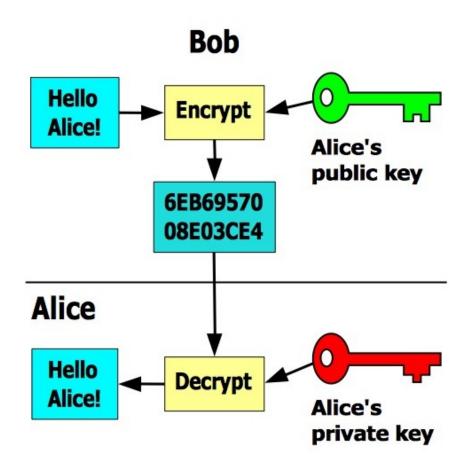
Computer security **Asymmetric encryption**

Olivier Markowitch

Public key encryption

A public key cryptosystem uses the public key of the recipient to encrypt the plaintext and the recipient used its private key to decrypt the ciphertext



	Size n					
Time complexity function	10	20	30	40	50	60
п	.00001	.00002	.00003	.00004	.00005	.00006
	second	second	second	second	second	second
n ²	.0001	.0004	.0009	.0016	.0025	.0036
	second	second	second	second	second	second
<i>n</i> ³	.001	.008	.027	.064	.125	.216
	second	second	second	second	second	second
n ⁵	.1	3.2	24.3	1.7	5.2	13.0
	second	seconds	seconds	minutes	minutes	minutes
2″	.001	1.0	17.9	12.7	35.7	366
	second	second	minutes	days	years	centuries
3″	.059	58	6.5	3855	2×10 ⁸	1.3×10 ¹³
	second	minutes	years	centuries	centuries	centuries

Figure 1.2 Comparison of several polynomial and exponential time complexity functions.

Theorems

- 1. $\forall n \geq 2 : n = p_1^{e_1} \dots p_r^{e_r}$ where, for $i \in [1, r]$, the p_i are primes and $e_i \geq 0$ are integers
- 2. If $a, b \in \mathbb{Z}$ are not simultaneously equal to zero, there exist $u, v \in \mathbb{Z}$ such that au + bv = (a, b)where (a, b) denotes the gcd between a and b(Bézout)
- 3. $ax \equiv 1 \pmod{m} \Leftrightarrow (a,m) = 1$

- 4. If m is prime and (a, m) = 1: $a^{m-1} \equiv 1 \pmod{m}$ (Fermat)
- 5. Euler Phi function: we note $\Phi(n)$ the number of integers smaller than n and that are prime with n. $\Phi(n) = n \cdot \prod_{i=1}^{r} \left(1 - \frac{1}{p_i}\right)$
- 6. multiplicative group: $\mathbb{Z}_n^* = \{a \in \mathbb{Z}_n \text{ such that } (a, n) = 1\}$

7. We consider a group composed by $\phi(n)$ elements (n > 2), for an element a of this group we have $a^{\Phi(n)} = 1$

8. We consider a group composed by $\phi(n)$ elements (n > 2), for an element *a* of this group we have that the order of *a* divides the order of the group

Example 1

$$n = 7, \mathbb{Z}_7^* = \{1, 2, 3, 4, 5, 6\}, \phi(7) = 6$$

order of 1 = 1: $1^0 = 1$, $1^1 = 1$

order of 2 = 3 : $2^0 = 1$, $2^1 = 2$, $2^2 = 4$, $2^3 = 1$

order of 3 = 6 (generator) : $3^0 = 1$, $3^1 = 3$, $3^2 = 2$, $3^3 = 6$, $3^4 = 4$, $3^5 = 5$, $3^6 = 1$

order of 4 = 3: $4^0 = 1$, $4^1 = 4$, $4^2 = 2$, $4^3 = 1$

order of 5 = 6 (generator) : $5^0 = 1$, $5^1 = 5$, $5^2 = 4$, $5^3 = 6$, $5^4 = 2$, $5^5 = 3$, $5^6 = 1$

order of 6 = 2: $6^0 = 1$, $6^1 = 6$, $6^2 = 1$

6

Example 2

$$n = 9, \mathbb{Z}_9^* = \{1, 2, 4, 5, 7, 8\}, \phi(9) = 6$$

order of 1 = 1: $1^0 = 1$, $1^1 = 1$

order of 2 = 6 (generator) : $2^0 = 1$, $2^1 = 2$, $2^2 = 4$, $2^3 = 8$, $2^4 = 7$, $2^5 = 5$, $2^6 = 1$

order of 4 = 3: $4^0 = 1$, $4^1 = 4$, $4^2 = 7$, $4^3 = 1$

order of 5 = 6 (generator) : $5^0 = 1$, $5^1 = 5$, $5^2 = 7$, $5^3 = 8$, $5^4 = 4$, $5^5 = 2$, $5^6 = 1$

order of 7 = 3 : $7^0 = 1$, $7^1 = 7$, $7^2 = 4$, $7^3 = 1$

order of 8 = 2 : $8^0 = 1, 8^1 = 8, 8^2 = 1$

7

Chinese remainder theorem

Si $\forall 1 \leq i \neq j \leq k : (m_i, m_j) = 1$: $\begin{cases} x \equiv a_1 \pmod{m_1} \\ \vdots \\ x \equiv a_k \pmod{m_k} \end{cases}$

has one and only one solution modulo $m = m_1 \dots m_k$

Chinese remainder theorem

The solution is unique

since $x \equiv a_i \pmod{m_i}$ and $y \equiv a_i \pmod{m_i} \forall i \in [1, k]$:

 $x \equiv y \pmod{m_i} \ \forall i \in [1,k],$

 $m_i \text{ divides } x - y \ \forall i \in [1, k],$

m divides x - y,

 $x \equiv y \pmod{m}$

Chinese remainder theorem

The solution exists

Let $M_i = \frac{m}{m_i} \forall i \in [1, k]$,

 m_i is prime with all m_j (when $i \neq j$),

then m_i is prime with M_i

therefore, it exists an integer c_i such that $c_i M_i \equiv 1 \pmod{m_i}$

Let $x = \sum_{i=1}^{k} a_i c_i M_i$,

We have $x \mod m_i = a_i c_i M_i \mod m_i = a_i$

Indeed, $M_j \equiv 0 \pmod{m_i}$ when $i \neq j$ and $c_i M_i \equiv 1 \pmod{m_i}$

x is a solution of the system

Square roots of 1

n = pq xhere p et q are two primes, it exists four square roots of 1 modulo n

These four square roots are computed from two square roots of 1 modulo p (1 and -1) and two square roots of 1 modulo q (1 and -1) that are combined using the chinese remainder theorem

Square roots of 1

Let p = 7, q = 3 (n = 21), we are looking for a x such that $x^2 = 1 \pmod{n}$. The system of four equations is:

(1)
$$x \equiv 1 \pmod{p}$$
 et $x \equiv 1 \pmod{q}$;
(2) $x \equiv -1 \pmod{p}$ et $x \equiv 1 \pmod{q}$;
(3) $x \equiv 1 \pmod{p}$ et $x \equiv -1 \pmod{q}$;
(4) $x \equiv -1 \pmod{p}$ et $x \equiv -1 \pmod{q}$;

we solve them using the chinese remainder theorem where $m_1 = p$, $m_2 = q$, $M_1 = \frac{pq}{p} = q$, $M_2 = \frac{pq}{q} = p$, $C_1 = M_1^{-1} \mod m_1 = 5$ et $C_2 = M_2^{-1} \mod m_2 = 1$

(1)
$$x = a_1C_1M_1 + a_2C_2M_2 = 1 \cdot 3 \cdot 5 + 1 \cdot 7 \cdot 1 = 1 \mod 21$$

(2) $x = a_1C_1M_1 + a_2C_2M_2 = (-1)\cdot 3\cdot 5 + 1\cdot 7\cdot 1 = 8 \mod 21$
(3) $x = a_1C_1M_1 + a_2C_2M_2 = 1\cdot 3\cdot 5 + (-1)\cdot 7\cdot 1 = -8 \mod 21$
(4) $x = a_1C_1M_1 + a_2C_2M_2 = (-1)\cdot 3\cdot 5 + (-1)\cdot 7\cdot 1 = -1 \mod 21$

Quadratic residues

 $a \in \mathbb{Z}_n^*$ is a quadratic residue modulo n, if it exists $x \in \mathbb{Z}_n^*$ such that $x^2 \equiv a \pmod{n}$. If such a x doesn't exists a is said to be a non quadratic residue modulo n

The set of all the quadratic residues modulo n est noted Q_n . The set of all the non quadratic residues modulo n is noted $\bar{Q_n}$

 $\frac{p-1}{2}$ elements of \mathbb{Z}_p^* are squares modulo p and $\frac{p-1}{2}$ elements of \mathbb{Z}_p^* are not squares (where p is a odd prime)

Legendre symbol

Adrien-Marie Legendre

If p is an odd prime and a is an integer, then the Legendre symbol:

$$\begin{pmatrix} a \\ -p \end{pmatrix} = \begin{cases} 0 & \text{si } p \text{ divise } a \\ 1 & \text{si } a \in Q_p \\ -1 & \text{si } a \in \bar{Q_p} \end{cases}$$

Moreover:
$$\left(\frac{a}{p}\right) = a^{\frac{p-1}{2}} \mod p$$

Legendre symbol

Proof :

If p divides a, it exists k such that a = kp and $a \equiv 0$ (mod p); therefore $a^{\frac{p-1}{2}} \equiv 0 \pmod{p}$

if $a \in Q_p$, it exists $x \in \mathbb{Z}_p$ such that $x^2 \equiv a \pmod{p}$, therefore

$$a^{\frac{p-1}{2}} \equiv x^{p-1} \equiv 1 \pmod{p}$$
 (Fermat)

Legendre symbol

If $a \in \overline{Q_p}$, we have (when p is prime) $a^{p-1} \equiv 1$ (mod p) (Fermat). Then $a^{p-1} - 1 \equiv 0 \pmod{p}$ and

$$\left(a^{\frac{p-1}{2}}-1\right)\left(a^{\frac{p-1}{2}}+1\right)\equiv 0 \pmod{p}$$

Since $a \in \overline{Q_p}$ we haven't $a^{\frac{p-1}{2}} - 1 \equiv 0 \pmod{p}$ (otherwise *a* would be in Q_p)

Therefore we have $a^{\frac{p-1}{2}} + 1 = 0 \pmod{p}$, and $a^{\frac{p-1}{2}} \equiv -1 \pmod{p}$ if $a \in \overline{Q_p}$

Jacobi Symbol

Charles Gustave Jacob Jacobi

Let *a* be an interger and *n* an odd integer \geq 3 such that $n = p_1^{e_1} \dots p_r^{e_r}$:

$$\left(\frac{a}{n}\right) = \left(\frac{a}{p_1}\right)^{e_1} \dots \left(\frac{a}{p_r}\right)^{e_r}$$

Theorem

1. $a \in Q_n \Leftrightarrow a \in Q_p$ et $a \in Q_q$ (where n = pq and p, q are distinct primes)

2. If
$$a \in Q_p$$
 and $a \in \overline{Q_q}$, then $\left(\frac{a}{n}\right) = \left(\frac{a}{p}\right)\left(\frac{a}{q}\right) = 1 \cdot -1 = -1$

3. Idem, if $a \in \overline{Q_p}$ and $\in Q_q$

- 4. if $a \in Q_p$ and $a \in Q_q$ then $\left(\frac{a}{n}\right) = \left(\frac{a}{p}\right)\left(\frac{a}{q}\right) = 1 \cdot 1 = 1$
- 5. But if $a \in \overline{Q}_p$ and $a \in \overline{Q}_q$ then we have $\left(\frac{a}{n}\right) = \left(\frac{a}{p}\right)\left(\frac{a}{q}\right) = -1 \cdot -1 = 1$
- 6. Therefore $\left(\frac{a}{n}\right) = 1$ does not allow to know whether $a \in Q_n$ or $a \in \bar{Q_n}$

Factorization

Having a positive integer n, we have to find its prime factors:

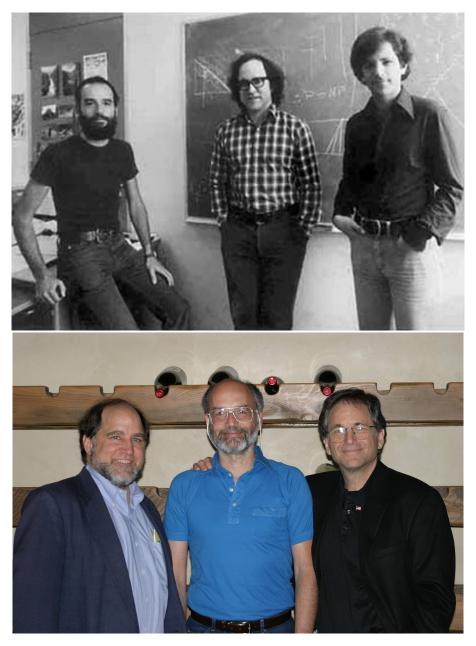
$$n = p_1^{e_1} \dots p_n^{e^n}$$

where p_i are distinct and $e_i \geq 1$

Existing methods:

- ρ -Pollard
- p 1-Pollard
- Crible quadratique
- Number field sieve

RSA



Ronald Rivest - Adi Shamir - Leonard Adleman

RSA

Keys generation

- 1. choose randomly two large distinct primes p and q approximately of the same size
- 2. compute n = pq and $\phi(n) = (p-1)(q-1)$
- 3. choose randomly an integer $e \in]1, \phi(n)[$ such that $(e, \phi(n)) = 1$
- 4. compute the unique $d \in]1, \phi(n)[$ such that $e \cdot d \equiv 1 \pmod{\phi(n)}$

The public key is (n, e)The private key is d

RSA

Encryption

Let $x \in \mathbb{Z}_n$ the message to encrypt. We compute:

$$y = x^e \mod n$$

Decryption

y is decrypted by computing:

$$x=y^d \mod n$$

RSA: keys usage

Knowing the public key (e, n) and the corresponding private key d, n can be factorized

Proof: we have $ed \equiv 1 \pmod{\phi(n)}$

For every integer $a \in \mathbb{Z}_n^*$ we have $a^{ed-1} \equiv 1 \pmod{n}$

We can write: $ed - 1 = 2^{s}t$ with t an odd integer $(a^{2^{s}t} \equiv 1 \pmod{n})$

If $z = a^{2^{s-1}t}$ is a trivial square root of 1 modulo n we choose another integer a

Otherwise (z being a non-trivial square roor of 1 modulo n) we have $z^2 \equiv 1 \pmod{n}$ and n divides z^2-1 , therefore n divides (z-1)(z+1)

RSA: keys usage

What are the values of (z - 1, n) and (z + 1, n)?

These two gcd's can have only the following values: 1, p, q or n

Neither can be equal to n, because if (z - 1, n) = nthen z - 1 is a multiple of n, and $z \equiv 1 \pmod{n}$ and z is a trivial sqaure root of 1. The same reasoning is valid if (z + 1, n) = n

These two gcd's cannot be simultaneously equal to 1, because if (z-1,n) = 1 and (z+1,n) = 1 then n does not divide $z^2 - 1$

Conclusion: at least one of these two gcd's is equal to $p \ {\rm ou} \ q$

Corollary: two RSA users cannot have the same n in their public key

RSA: cyclic attack

Alice sends to Bob a ciphertext y encrypted with his RSA public key (e_B, n_B)

Oscar observes y (on the communication channel) and knows that Bob is the recipient; Oscar can encrypt again the ciphertext with the public key of Bob until he obtains a cycle:

$$y^{e_B} \mod n_B$$
$$(y^{e_B})^{e_B} \mod n_B = y^{e_B^2} \mod n_B$$
$$\dots$$
$$(y^{e_B^{i-2}})^{e_B} \mod n_B = y^{e_B^{i-1}} \mod n_B$$
$$(y^{e_B^{i-1}})^{e_B} \mod n_B = y^{e_B^i} \mod n_B$$
until $y^{e_B^i} \mod n_B = y$

then Oscar retrieves $x = y^{e_B^{i-1}} \mod n_B$

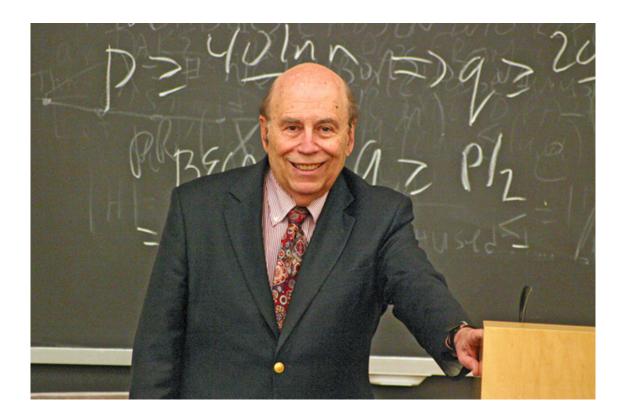
Square root problem

On the basis of n where n = pq and p, q are primes, and having a a quadratic residue modulo n, find a square root of a modulo n

If p and q are known, it exists a solution that has a polynomial complexity

The square root probleme is computationally equivalent to the factorization problem

Rabin



Michael Rabin

Rabin

Keys generation

choose randomly two large distinct primes p and q approximately of the same size and compute n = pq

The public key is nThe private key is (p,q)

Encryption

Let $x \in \mathbb{Z}_n$ the message to encrypt. We compute:

 $y = x^2 \mod n$

Decryption

Compute the four square roots modulo n of y and choose (possibly on the basis of a redundancy) the square root that corresponds to the plaintext

Computation of the four square roots

Suppose n = pq and $p \equiv q \equiv 3 \pmod{4}$

- find the integers a and b such that ap + bq = 1 (Bezout)
- computer $r = y^{\frac{p+1}{4}} \mod p$
- computer $s = y^{\frac{q+1}{4}} \mod q$
- computer $g = aps + bqr \mod n$
- computer $h = aps + bq(-r) \mod n$

The four square roots of y modulo n are g, -g, h et -h

Rabin: chosen cipher text attack

Suppose that Oscar can access a decryption device that decrypt all messages encrypted for Bob

Oscar chooses randomly $x \in Z_n$ and encrypts x for Bob: $y = x^2 \mod n$. Then, he submits y to the decryption device and obtains, as output, x' (one of the four square roots of y)

With a probability $\frac{1}{2}$, this square root is different from x and -x (otherwise Oscar restarts the process)

We have:

$$x$$
 de la forme $aps + bqr$

$$x'$$
 de la forme $aps + bq(-r)$

Oscar computes:

$$(x - x', n) = (2bqr, pq) = q$$

31

Rabin: example

Let p = 277, q = 331 $n = p \cdot q = 91687$

Bob's public key: n = 91687Bob's private key: (p,q) = (227, 331)

Alice wants to send the message x to Bob:

$$x_0 = 1001111001$$

She adds a redundancy (duplication of the six last bits):

 $x = x_0 111001 = 1001111001111001 = 40569$

She computes:

$$y = x^2 \mod n = 40569^2 \mod 91687 = 62111$$

32

Rabin: example

To decrypt the ciphertext y, Bob computes the square roots of y modulo n (Bob knows p and q):

 $\sqrt{y} \mod n =$

 $\begin{cases} x_1 = 69654 = 1000100000010110 \\ x_2 = 22033 = 101011000010001 \\ x_3 = 40569 = 1001111001111001 \\ x_4 = 51118 = 1100011110101110 \end{cases}$

Only x_3 has the correct redundancy therefore $x_0 = 1001111001$

Discrete logarithm problem

Suppose a prime p, a generator $\alpha \in \mathbb{Z}_p^*$ and $\beta \in \mathbb{Z}_p^*$; find x, $0 \le x \le n-1$ such that $\alpha^x = \beta$

Existing methods:

- baby step, giant step
- *ρ*-Pollard for logarithms
- Pohlig-Hellman
- Index calculus

El Gamal

Taher El Gamal

El Gamal

Keys generation

- 1. choose randomly a larte prime p
- 2. find a generator α of the multiplicative group \mathbb{Z}^*_p
- 3. choose randomly an integer $a \in [1, p-2]$
- 4. compute $\beta = \alpha^a \mod p$

The public key is (p, α, β) The private key is a

El Gamal

Encryption

To encrypt $x \in \mathbb{Z}_p$, choose randomly an integer $k \in [1, p-2]$ and compute:

$$\begin{cases} y_1 = \alpha^k \mod p \\ y_2 = x \cdot \beta^k \mod p \end{cases}$$

Decryption

Let (y_1, y_2) be the ciphertext:

$$x = y_1^{-a} \cdot y_2 \mod p$$

Quadratic residuosity problem

Suppose an odd non prime integer n and $a \in \mathbb{Z}_n^*$ such that $\left(\frac{a}{n}\right) = 1$, is a a quadratic residue modulo n?

The quadratic residuosity problem \leq_P the factorization problem

Shafi Goldwasser - Silvio Micali

Keys generation

- 1. choose randomly two large distinct primes p and q approximately of the same size
- 2. compute n = pq
- 3. choose $z \in \mathbb{Z}_n$ such that z is a non-quadratic residue modulo n and such that $\left(\frac{z}{n}\right) = 1$

The public key is (n, z)The private key is (p, q)

Encryption

Let x be composed by t bits: $x_1 \dots x_t$

- 1. choose randomly $\forall i \in [1, t]$: r_i
- **2.** $\forall i \in [1, t] : y_i = z^{x_i} \cdot r_i^2 \mod n$

Decryption

 $\forall i \in [1, t], \text{ compute } \left(\frac{y_i}{p}\right) = e_i$

If $e_i = 1$ then $x_i = 0$, otherwise $x_i = 1$

Remark : y_i is a quadratic residue modulo n (n = pq) if y_i is a quadratic residue modulo p

Let p = 7, q = 3 and therefore n = 21) be the private and public information of Bob

We look for a $z \in \mathbb{Z}_n$ that is a non-quadratic residue modulo n and such that $\left(\frac{z}{n}\right) = 1$

The quadratic residue modulo 21 are: $\{1, 4, 7, 9, 15, 16, 17, 18\}$

Let's try z = 11 and compute $\left(\frac{11}{21}\right) = \left(\frac{11}{3}\right) \cdot \left(\frac{11}{7}\right)$ = $(11^1 \mod 3) \cdot (11^3 \mod 7) = -1 \cdot 1 = -1$. Therefore z = 11 is not appropriate

Let's try z = 5: $\left(\frac{5}{21}\right) = \left(\frac{5}{3}\right) \cdot \left(\frac{5}{7}\right) = (5^1 \mod 3) \cdot (5^3 \mod 7) = -1 \cdot -1 = 1$. Therefore z = 5 is ok

Alice wants to encrypt x = 10110 for Bob

she chooses randomly $r_1 = 4$, $r_2 = 8$, $r_3 = 13$, $r_4 = 5$ and $r_5 = 4$

She computes: $y_1 = 5 \cdot 4^2 = 80 = 17 \mod 21$ $y_2 = 8^2 = 1 \mod 21$ $y_3 = 5 \cdot 13^2 = 845 = 5 \mod 21$ $y_4 = 5 \cdot 5^2 = 125 = 20 \mod 21$ $y_5 = 4^2 = 16 \mod 21$

The cipher text is y = (17, 1, 5, 20, 16).

To decrypt y = (17, 1, 5, 20, 16) Bob computes the following Legendre symbols:

$$\begin{pmatrix} \frac{y_1}{p} \end{pmatrix} = \begin{pmatrix} \frac{17}{7} \end{pmatrix} = 17^3 = 4913 = -1 \mod 7 \neq 1 \rightarrow x_1 = 1 \begin{pmatrix} \frac{y_2}{p} \end{pmatrix} = \begin{pmatrix} \frac{1}{7} \end{pmatrix} = 1^3 = 1 \mod 7 \rightarrow x_2 = 0 \begin{pmatrix} \frac{y_3}{p} \end{pmatrix} = \begin{pmatrix} \frac{5}{7} \end{pmatrix} = 5^3 = 125 = -1 \mod 7 \neq 1 \rightarrow x_3 = 1 \begin{pmatrix} \frac{y_4}{p} \end{pmatrix} = \begin{pmatrix} \frac{20}{7} \end{pmatrix} = 20^3 = 8000 = -1 \mod 7 \neq 1 \rightarrow x_4 = 1 \begin{pmatrix} \frac{y_5}{p} \end{pmatrix} = \begin{pmatrix} \frac{16}{7} \end{pmatrix} = 16^3 = 4096 = 1 \mod 7 \rightarrow x_5 = 0$$

Bob retrieves x = 10110

Algorithm Extended Euclidean algorithm

INPUT: two non-negative integers a and b with $a \ge b$. OUTPUT: d = gcd(a, b) and integers x, y satisfying ax + by = d.

- 1. If b = 0 then set $d \leftarrow a$, $x \leftarrow 1$, $y \leftarrow 0$, and return(d,x,y).
- 2. Set $x_2 \leftarrow 1$, $x_1 \leftarrow 0$, $y_2 \leftarrow 0$, $y_1 \leftarrow 1$.
- 3. While b > 0 do the following: 3.1 $q \leftarrow \lfloor a/b \rfloor$, $r \leftarrow a - qb$, $x \leftarrow x_2 - qx_1$, $y \leftarrow y_2 - qy_1$. 3.2 $a \leftarrow b$, $b \leftarrow r$, $x_2 \leftarrow x_1$, $x_1 \leftarrow x$, $y_2 \leftarrow y_1$, and $y_1 \leftarrow y$.
- 4. Set $d \leftarrow a$, $x \leftarrow x_2$, $y \leftarrow y_2$, and return(d, x, y).

Algorithm Computing multiplicative inverses in \mathbb{Z}_n

INPUT: $a \in \mathbb{Z}_n$. OUTPUT: $a^{-1} \mod n$, provided that it exists.

- 1. Use the extended Euclidean algorithm (Algorithm 2.107) to find integers x and y such that ax + ny = d, where d = gcd(a, n).
- 2. If d > 1, then $a^{-1} \mod n$ does not exist. Otherwise, return(x).

Algorithm Repeated square-and-multiply algorithm for exponentiation in \mathbb{Z}_n

INPUT: $a \in \mathbb{Z}_n$, and integer $0 \le k < n$ whose binary representation is $k = \sum_{i=0}^{t} k_i 2^i$. OUTPUT: $a^k \mod n$.

- 1. Set $b \leftarrow 1$. If k = 0 then return(b).
- 2. Set $A \leftarrow a$.
- 3. If $k_0 = 1$ then set $b \leftarrow a$.
- 4. For i from 1 to t do the following:
 - 4.1 Set $A \leftarrow A^2 \mod n$.
 - 4.2 If $k_i = 1$ then set $b \leftarrow A \cdot b \mod n$.
- 5. Return(b).

Algorithm Finding square roots modulo a prime p

INPUT: an odd prime p and an integer $a, 1 \le a \le p - 1$. OUTPUT: the two square roots of a modulo p, provided a is a quadratic residue modulo p.

- 1. Compute the Legendre symbol $\left(\frac{a}{p}\right)$ using Algorithm 2.149. If $\left(\frac{a}{p}\right) = -1$ then return(a does not have a square root modulo p) and terminate.
- 2. Select integers $b, 1 \le b \le p 1$, at random until one is found with $\left(\frac{b}{p}\right) = -1$. (b is a quadratic non-residue modulo p.)
- 3. By repeated division by 2, write $p 1 = 2^{s}t$, where t is odd.
- 4. Compute $a^{-1} \mod p$ by the extended Euclidean algorithm (Algorithm 2.142).
- 5. Set $c \leftarrow b^t \mod p$ and $r \leftarrow a^{(t+1)/2} \mod p$ (Algorithm 2.143).
- 6. For *i* from 1 to s 1 do the following:
 - 6.1 Compute $d = (r^2 \cdot a^{-1})^{2^{s-i-1}} \mod p$.
 - 6.2 If $d \equiv -1 \pmod{p}$ then set $r \leftarrow r \cdot c \mod p$.
 - 6.3 Set $c \leftarrow c^2 \mod p$.
- 7. Return(r, -r).

Algorithm Finding square roots modulo n given its prime factors p and q

INPUT: an integer n, its prime factors p and q, and $a \in Q_n$. OUTPUT: the four square roots of a modulo n.

- 1. Use Algorithm 3.39 (or Algorithm 3.36 or 3.37, if applicable) to find the two square roots r and -r of a modulo p.
- 2. Use Algorithm 3.39 (or Algorithm 3.36 or 3.37, if applicable) to find the two square roots s and -s of a modulo q.
- 3. Use the extended Euclidean algorithm (Algorithm 2.107) to find integers c and d such that cp + dq = 1.
- 4. Set $x \leftarrow (rdq + scp) \mod n$ and $y \leftarrow (rdq scp) \mod n$.
- 5. Return $(\pm x \mod n, \pm y \mod n)$.