
INFO-F405 – Computer Security

Project 1: Rainbow Tables

Degols Gilles, Delhaye Quentin, Streltsov Anton - Group 11

October 28, 2013

1 Presentation of the project

The goal of the project was to create a software that can find one of the possible passwords corre-
sponding to a stolen fingerprint, using the technique of a rainbow table based attack. The stolen
fingerprint has a size of 24 bits and the corresponding password is made of 12 bits. Each password is
hashed and reduced four times in a row, using four different reduction functions. At the end of the
chain, the initial password and the last fingerprint are stored in the table. The hash is based on the
DES encryption algorithm in the ECB mode, using the password as the key and a constant message
as the plaintext.

According to the size of the password, there are no more than 212 passwords to create, hash
multiple times and store – with their fingerprint – in the rainbow table.

The software can be implemented in Java or C++.

2 Presentation of the work

We found out that the project could be split into three parts, which allows us to divide the work fairly
among our group of three people:

• the creation of the rainbow table: the dictionary with the passwords and the fingerprint corre-
sponding to each password;
• the hash of a password;
• the creation of reduction functions and the selection of the best ones.

According to the fact that the stolen fingerprint – or a modified fingerprint, depending on the
position in the algorithm – is used to find the same fingerprint in the rainbow table, the search has to
be the fastest possible. With this consideration, we decided to use the dichotomic search algorithm
on the rainbow table, previously sorted at the end of its creation.

The encryption of the password has been realized with the library Crypto++ as we decided to use
C++ as the software language considering it is a better language for manipulating bits.

2.1 Creating the Rainbow Table

Each possible password (212 possibilities) is hashed and then reduced with one of the four reduction
functions (blue, green, yellow, red). This process is iterated four times on the generated passwords
using a different function each time. At the end, the last reduced password is hashed one more time
to get the fingerprint and then, the initial password and the final fingerprint are stored in the table.

1



Once all the passwords and their final fingerprint have been stored, the table is sorted and the
duplicate fingerprints are removed. This removal is done by shifting all the unique fingerprints to the
beginning of the table. The tail of the table containing only duplicate fingerprints is then ignored. It
is to be noted that since there are “only” 4096 possible passwords, we decided to store the table on
the heap; for much larger tables, it would be better to write the table in a file and save it on the hard
drive disk instead.

2.2 Searching Algorithm

The algorithm used for finding the fingerprint in the sorted table is the dichotomic search. The O(n2)
complexity and the linear speed of convergence are satisfying in our case.

2.3 Sorting Algorithm

The sorting algorithm chosen in our project was the insertion sorting as its average and maximal
complexity is O(n2). The stability of this algorithm is an important element in our choice as the
rainbow table is sorted before the deletion of the duplicate fingerprints and their password. As we
may encounter many duplicate values depending on the reduction functions used, it is useless to sort
the table after each password is added. Other algorithms with a lower complexity – O(n log n) –
have been considered, but the increase in efficiency was not worth the increase in implementation
complexity. Although the complexity of the sorting algorithm is an important point, we have to keep
in mind that it will be applied only once, during the creation of the rainbow table, so the software is
allowed to take more time during this step.

2.4 Reduction functions

The creation of reduction functions was made empirically. The aim during their creation was to have
a function returning a 12-bits set based on the maximum number of available bits (24 bits of the
fingerprint in this case), obtained by a combination of independent small operations on a bit set (e.g.
flip all the bits, or sum two of them to return one).

The selection of the best reduction functions has been made as follows:

• a table with the reduced fingerprint of every password with a specific reduction function is made
for the complete dictionary;
• the number of collisions is counted and saved;
• the operation is repeated for every other reduction function that was previously created;
• the four reduction functions that create the lowest number of collisions are chosen, in other

words, the ones that produce a number of lines close to one fifth of the 4096 possible passwords.

It is to be considered that there are way too many possible functions to be tested and we only had
tested a small portion of them. We kept in mind that they needed to be easy to compute in order to
be efficient. As a result, we opted for simple operations on bits such as flip, mirror effect, rotate, XOR,
partial selection, partial addition...

The following table contains some of the functions that we tested and the corresponding size of
the resulting table. The notation used is:

• Fingerprint mirror(Fingerprint f) → M
• Fingerprint rotate(Fingerprint f, int round) → R(round)
• Fingerprint flipAll(Fingerprint f) → F
• Password keepRight(Fingerprint f) → KR

2



• Password keepLeft(Fingerprint f) → KL
• Password hopOne(Fingerprint f) → H1
• Password hopTwo(Fingerprint f) → H2
• Password sumTwo(Fingerprint f) → S2

Function KR KL H1 H2 S2 M, KL

Lines in the table 118 673 710 758 724 204

Function F, KL R(1), KL M, F, KL M, R(15), KL R(15), H1 R(15), H2

Lines in the table 694 1349 198 702 752 727

Finally, we decided to use the following functions for our table:

• Function 1: R(1), KL
• Function 2: R(2), KL
• Function 3: R(3), KL
• Function 4: R(4), KL

The resulting number of lines in the table was 1298, and among the 4096 possible passwords, 1310
can be found. Although using a combination of the H2 function would have produced a number of
lines much closer to one fifth of 4096, the tests showed that using a larger table allowed us to find
more passwords.

2.5 DES Encryption

The DES encryption algorithm needs two things to produce its 8-bytes cipher: an 8-bytes message,
which in our case is constant const byte MESSAGE[] = {0x43,0x41,0x43,0x41,0x43,0x41,0x43,0x41};,
and an 8-bytes key, the part we will be working on.

Among those 8 bytes, 8 bits – the last bit of each byte – are parity bits. Their value will not be
checked, and as a consequence will not matter.

The key is inflated from the 12-bits password. The 6 first bytes are then simply initialized to zero,
while the last two will be organized as follows:

0 0 b12 b11 b12 b9 b8 p7︸ ︷︷ ︸
byte 7

b7 b6 b5 b4 b3 b2 b1 p8︸ ︷︷ ︸
byte 8

With bi being the ith bit of the password and pi the ith parity bit of the key.
The fingerprint will consist of the 24 last bits of the cipher outputted by the DES encryption.

2.6 Finding the Password in the Rainbow Table

The research will consist in four iterations at most. In the begining of each, the current fingerprint
will be searched in the table.

If it is found, the corresponding password will go through the different reduction functions (alterned
with the encryption algorithm), until the target fingerprint is reached. At this moment, the found

flag is triggered and the search is over.
However, if the fingerprint is not found in the table, different reduction functions will be applied

on it:

• first iteration: 4th function,

3



• second iteration: 3rd and 4th functions,
• third iteration: 2nd, 3rd and 4th functions,
• fourth iteration: 1rst, 2nd, 3rd and 4th functions.

It is to be noted that our current choice of combination of reduction function does not allow yet
a range of fingerprints wide enough to recognize any fingerprint that could be produce by one of the
212 passwords.

4


