
Computer security
Digital signatures

Olivier Markowitch



Digital signatures

Unlike handwritten signatures, the digital signatures:

• are linked to the content of the signed document

• is not compared with a witness signature, but is
verified with an algorithm

• is universally verifiable
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Non-repudiation

A digital signature ensures non-repudiation of origin

A signer cannot repudiate his signatures (he cannot
convince anybody that he is not at the origin of his
signatures)

A digital signature is generated on the basis of a pri-
vate key and is verifiable, by anybody, thanks to the
corresponding public key

2



Definitions

A digital signature is produced by a digital signa-
ture generation algorithm and is verified by a digital
signature verification algorithm

A digital signature scheme is composed by a digital
signature generation algorithm and the corresponding
digital signature verification algorithm
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Definitions

Two classes of digital signature schemes exist:

• with appendix: where the original message must
be provided to the digital signature verification al-
gorithm

• with message recovery: where the origin mes-
sage can be recovered from the digital signature

4



Digital signature schemes with appendix

Each signer has a private key to sign and a corre-
sponding public key to allow the verification of his dig-
ital signatures

LetM be a finite set of messages, S a finite set of dig-
ital signatures and K finite set of pair of keys (private
and public)

For all pairs of private and public keys (k, k′), it exists
a digital signature with appendix generation algorithm
Sigk′ and a corresponding digital signature verifica-
tion algorithm Verk such that the digital signature of a
message x is:

y = Sigk′(x) :M → S

and

Verk(x, y) :M × S → {true, false}
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Digital signature schemes with appendix

Cryptographic hash functions are usually used in dig-
ital signature schemes with appendix

The signer computes m′ = h(m) and s = Sigk′(m
′)

where k′ is the signer’s private key

The verifier obtainsm, s, the signer public key k, com-
putes m′ = h(m) and accepts the signature if and
only if Verk(m′, s) = true

it should be computationally infeasible for an entity
other than the signer to find a message M and the
corresponding signature s such that Verk(m′, s) =

true when k is the signer’s public key andm′ = h(m)
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Digital signature schemes with appendix



Digital signature schemes with mes-
sage recovery

Each signer has a private key to sign and a corre-
sponding public key to allow the verification of his dig-
ital signatures

Let M be a finite set of messages, MS a finite set of
signable messages, S a finite set of digital signatures
and K finite set of pair of keys (private and public)
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Digital signature schemes with mes-
sage recovery

For all pairs of private and public keys (k, k′), it exists
a digital signature with message recovery algorithm
Sigk′ that applies MS → S, a redundancy function
R : M → MS and a corresponding digital signature
verification algorithm Verk: S → MS such that the
digital signature of a message x is:

y = Sigk′(R(x))

and

x′ = Verk(y)

If x′ /∈ MS then the digital signature is rejected, oth-
erwise the digital signature is accepted and the mes-
sage x = R−1(x′) is retrieved
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Digital signature schemes with mes-
sage recovery



Attacks

The aim of an opponent is to forge a digital signature
that will be verified with the public key of another entity

If the opponent is either able to compute the private
key of a genuine signer or is able to forge a digital
signature for all the possible messages on the name
of this genuine signer, the digital signature scheme is
said to be totally broken

If the opponent is able to create a valid signature for
a particular message or for a set of chosen messages
chosen a priori, the digital signature scheme is said to
allow selective forgeries

If the opponent is able to forge a signature for at least
one message but having no control over the message
whose signature is obtained, the digital signature scheme
is said to allow existential forgeries
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RSA

Key generation

• choose p and q two large primes approximatively
of the same size

• let n = pq

• choose e ∈ ]1, φ(n)[ such that gcd(e, φ(n)) = 1

• compute d such that e · d ≡ 1 (mod φ(n))

The digital signature generation private key is d, the
public verification key is (n, e)
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RSA with message recovery

Digital signature generation

Let m the message to be signed:

• m̃ = R(m) where R is the redundancy function

• s = m̃d mod n is the digital signature of m

Digital signature verification

Only s is needed to verify the digital signature:

• m̃ = se mod n

• if m̃ ∈ Ms then m = R−1(m̃), otherwise the
digital signature is rejected
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RSA with appendix

Digital signature generation

Let m the message to be signed:

• m̃ = h(m) where h is a MDC

• s = m̃d mod n is the digital signature of m

Digital signature verification

s and m are needed to verify the digital signature:

• m̃ = se mod n

• if h(m) = m̃ then the digital signature is ac-
cepted
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El Gamal

Key generation

• choose a large prime p

• choose α a generator of Z∗p

• choose a ∈ [1, p− 2]

• compute β = αa mod p

The digital signature generation private key is a, the
public verification key is (p, α, β)
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El Gamal

Digital signature generation

Let m the message to be signed:

• choose randomly k ∈ [1, p− 2] such that k is
prime with p− 1

• compute γ = αk mod p

• compute δ = (h(m)− a · γ) · k−1 mod p− 1

The digital signature of m is the pair (γ, δ)
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El Gamal

Digital signature verification

s and m are needed to verify the digital signature:

If γ ∈ [1, p− 1] and if βγ · γδ ≡ αh(m) mod p then
the digital signature is accepted

Indeed: βγ · γδ mod p

= αa·γ · γ(h(m)−a·γ)·k−1 mod p

= αa·γ · αk·(h(m)−a·γ)·k−1 mod p

= αa·γ · αh(m)−a·γ mod p

= αa·γ · αh(m) · α−a·γ mod p

= αh(m) mod p
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El Gamal

Precautions:

• the value of k cannot be disclosed by the signer

• the signer cannot use the same value k to sign
two different messages
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Digital Signature Algorithm (DSA)

Key generation

• choose a large prime q ∈
]
2159,2160

[

• choose a prime p of 512+64·t bits with t ∈ [0,8]
and such that q divides p− 1

• choose α a generator of the cyclic group of order
q in Z∗p

• choose randomly a ∈ [1, q − 1]

• compute β = αa mod p

The digital signature generation private key is a, the
public verification key is (p, q, α, β)
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DSA

Digital signature generation

Let m the message to be signed:

• choose randomly k ∈ ]0, q[ such that k is prime
with p− 1

• compute γ = (αk mod p) mod q

• compute δ = (h(m) + a · γ) · k−1 mod q

The digital signature of m is the pair (γ, δ)
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DSA

Digital signature verification

s and m are needed to verify the digital signature:

If γ ∈ ]0, q[ and δ ∈ ]0, q[:

• compute e1 = h(m) · δ−1 mod q

• compute e2 = γ · δ−1 mod q

If (αe1 · βe2 mod p) mod q = γ then the digital
signature is accepted
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DSA

(αe1 · βe2 mod p) mod q

= (αh(m)·δ−1 · αa·γ·δ−1 mod p) mod q

= (α(h(m)+a·γ)·δ−1 mod p) mod q

since δ = (h(m) + a · γ) · k−1 mod q

= (αk·δ·δ
−1

mod p) mod q

= (αk mod p) mod q

= γ
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