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Hash functions

A hash function, h, converts a binary string of arbi-
trary size into a fixed-size n-bit string

If the input size > n then collisions happen



Hash functions properties

Compression: converts a binary string of arbitrary
size into a fixed-size n-bit string

computation efficiency: A (x) must be efficiently com-
putable



Hash functions in cryptography

Hash functions are used in:

e manipulation detection codes (MDC): to manage
data integrity

e message authentication codes (MAC): to manage
data integrity and source authentication

MDCs are divided into two classes: one-way hash
functions (OWHF) and collision resistant hash func-
tions (CRHF)



Cryptographic hash functions

Cryptographic hash functions have additional proper-
ties : let x and 2’ be inputs and let y and 3’ be the
corresponding outputs

1. preimage resistance: for at most all output y of
h(), it must be computationally infeasible to find
a preimage z’ such that h(z') = y

2. second preimage resistance: given z and y =
h(x), it must be computationally infeasible to find
a second preimage =’ # z such that h(z) =
h(x")

3. collision resistance: it must be computationally
infeasible to find two inputs x and =’ such that
h(z) = h(z")



Definitions

A one-way hash function (OWHF) is a hash function
that respects the properties of preimage resistance
and second preimage resistance

One-way hash functions are also called weak one-way
hash functions

A collision resistant hash function (CRHF) is a hash
function that respects the properties of second preim-
age resistance and collision resistance

Collision resistant hash functions are also called strong
one-way hash functions
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Keyed and unkeyed hash functions

A message authentication code (MAC) is a functions
hi. () parameterized by a secret key k and that re-
spects the following properties:

1. efficiency: for a known function h;. (), given a value
k and an input x, hi.(x) is easy to compute

2. compression: hi() maps an input x of arbitrary
finite soze to an output hy () of fixed length n

3. computation-resistance: for a value of k unknown
to an adversary, given zero or more pairs (x;, hi(x;)),
it is computationally infeasible to compute any pair
(x, hi.(x)) for any new input = #= z;

Detection manipulation code (MDC) are unkeyed hash
functions
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Figure 9.2: General model for an iterated hash function.



lterative hash function

h(z) = g(Hy)

Hgy = initial value
H; = f(H;—1,z;) withi € [1,1]

r=2x1 ... x¢y With|z;| =r fori € [1,¢]



Hash function: ideal security

An unkeyed hash function that produces n-bit outputs
is said to have an ideal security if:

1. given a hash output, producing a preimage or a
second preimage requires approximately 2™ op-
erations

2. producing a collision requires approximately 22
operations
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MDC in practice

Manipulation detection codes can be:

e build using a symmetric bloc cipher
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MDC in practice

Manipulation detection codes can be:
e build using a symmetric bloc cipher

e customized hash functions: MD4, MD5, SHA-1,
RIPEMD-160
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Algorithm MD4 hash function

INPUT: bitstring z of arbitrary bitlength b > 0. (For notation see Table 9.7.)
OUTPUT: 128-bit hash-code of x. (See Table 9.6 for test vectors.)

1. Definition of constants. Define four 32-bit initial chaining values (IVs):

hy = 0x67452301, hy = Oxefedab89, hy = 0x98badcfe, hy = 0x10325476.

Define additive 32-bit constants:

y[j] = 0,0 < j < 15;

y[j] = 0x5a827999. 16 < j < 31: (constant = square-root of 2)

y[j] = Ox6ed9ebal, 32 < j < 47; (constant = square-root of 3)

Define order for aceessing source words (each list contains 0 through 15):

z[0..15] = [0,1,2,3,4,5,6,7, 8,9,10,11,12, 13, 14, 15],

z[16..31] =0,4,8;12,1,5,9,13, 2,6,10,14, 8,711, 15];

z[32..47) = [0, 8,4,12,2,10, 6,14,1,9,5,13, 3,11,7, 15].

Finally define the number of bit positions for left shifts (rotates):

w0 1B =30 11 1R T 11 19,8 7.0 T 1040 11 19]

s[16..31] = [3,5,9,13,3,5,9,183,3,5,9,13,3,5,9, 13],

s[32..47] = [3,9,11,15,3,9,11,15,3,9,11, 15, 3,9, 11, 15].

. Preprocessing. Pad x such that its bitlength 1s a multiple of 512, as follows. Append
a single 1-bit, then append r— 1 (> 0) O-baits for the smallest r resulting in a batlength
64 less than a multiple of 512. Finally append the 64-bit representation of b mod 264,
as two 32-bit words with least significant word first. (Regarding converting between
streams of bytes and 32-bit words, the convention is little-endian; see Note 9.48.) Let
m be the number of 512-bit blocks in the resulting string (b + r + 64 = 512m =
32 -16m). The formatted input consists of 16m 32-bit words: zoz1 . .. Z16m—1- Ini-
tialize: (H1, Ho, H3, Hy) < (h1, ho, ha, hy).

. Processing. For each i from 0 to m — 1, copy the 7" block of 16 32-bit words into
temporary storage: X|[j] + Z16i4j, 0 < j < 15, then process these as below in
three 16-step rounds before updating the chaining variables:

(initialize working variables) (A, B,C,D) + (H,,Hy,Hs, Hy).

(Round 1) For j from 0 to 15 do the following:

t « (A+ f(B,C, D)+ X[z[j]] +yld]). (4, B,C,D) « (D,t < s[j], B,C).
(Round 2) For j from 16 to 31 do the following:

t + (A+g(B,C, D)+ X[z[j]] +v[j]). (A, B,C,D) « (D,t « s[j]),B,C).
(Round 3) For j from 32 to 47 do the following:

t « (A+h(B,C, D)+ X|[z[7]| +¥[j]). (4,B,C,D) « (D,t « s[j]),B,C).
(update chaining values) (Hy, Ho, Ha, Hy) + (Hi+ A, Ho+ B, H3+C,Hy+ D).
. Completion. The final hash-value is the concatenation: Hi ||Hz ||Hz||Ha

(with first and last bytes the low- and high-order bytes of H;, H,. respectively).




Algorithm MDS5 hash function

INPUT: bitstring x of arbitrary bitlength & > 0. (For notation, see Table 9.7.)
OUTPUT: 128-bit hash-code of z. (See Table 9.6 for test vectors.)

I3

MD?5 1s obtained from MD4 by making the following changes.
i

Notarion. Replace the Round 2 function by: g(u,v, w) Efww v .
Define a Round 4 function: k(u,v,w) gl S (u V ).

. Definition of constants. Redefine unique additive constants:

y[j] = first 32 bits of binary value abs(sin(j+1)), 0 < j < 63, where j is in radians
and “abs” denotes absolute value. Redefine access order for words in Rounds 2 and
3. and define for Round 4:

z[16..31] = [1,6,11,0,5,10,15,4,9,14,3,8,13,2,7,12],

z[32..47] = [5;8;11,14,1,4,7,10,13,0,3,6,9,12,15, 2],

z[48..63] = [0,7,14,5,12,3,10,1,8,15,6,13,4,11,2,9].

Redefine number of bit positions for left shifts (rotates):

0 I [ A0, 1 TS s, T 90 B, e,

s[16..31] = [5,9, 14, 20, 5,9, 14, 20, 5,9, 14, 20, 5,9, 14, 20],

s[32..47) = [4,11,16,23,4,11,16,23,4, 11,16, 23,4, 11, 16, 23],

s[48..63] = [6,10,15, 21,6, 10, 15, 21,6, 10,15, 21, 6, 10, 15, 21].

3. Preprocessing. As in MD4.
4. Processing. In each of Rounds 1, 2, and 3, replace “B + (t + s[j|)" by “B +
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B + (t += s[j])". Also, immediately following Round 3 add:

(Round 4) For j from 48 to 63 do the following:

t + (A+k(B,C,D)+X[z[j]]+y[i]). (A4, B,C,D) + (D, B+(t + s[j]), B,C).
Completion. As in MD4.




Algorithm RIPEMD-160 hash function

INPUT: bitstring = of bitlength b > 0.
OUTPUT: 160-bit hash-code of . (See Table 9.6 for test vectors.)
RIPEMD-160 is defined (with reference to MD4) by making the following changes.
1. Netation. See Table 9.7, with MD4 round functions f, g, h redefined per Table 9.8
(which also defines the new round functions k, [).
2. Definition of constants. Define a fifth IV: ks = Oxe3d2elf0. In addition:

(a) Use the MD4 additive constants for the left line, renamed: yr[j]=0.0<j <
15; yr[f] = 0x5a827999,16 < j < 31: yr[j] = Ox6edDebal, 32 < j < 47.
Define two further constants (square roots of 5,7): yr.[j] = 0x8flbbede, 48 <
J < 63; yL[j] = 0xa953fdde, 64 < j < TO.

(b) Define five new additive constants for the right line (cube roots of 2,3,5.7):
yR[j] = 0x50a28be6, 0 < j < 15; yr[j] = 0x5c4dd124,16 < j < 31;
yRr[j] = 0x6d703ef3, 32 < j < 47; ygr[j] = 0x7a6d76e9, 48 < j < 63;
Yr[i]=0.64 <j< 79

(c) See Table 9.9 for constants for step j of the compression function: 2, [j], zg[7]
specify the access order for source words in the left and right lines: st [7]. sg[7]
the number of bit positions for rotates (see below).

3. Preprocessing. As in MD4, with addition of a fifth chaining variable: Hs + Fhs.
4. Processing. For each i from 0 to m — 1, copy the i'® block of sixteen 32-bit words
into temporary storage: X [j] ¢ Tigi44, 0 < j < 15. Then:

(a) Execute five 16-step rounds of the left line as follows:

[AL: BL: CL-: -DL-: EL-:I — (th HZ: H3: Hd.: HEII

{left Round I)) For j from 0 to 15 do the following:

t « (AL + f(Br,Cr, D) + X[2L[]] + yili]).
(Az,Br,Cr, Dr, EL) + (EL, Eg + (£ += s [4]), BL,C += 10, Dy).
(left Round 2) For j from 16 to 31 do the following:

t < (AL + 9(Bi,Cr, Di) + X[20[7]] +ye[i]).

(A, Br,Cr, D1, EL) + (Er, EL + (t += 81[j]), BL,Cr += 10, Dy).
(feft Round 3) For j from 32 to 47 do the following:

t < (AL + h(Br,Cr, Di) + X[zL[f] + yeld]).
(Ar,Br,Cr,Dr,EL) + (EL, EL + (t <= 81[j]), BL,Cr += 10, D).
(lefi Round &) For j from 48 to 63 do the following:

t «+ (Ar +k(Br,Cr, Dp) + X[z0[4]] +yi[d]).
(Ar,Br,Cr,Dr,EL) + (Er, Ep, + (t <= sp[j]), B, CL += 10, D).
{left Round 5) For j from 64 to 79 do the following:

t « (A + I(Br,CL, Di) + X[zL[4]] + weld]).

(A1, Br,Cr, D, EL) + (Ep, Ep + (t +—= si[f]), BL,Cr +—= 10, D).

(b) Execute in parallel with the above five rounds an analogous right line with
(Ar,Br,Cr, Dg, Er). yr[j]. zr[Jj]. sr[j] replacing the corresponding quan-
tities with subscript L; and the order of the round functions reversed so that their
orderis: I, k, h, g, and f. Start by initializing the right line working variables:
{AH!BHFCH:'DH?ER:' = (HIJHEJHE:'HJ.:HEJ-

(c) After executing both the left and right lines above, update the chaining values
as follows: t +— Hy, H1 + Hy +CL+ Dg, Hz + Hs+ Dy + Egr, Hy +
Hy+EL+Ap.Hy+ Hs+ AL + Bg Hs + 1+ B+ Ck.

5. Completion. The final hash-value is the concatenation: H; ||Hz|| Ha||Hy||Hs
(with first and last bytes the low- and high-order bytes of H,, H;, respectively).




SHA-1 algorithm

Noete: All wvariables are unsigned 32 bits and wrap modulo 2732 when calculating

Initialize variables:
hQ := Ox&6T7452301
hl := OXEFCDABEY
hZ := OX98BADCFE
h3 := 0x10325476
hd := OXC3IDIELIF0

Pre=processing:
append a single "1" bit to message
append "0" bits until message length = 448 = -64 (mod 512)

append length of message, in bits as 64-bit big-endian integer to message

Process the message in successive 512-bit chunks:
break message into 512Z-bit chunks
for each chunk
break chunk into sixteen 32-bit big-endian words wi{i), 0 = i = 15

Extend the sixtesn 32-bit words into eighty 32-bit words:
for i from 16 to 79
wil) := (w(i-=3) xor w(i-8) xor w{i-14) xor w(i-16)) leftrotate 1

Initialize hash value for this chunk:
a := ho
b := hl
c = h2
d := h3
e := hd
Main loop:
for i from 0 to 79
if 0 = i = 1% then
f := (b and c) or ((not b) and d)
k := 0x5K827999%
else if 20 = i = 39
f := b xor c xor d
k := (0x6eEDIEBA1L
else if 40 = i = 59
f := (b and c) or (b and d) or (c and d)
k := 0xBEF1BBCDC
else if 60 = 1 = 79
f := b xor ¢ xor d
k := 0xCRe2C1DE

emp := (a4 leftrotate 5) + £ + & + kK + w{i)

a

i
s
i= b leftrotate 30
*
1= temp

chunk'’'s hash to result so far:
s
hl := hl +
i
o+
+

a
b
c
d
-]

digest = hash = h0 append hl append hZ append h3 append hd [expressed as big-endian}



SHA-256

HiNprer all warighbles sre ammigred 37 hits and wrap medule 70337 when caloudating
fiInitizlize yvarishlesr

RO = Oxbalfeds? 33232 tines the sgquare root of the first § primes 2..1%
Rl := Oxbb&Vaeds

B2 = OxGobdef372

B3 = OxnSd4££55n

Bd := 0x5102527fF

ES := 0x9b05655a

Bs = Ox1£53d9ab

R7? := 0xSbefadl?

ATRitizglize bable of roumd comshants:

k(0. .63) := #¢2°2 times the oube root of the first 64 primes 2..311

Ox428n2£%6, 0x713744%1, OxbScl0fbef, Oxe?bSdbaS, 0x3956e025b, Ox59E£111£]1, O0xP23£52n4, OxableSeds,
0xd&0Tan?6, 0x128635b01, 0x243185be, 0x550c7ded, 0:72beBdvd, Oxfldeblfe, O0xPbdeOdzn?, Oxcl?bfl74,
Oxed9bd9cl, Oxefbed?8s, 0x0£c19ded, Ox240calec, Ox2de®2eof, Oxd4a?484nan, OxScbln9do, Q0xTéL£9G6da,
0x9583e5152 , Oxn@dleédd, OxbDO32Tod, O0xbE597E£eT, OxodellbEd, OxdSaVR147, Ox0boznd35l, 0x14292967
0x27bT0585 | 0x2elb2135, Oxdd2eddfc, 0x53350413, 0x650aT7354, Ox¥ébéalabb, O0xGlole®2e, 0x92722038%,
Oxn2bfednl, Oxndladbdb, Oxo24b3b70, Oxc¥daoSlad, 0xdl92e81%9, Oxdé®90624, Oxf40e3585, 0x106na070,
0x19=n4a011d, 0xled74o0d, 0x2743774c, 0x34b0beobS, 0x391lec0chi, Oxdedinndn, OxSbRcondf, Quddledffd,
0x745£62ee, 0xTEaD630E, OxfdofTEld, O0xScoTO0208, 0x?0befffan, OxndSOdceb, OxbefPaif7, O0xod71T78L£2

M Pre-procosEings

zppend = fingle "1" Bit to messange

zppend "0" bitz until messzge langth = 448 = &4 [med 512)

zppend length of messnge, in DitS mc &d4-bit big-endizn integer to message

/i Prpcess the messsge in suocessive 5l2-hib chmks:
break message into S12-bit chunks
for ezch chunk
brexk cbunk inte sixteen 32-bit big-endizn werds wii), 0 2 i £ 15

fiExtend the sixtecn 33-Lit werds dnte sixty-four 37-hdt werds:

for i from 16 to 63
=0 := [(w[i-15) rightrotate 7)1 xor (w(i-15) rightrotate 13) xor (wii-15) rightshift 3)
=l = [wii-2] rig?‘ltrc-tate 171 30T (wli-2] rig?‘ltrc-tate 191 ®or [(wii-2) rightshift 1o
wiil = wii-1&] + =0 + w(i-7] + =1

JiTnitizglize hash valye for this chmk:
;= RO
;= kl
h2
%3
Fud
RS
(1]
h7T

= Y= T R .
TR TR TR TR TR TR T |

HiMzin loope:

for i from 0 to &3
=0 := [= rightrotate 2) x0T (= rightrotate 13) #or (o rightrotate 22)
maj = (= amd b) or (b and =) or (= and a)

0 = =0 + nmmj
=l := [ Ti h%rc-tate 61 xor [« rightrotate 111 xer (= rightrotate 25)
ch ;= [« am £) or [((mot 21 and g
£l := B + 21 + ab + K{i)] + wii]
k := g
g := £
f ==
e =4+ £l
d =«
a = b
B ==
n o= 0 + £l
fiAdd this chamk's hash ke resudt se far:
RO = R + =
Rl := Bl + b
E2 := B2 + a
B3 = B3 + 4
Ed := Bd + 2
RS := hS + £
Ré = héd + g
E? = K7 + &



| Name String | Hash value (as a hex byte string)

MD4 31d6cfe0d16ae931b73¢59d7e0c089c0
“a” bde52cb31de33e46245e05fbdbd6ib24
“abc” a448017aaf21d8525fc10ae87aa6729d
“abedefghijklmnopqrstuvwxyz” | d79elc308aa5bbedeeca8ed63df412da%

MD5 d41d8cd98100b2049800998ect8427¢e
“a” 0cc175b9c0f1b6a831¢399e269772661
“abe” 900150983cd24fb0d696317d28e17f72
“abcdefghijklmnopgrstuvwxyz” | ¢3fcd3d76192e4007dib496ccab7el3b

SHA-1 da39a3eec5e6b4b0d3255btef95601890atd80709
“a” 8617e437faa5aTfcel5d1ddebOeacaeald77667b8
“abe” a9993e364706816aba3e25717850c26c9¢d0d89d
“abedefghijklmnopgrstuvwxyz” | 32d10c7b8cf96570cal4ce37f2al19d84240d3a89

RIPEMD-160 | *~ 9¢c1185a5¢5e91c54612808977ee81548b2258d31
e 0Obdc9d2d256b3ec9daac347bebiddc835a4671te
“abc” 8eb20817e05d987a9b044a8c98c6b087f15a0bic
“abedefghijklmnopgrstuvwxyz” | £71¢27109¢692¢1b56bbdeeb5b9d2865b3708dbe

Table 9.6: Test vectors for selected hash junctions.




MDC in practice

Manipulation detection codes can be:
e build using a symmetric bloc cipher

e customized hash functions: MD4, MD5, SHA-1,
RIPEMD-160

e build using modular arithmetic: MASH-1
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Algorithm MASH-1 (version of Nov. 1995)

INPUT: data z of bitlength 0 < b < 27/2.
OUTPUT: n-bit hash of « (n is approximately the bitlength of the modulus M).

L.

System setup and constant definitions. Fix an RSA-like modulus M = pq of bitlength
m, where p and g are randomly chosen secret primes such that the factorization of
M is intractable. Define the bitlength n of the hash-result to be the largest multiple
of 16 less than m (i.e., n = 16n’ < m). Hy = 0 is defined as an IV, and an n-
bit integer constant A = 0xf0...0. “V” denotes bitwise inclusive-OR; “@” denotes
bitwise exclusive-OR.

Padding, blocking, and MD-strengthening. Pad x with O-bits, if necessary, to obtain
a string of bitlength ¢-n /2 for the smallest possible ¢ > 1. Divide the padded text into
(n/2)-bit blocks 1, ... ,x+, and append a final block z¢1 containing the (n/2)-bit
representation of b.

. Expansion. Expand each x; to an n-bit block y; by partitioning it into (4-bit) nibbles

and 1nserting four 1-bits preceding each, except for y;, ; wherein the inserted nibble
1s 1010 (not 1111).

Compression function processing. For 1 < 2 < t+1, map two n-bit inputs (H;_1, y;)
to one n-bit output as follows: H; + ((((H;_1%y;) V A)? mod M) 4 n)®H;_;.
Here - n denotes keeping the rightmost n bits of the m-bit result to its left.
Completion. The hash is the n-bit block H; . ;.




MAC in practice

Message authentication codes can be:

e build using symmetric bloc ciphers

24



r1

H,

To It
Y
H: 4
Y
E e e @ k++ E
o H
: \
| k’++E'1
|
H |
optional | Y
Lk E
|
|
H

Figure 9.6: CBC-based MAC algorithm.



CBC-MAC

If the optional part is not realized:

Let = a one-bloc input

Let M = CBC-MAC(x)

CBC-MAC(M) = CBC-MAC(z |0...0)

where | is the concatenation and where the size x [0...0
IS two blocs

26



MAC in practice

Message authentication codes can be:
e build using symmetric bloc ciphers

e build using MDC

27



MAC in practice

A MAC can be constructed from an MDC algorithm by
including a secret key k as part of the MDC input

If the MDC follows an iterative construction

(Hgo = initial value
H; = f(Hi—17xi) avect € [17t]
\h(a:) — Ht

N\

Then MAC(z) where x = z1 ... x4 can be build as
hi(x) = h(k|z). This construction must be avoided

The construction hp.(xz) = h(x|k) can be dangerous
if collisions can be found for the function ()

Therefore, it is suggested to compute hy(x) = h(k|z|k)

28



MAC in practice: HMAC

Let opad (outer padding) be a bloc = 0x5¢5¢c5¢c5¢5¢

Let ipad (inner padding) be a bloc = 0x3636363636

HMAC(k,xz) = h ((k & opad) |h ((k & ipad) |z))

29



MAC in practice

Message authentication codes can be:
e build using symmetric bloc ciphers
e build using MDC

e customized hash functions: MAA, MD5-MAC

30



Algorithm MD5-MAC

INPUT: bitstring x of arbitrary bitlength b > 0; key k of bitlength < 128.
OUTPUT: 64-bit MAC-value of z.
MD5-MAC is obtained from MDS35 (Algorithm 9.51) by the following changes.

1. Constants. The constants U; and T; are as defined in Example 9.70.
2. Key expansion.
(a) If k 1s shorter than 128 bits, concatenate k to itself a sufficient number of times,
and redefine k to be the leftmost 128 bits.
(b) Let MD5 denote MDS5 with both padding and appended length omitted. Expand
k into three 16-byte subkeys Ky, K, and K> as follows: for i from 0 to 2,
K; + MD3(k || U: || k).
(c) Partition each of K and K into four 32-bit substrings K;[i], 0 < i < 3.
3. Ky replaces the four 32-bit I'V’s of MDS5 (ie., h; = Ko[é]).
4. Ki[i] is added mod 2*2 to each constant y[j] used in Round i of MDS5.
5

K5 1s used to construct the following 512-bit block, which 1s appended to the padded
input x subsequent to the regular padding and length block as defined by MD5:
K |Keo®To| Ko T1 || K2 To.

6. The MAC-value is the leftmost 64 bits of the 128-bit output from hashing this padded
and extended input string using MD5 with the above modifications.




Algorithm Message Authenticator Algorithm (MAA)

INPUT: data z of bitlength 32j, 1 < j < 10°; secret 64-bit MAC key Z = Z[1]..Z]8].
OUTPUT: 32-bit MAC on .

1.

(=]

Message-independent key expansion. Expand key Z to six 32-bitquantities X. Y, V,
W, S8, T (X,Y are mitial values; V, W are main loop variables; S, T are appended
to the message) as follows.
1.1 First replace any bytes 0x00 or Oxff in Z as follows. P < 0; fori from 1 to 8
(P + 2P; if Z[i] = 0x00 or Oxff then (P + P +1; Z[i] + Z[i] OR P)).
1.2 Let J and K be the first 4 bytes and last 4 bytes of Z, and compute:*
X + J* (mod 2*2 — 1)J* (mod 2*2 — 2)
Y + [K® (mod 22 — 1)@ K°® (mod 2°2 — 2)](1 + P)? (mod 2°? — 2)
V « J5 (mod 232 — 1}@J6 (mod 232 — 2)
W « K" (mod 2%2 — 1)@ K" (mod 2°2 — 2)
S < J8 (mod 232 — 1)@J® (mod 2%2 — 2)
T + K* (mod 2°2 — 1)@ K® (mod 2% — 2)
1.3 Process the 3 resulting pairs (X, Y), (V, W). (S, T') to remove any bytes 0x00,
Oxff as for Z earlier. Define the AND-OR constants: A = 0x02040801, B =
0x00804021, C = Oxbfef7fdf, D = O0x7dfefbff.

. Initialization and preprocessing. Initialize the rotating vector: v +— V, and the chain-

ing variables: H; < X. H> < Y. Append the key-derived blocks S, T' to &, and
let z; ...x; denote the resulting augmented segment of 32-bit blocks. (The final 2
blocks of the segment thus involve key-derived secrets.)

. Block processing. Process each 32-bit block x; (for i from 1 to ) as follows.

v (v 1), U+ (vaW)

t1 + (H1x;) x1 (((He®z;) + U) OR A) AND C)

to + (Hodpx;) %2 (((Hi®x;) + U) OR B) AND D)

H +t1,Hy + tq

where x; denotes special multiplication mod 2%2 — { as noted above (i = 1 or 2);
“4” is addition mod 2%2: and “4— 17 denotes rotation left one bit. (Each combined
AND-OR operation on a 32-bit quantity sets 4 bits to 1, and 4 to 0. precluding 0-
multipliers.)

Completion. The resulting MAC is: H = Hi$Hs.
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Figure 9.7: The Message Authenticator Algorithm (MAA).



Integrity

Data integrity ensures that a data has not been al-
tered in an unauthorized manner (no matter that the
data is stored or transmitted)

data source authentication is based on a shared se-
cret key (but the entities that share the secret key can

not be distinguished)

When mechanisms that prevent reply attacks are used,
we have transaction authentication
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Integrity

Integrity can be obtained with:
e error detection/correction mechanisms
e message authentication code (MAC)

e manipulation detection code (MDC) used with an
authenticated channel

e encryption
e MDC + encryption
e MAC + encryption
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(a) MAC only

(b) MDC
& encipherment

(c) MDC & authentic
channel
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Figure 9.8: Three methods for providing data integrity using hash functions. The second method provides

encipherment simultaneously.



MAC+ encryption

hi(z) = Ep(z|hy(x))
But, we have to avoid:
o k=F
e h s = CBC-MAC without the optional part

e I, = symmetric bloc encryption in CBC mode
that is identical than the one used in the CBC-

MAC
e same initial value in CBC-MAC and in E,
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Birthday paradox

When considering 23 people, the probability that at
least two of them have their birthday on the same day

(not taking into account the year of birth) is approxi-
matively equal to 50 percent
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Birthday paradox

Let h be a hash function, h : X — Z, where X and Z
are finite sets such that | X| > |Z|. Let | X| = m and
1Z] =n

Consider k messages x; € X chosen randomly (with
1 € [1, K]

What is the probability that two different x; have the
same image (i.e. produce a collision)?

z; = h(x;) fori € [1, k]

We can consider that the z; are random values (what
IS reasonable when considering the output of a cryp-
tographic hash function) since the xz; are chosen ran-
domly

39



Birthday paradox

The probability that all the z; are distinct is:

where 1 is the probability to draw zq, (1 — %) IS the

probability to draw z»> # zq, ..., (1 — %) IS the prob-
ability to draw a z; distinct from zq,...,2;_1
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Birthday paradox

k—1 ; k=1
(=)~ e
2 3
because e % = —a:—l—%—%...,ande—mzl—x

if = is small

here 2 = L withat mostz = X and k < n

;i
— e n
n

Therefore: 1 —
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Birthday paradox

1=1 n
because
n
> i=
i=1
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Birthday paradox

Let P’ be the probability that there is no collision, we
have:

k1
[[1--=P
i=1 n

. _(=Dk
P =~e 2n

k—1)k
In(P") ~ —{E-1)k 2n)
onIn(P) ~ —(k — 1)k

onin(&) ~ k2 — k

2nIn(3) =~ k2 (by neglecting k in comparison with
k)
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Birthday paradox

2nIn() =~ k2, donc \/2nIn(3) ~ k

Let P be the probability that there is at least one col-
lission: P =1 — P’

\/inn(ﬁ) ~ k

— 1.
If P =3:

V2nIn(2) ~ k

V1,386n ~ k
1,177 /n ~

kisin O(y/n)
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Birthday paradox

If the outputs of a cryptographic hash function are on
64 bits (|Z| = 2°4), when testing 232 messages the

probability to find a collision surpasses 3

More generally, if |Z] = 2", when testing 22 mes-

sages the probability to find a collision surpasses %

This explain the ideal security of cryptographic hash
functions
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Birthday paradox

If X = {humans} and Z = every 365 days (birth-
days), |Z|] = 365 = n, we have: 1,177y/n =
1,177+/365 ~ 23

When considering 23 people, the probability to find

two people out of the 23 that have their birthday the

same day surpasses 5

With P = 3, we have k ~ 1,66/n,, therefore if n =
365 we have k =~ 32

With P = 99%, we have k ~ 58
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