no need to remember the whole history)

* A positional strategy can thus be regarded as a
selection of the game edges: for all node g of
X, we keep only the edge (q,f(q))

voecQ"f(ol)=7
ovoecQ"f(a5)=1I
*voecQ":f(03)=4
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Positional strategies

* A positional strategy f for player X is a function
that associates to each node of X a successor
node (no need to remember the whole history)

* A positional strategy can thus be regarded as a
selection of the game edges: for all node g of
X, we keep only the edge (q,f(q))

4 voecQf(ol)=7
ovoeQ"f(05)=1
vy - ' *voecQ"f(03)=4
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Determined games

E DE B

* To solve those games we compute two
sets:

—W.a = the set of locations of the game from
where A has a winning strategy

UNIVERSIT

—Ws5s = the set of locations of the game from
where B has a winning strategy

* Clearly WanWg =@

* But we could imagine games where in
some positions neither player has a
winning strategy

vendredi 7 mars 14



Determined games

* Definition: A game (with set of locations
Q) is determined iff Wa U Wg = Q.

* Theorem (Borel - Martin): games with
Muller objectives are determined.

UNIVERSITE LIBRE DE BRUXELLESE

E. Borel (1871-1956) D. Martin (1940-)
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Reachability games

* To define reachability games in a simple
fashion, we consider an arena {Q, do, E)

and a set T of target nodes

* We want to compute a strategy for
player A that guarantees to reach T in all

plays.

vendredi 7 mars 14



Reachability in 1-player games

e Let {Qa, qo, E) be a 1-player arena

(i.e., a plain graph)

* Let T be a set of target nodes that the
player wants to reach

* In 1-player games, a simple solution is the
(forward) breadth-first search

* It consists in computing the sets R; defined
as:

— Ro={qo}
—Ri:1=Riu{q’ | 3ge€Ri(q,q)€E}
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Reachability in 1-player games

* Intuitively, each set R; contains all the
vertices that can be reached from qop in at
most I steps.

* This sequence eventually stabilises
—Prove it !

—Let R* denote the set obtained at stabilisation

* Then, the player has a strategy toreach T
fromqgoiff TN R* # &

vendredi 7 mars 14
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Reachability in 1-player games

* Then, the strategy can be extracted from
the sequence Ry, Ry, ...

—If a node g’ has been added at step k, then,
there is a node geRk.1 and an edge (q,q’).

—The strategy from g is to go to q’.
—Observe that this is a positional strategy !
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Reachability in 1-player games

(1
QO‘ A,

Ro

d2

R1

R, =R* 93
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Drawback of the forward
approach

* Unfortunately, this technique does not
allow us to characterise Wa

* [n the previous example, all nodes are
winning, but we only compute those that
are reachable from qo
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Reachability in 1-player games

g: and qs are
winning too !
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Backward approach

* Instead of computing the nodes reachable
from the initial one, we compute the
nodes that re co-reachable from the
target.

—It is a backward approach

* We compute the sequence
—Bo=T
—Bii=Biuiq | 39 €Bit(q,q)ek]

vendredi 7 mars 14



Backward approach

* [ntuitively, Bi is the set of all nodes that
can reach the target within i steps.

* This sequence eventually stabilises
—Prove it |
—Let B* denote the set obtained at stabilisation
* Then, player A has a strategy toreach T
from any node g € B*, and from those
nodes only.
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Backward approach

g
wJ
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-

* Again, the strategy can be extracted from
the sequence By, By, ...

* [t is also a positional strategy.
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Reachability games

* Theorem: reachability games are
positionally determined.

—«positionally» means that positional strategies
suffices for each player

—Thus, the set of nodes Q can be partitioned into
Wa and W5 s.t.

* from each node in Wa, player A has a positional
strategy that guarantees to eventually reach T and

e from each node in WB, player B has a positional
winning strategy that guarantees never to visit T

ars 14



Attractor set

* Let us now adapt the idea of the backward
algorithm to cope with the interaction
with the second player

* We will compute a sequence of sets A; s.t.
from any node in Aj, the player can force
the game to eventually visit the target
within at most i moves.
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Attractor

* Definition: For a set T of locations and a
player X, the attractor of T for X Attr*(T) is
the set of locations from where X can force
the game toreach T

* From those nodes, X has a winning
strategy for the objective «reach T»

* Definition: Attr*/(T) is the set of locations
from where X can force the game to reach
T in at most | steps
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Attractor
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* Definition: Attr*/(T) is the set of locations
from where X can force the game to reach
T In at most | steps

* Clearly Attr*o(T) =T.

* How can we compute Attr¥;1(T) from
Attr’i(T) ?

e Clearly Attr’i(T)C AttrXi+1(T), but what are
the locations that should be added ?
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Attractor

How to compute Attr*X+1(T) from Attr™i(T) ?

Case |:




Attractor

How to compute Attr*X+1(T) from Attr™i(T) ?

Case |:

UNIVERSITE LIBRE DE BRUXELLESE

Since X defines
the strategy, it

can always

choose to go to
Attr’(T)

109
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Attractor

How to compute Attr*X+1(T) from Attr™i(T) ?

Case |:

Since X defines
the strategy, it

can always

choose to go to
Attr’(T)
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Attractor

How to compute Attr*+i(T) from Attr*i(T) ?

Case 2:

110
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Attractor

How to compute Attr*+i(T) from Attr*i(T) ?

Case 2:

The adversary
can choose

nodes in
Attrx'(T) only
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Attractor

How to compute Attr*+i(T) from Attr*i(T) ?

Case 2:

The adversary
can choose

nodes in
Attrx'(T) only
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Attractor

How to compute AttrXi+(T) from Attr*i(T) ?

Cas 3:
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Attractor

How to compute AttrXi+(T) from Attr*i(T) ?

Attl‘xi(T)
Cas 3:

pas un
noeud de
X

The adversary
can choose a

successor
outside AttrXi(T)

7
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Attractor

How to compute AttrXi+(T) from Attr*i(T) ?

Att I‘Xi (T)

Cas 3: Z AttrXi+1(T)

The adversary
can choose a

successor
outside AttrXi(T)

111



UNIVERSITE LIBRE DE BRLXELLESE

vendredi 7 mars 14

Attractor
* Thus:
AttrXo(T) = T
AttrXi.1(T) = Attr’(T)

U {qeQx |3(q,r)eE : r € Attr’i(T)}

U {qeQ\Qx | V(q,r)€E : r € Attr’(T)}

But this is an infinite sequence of sets !
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C C C C
AttrXo(T)  AterX((T)  Ater*y(T) ... Ater’(T) ...

* Theorem: The sequence Attr’i(T)
converges

* Proof: The sequence is increasing, and
each Attr’(T) is included in Q, which is
finite.

* Let us thus consider the first position k s.t.
Attr’y(T) = AttrXi1(T)

* We have: Attr’(T) = Attr’y(T)
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* Proof: The sequence is increasing, and
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Attractor

C C C C

AttrXo(T)  AterX((T)  Ater*y(T) ... Ater’(T) ...

* Theorem: The sequence Attr’i(T)
converges

* Proof: The sequence is increasing, and
each Attr’(T) is included in Q, which is
finite.

* Let us thus consider the first position k s.t.
Attr’y(T) = AttrXi1(T)

* We have: Attr’(T) = Attr’y(T)
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Attractor

AttrXo(T) € Attr’((T) € Attr*y(T) C C Attr’(T) =

* Theorem: Wx= Attr*(T)

—Proof (1): Attr*(T) € Wx (there are only winning
locations in the attractor)
Clearly, we have added to Attr*(T) only winning
positions for X (by def of Attr). This is thus
trivial.
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Attractor

AttrXo(T) € AttrX((T) € Attr*y(T) C+ € Attr’(T) =

* Theorem: Wx= Attr*(T)

—Proof (2): Attr*(T) 2 Wx (All the wining locations
are in the attractor)

* By contradiction: assume that some winning
position q of X (qe Wx) is not in Attr*(T) =Attr’(T).

* Since qe Wy, X has a winning strategy f

 Let us consider the tree representing all the
possible plays from g, following f

ars 14
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Attractor

* Each position q” of X )EK

has one and only one @ 9

son: f(q’) /D\ 9
 The set of sons of

each adversary 9 /D\

position g’ is is the ‘ p /D\

set of successors of '+

in the arena D ‘ Q

' A v

e The tree is infinite
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Attractor
* Each branch goes
through a location & 9
Attr’«(T) because: /D\
— fis a winning strategy
— RC Attr¥(T) O

e We can thus cut the
tree in two parts:

— The nodes above node in
e Attr’y(T)

— Those under
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Attractor

* Each branch goes /EK
through a location & 9 9

Attr’«(T) because: /D\

— fis a winning strategy

— RC Attr*(T) O 9 /D\
 We can thus cut the D p /D\
<Y

tree in two parts:

— The nodes above node in .

e Attr’y(T)

— Those under

,I\ \
R A \

e Attrx¥(T)
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e Attr’(T)

e Let us consider the fathers of the red nodes € Attr’(T).
Those fathers & Attr*«(T)

e |fthereisafather g of X, then g‘isin
Attr*+1(T). Since g’ ¢Attr*k(T), we have
Attr’y(T)c Attr*c+1(T). Contradiction.

14



UNIVERSITE LIBRE DE BRUXELLESE

vendredi 7 mars

Attractor

e Attr’(T)

e Let us consider the fathers of the red nodes € Attr’(T).
Those fathers & Attr*«(T)

e |fthereisafather g of X, then g‘isin
Attr*+1(T). Since g’ ¢Attr*k(T), we have
Attr’y(T)c Attr*c+1(T). Contradiction.

14



UNIVERSITE LIBRE DE BRUXELLESE

vendredi 7 mars

Attractor

e Attr’(T)

e Let us consider the fathers of the red nodes € Attr’(T).
Those fathers & Attr*«(T)

e |fthereisafather g of X, then g‘isin
Attr*+1(T). Since g’ ¢Attr*k(T), we have
Attr’y(T)c Attr*c+1(T). Contradiction.

14



UNIVERSITE LIBRE DE BRUXELLESE

vendredi 7 mars

Attractor

e Attr’(T)

e Let us consider the fathers of the red nodes € Attr’(T).
Those fathers & Attr*«(T)

e |fthereisafather g of X, then g‘isin
Attr*+1(T). Since g’ ¢Attr*k(T), we have
Attr’y(T)c Attr*c+1(T). Contradiction.

14



UNIVERSITE LIBRE DE BRUXELLESE

vendredi 7 mars 14

Attractor

X
€ Attrii+1(R) e Attr’i(R)

Otherwise, all the fathers belong to the opponent and

have all their sons in Attr’k(R). They are thus in

Attr*+1(R). Again, Attr’k (R) c Attr*1(R). Contradiction.
QED
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* We can now compute the set of winning
positions Wy of a player X for reachability
objective T:

—Compute Attr*(T) (fixed point)
—X thus has a winning strategy from qo iff qoeWx

ERSIT

* How to compute that strategy ?

—For all position geWYy, we choose f(q) among the

successors of g that are «one step closer in the
attractor».

—The fixed point characterises a family of
positional strategies.
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Grey nodes are the objective for B
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Grey nodes are the objective for B
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: Safety

DE B

* A safety game is the dual of a reachability
game.

—If player A wants to reach T, B wants to avoid it

UNIVERSIT

—T is thus a reachability objective for A and a
safety objective for B.

* We can thus re-use the attractor technique
to solve safety games.

—The attractor is then a set of unsafe states

* Theorem: Safety games are positionally
determined
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Extensions

* Too many...

—Weighted graphs: each edge has a weight
which is a price to pay when taking it.

.p
.p

ayer A wants to reach a target with optimal cost

ayer A wants to repeatedly reach the target with

minimal mean-payoff

—Probabilities
* The second player is probabilistic (1,5 players)
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Extensions

* Too many...

—Imperfect information

 Player A cannot always observe in which node the
game is

Player |
chooses a
letter, Player

2 chooses
the
successor
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Extensions

* Too many...

—Imperfect information

 Player A cannot always observe in which node the
game is

Objective: reach
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Extensions

* Too many...

—Imperfect information

 Player A cannot always observe in which node the
game is

Player | cannot
guarantee to
reach £ 4, but

can reach it
with high
probability
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Extensions

* Too many...

—Evolving arenas

* The opponent might delete edges, or change the
weights.



