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Public key encryption

A public key cryptosystem uses the public key of the
recipient to encrypt the plaintext and the recipient used
its private key to decrypt the ciphertext

Bob
Hello
Alice! Enenype '
* Alice's
public key
6EB69570
08E03CE4
Alice ¢
Hello /0—-
. -4— Decrypt
Alice! Alice's

private key



Size n
Time
complexity 10 20 30 40 50 60
function
.00001 .00002 .00003 .00004 .00005 .00006
n
second second second second second second
3 .0001 .0004 .0009 ~.0016 .0025 .0036
" second second second second second second
3 .001 .008 027 .064 125 216
n second second second second second second
s 1 3.2 243 1.7 5.2 13.0
n . . .
second | seconds | seconds minutes minutes minutes
on .001 1.0 17.9 12.7 35.7 366
second | second minutes days years centuries
3n .059 58 6.5 3855 2x108 1.3x10"
second | minutes years centuries | centuries | centuries

Figure 1.2 Comparison of several polynomial and exponential time complexity
functions.




Theorems

1.Vn>2:n =pi1 ...p¢ where, for: € [1,r], the
p; are primes and e; > 0 are integers

2. If a,b € Z are not simultaneously equal to zero,
there exist u,v € Z such that au + bv = (a,b)
where (a,b) denotes the gcd between a and b
(Bézout)

8. ax=1 (mod m) < (a,m) =1



4. lfmisprimeand (a,m) =1:a™ 1 =1 (mod m)
(Fermat)

5. Euler Phi function: we note ®(n) the number of
integers smaller than n and that are prime with n.

®(n) =n-Tl—; (1 - )

6. multiplicative group:
7} = {a € Zn such that (a,n) = 1}



7. We consider a group composed by ¢(n) elements

(n > 2), for an element a of this group we have
aCD(n) — 1

8. We consider a group composed by ¢(n) elements
(n > 2), for an element a of this group we have
that the order of a divides the order of the group



Example 1

n=7,7%={1,2,3,4,5,6}, ¢(7) =6
orderof1=1:19=1,11=1
orderof2=3:20=1,21=222—=4 23 =1

order of 3 = 6 (generator) : 3° = 1,31 = 3,32 =2,
33=6,3=4,3=5,30=1

orderof4=3:40=1,41=4,42=2 43 =1

order of 5 = 6 (generator) : 59 = 1,51 = 5,52 = 4,
53=6,54=2,5°=3,50=1

orderof6=2:69=1,61=6,62=1



Example 2

n=09,7%§={1,2,4,57,8},¢(9) =6
orderof1=1:19=1,11=1

order of 2 = 6 (generator) : 20 = 1,21 =2, 22 =4,
23=8,24=7,25=5,206=1

orderof4=3:40=1,41=442 =743 =1

order of 5 = 6 (generator) : 59 = 1,51 = 5,52 =7,
53=8,5%=4,5°=2,50=1

orderof 7=3:70=1,71=7,72=4,73=1

orderof8=2:89=1,81=8,82=1



Chinese remainder theorem

Sivli<izj<k:(mym;) =1

(

r = a] (mod ml)

Tr = ag (mod mk)

\

has one and only one solution modulo m = m1 ... my



Chinese remainder theorem

The solution is unique

since x = a; (Mmod m;) andy = a; (mod m;) Vi €
[1, K]

x =1y (mod m;) Vi € [1, k],
m,; divides x — y Vi € [1, k],
m divides z — y,

x =y (mod m)



Chinese remainder theorem

The solution exists

Let M, = %W c [1, k],

m; is prime with all m; (when i # j),
then m; is prime with M;

therefore, it exists an integer c¢; such that ¢;M; = 1
(mod mz)

Let z = Zle a;c;M;,
We have  mod m; = a;c;M; mod m; = a;

Indeed, M; = 0 (mod m;) when i % j and ¢;M; =
1 (mod mz)

x is a solution of the system
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Square roots of 1

n = pq Xhere p et g are two primes, it exists four
square roots of 1 modulo n

These four square roots are computed from two square
roots of 1 modulo p (1 and -1) and two square roots
of 1 modulo ¢ (1 and -1) that are combined using the
chinese remainder theorem
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Square roots of 1

Letp = 7, g = 3 (n = 21), we are looking for a x such that
z? = 1 (mod n). The system of four equations is:

()z=1 (modp) et =1 (modgq);
(2)z=-1 (modp) et z=1 (modgq);
(3)z=1 (modp) et z=-1 (mod q);
(4)x=-1 (modp) et z=-1 (mod q)

we solve them using the chinese remainder theorem where m,

p,mzzq,Ml=%=q,Mz=%=p,Clel_1mod

m1 =5etCr = M;' mod my =1

(1) 2 = a1C1 M1+ a2CoMr =1-3.541-7-1 =1 mod 21

(2) z = a1C1 M1+a>CoMs = (—1)-3-541-7-1 = 8 mod 21

(3) z = a1C1 M1+arCoMp = 1-3:54(—1)-7-1 = —8 mod 21
(4) 2 = a1C1 M1+4-a2CoMr = (—1)-3:54(—1)-7-1 = —1 mod 21
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Quadratic residues

a € 7y, is a quadratic residue modulo n, if it exists z &
Z¥ such that 22 = o (mod n). If such a = doesn'’t
exists a is said to be a non quadratic residue modulo
n

The set of all the quadratic residues modulo n est
noted ). The set of all the non quadratic residues
modulo n is noted Q,

p%l elements of Z are squares modulo p and ;%1 el-
ements of Zj; are not squares (where p is a odd prime)
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Legendre symbol

Adrien-Marie Legendre

If p is an odd prime and a is an integer, then the Leg-
endre symbol:

p

o) si p divise a

a :
<—> =<1 Slaer
K—]. Sia,EQp

Moreover: (%) —a 2 modp
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Legendre symbol

Proof :

If p divides a, it exists k suchthata = kpanda = 0O
—1
(mod p); therefore a2 =0 (mod p)

if a € Qp, it exists z € Zy such that z° = a (mod p),
therefore

p—1

a2 =2P"1=1 (mod p) (Fermat)
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Legendre symbol

If a € Qp, we have (when p is prime) a?~1 = 1
(mod p) (Fermat). Then a?~1 — 1 = 0 (mod p)
and

(ap%l — 1) (a]%l + 1) =0 (mod p)

— —1
Since a € Qp we haven't a2 —1 =0 (mod p)
(otherwise a would be in Qp)

—1
Therefore we have a 2 + 1 = 0 (mod p), and
-1 _
a2 =—1 (mod p) ifa € Qp
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Jacobi Symbol

Charles Gustave Jacob Jacobi

Let a be an interger and n an odd integer > 3 such
that n = pil ..o
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Theorem

1.a€eQn&sacQpetac Qq (Wwheren = pqg and
p, q are distinct primes)

2. Ifa € Qp and a € Qq, then (%) = (9) (2) —
1. —-1=-1

3. Idem, if a € Qp and € Qq
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ifa € Qanda € Qqthen (2) = (2)(4) =
1-1=1

. Butifa € Qp and a € Q4 then we have (%) =

() (3) =-1--1 =1

. Therefore (%) — 1 does not allow to know whether

a € Qnorac Qn
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Factorization

Having a positive integer n, we have to find its prime

factors:

€1 e

n=pq ...Pp

where p; are distinctand e; > 1

Existing methods:

e p-Pollard

e p — 1-Pollard

e Crible quadratique

e Number field sieve
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RSA

Ronald Rivest - Adi Shamir - Leonard Adleman
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RSA

Keys generation

1. choose randomly two large distinct primes p and
g approximately of the same size

2. computen =pgand o(n) = (p—1)(g—1)

3. choose randomly an integer e € |1, ¢(n)[ such
that (e, ¢(n)) =1

4. compute the unique d € |1, ¢(n)[suchthate-d =
1 (mod ¢(n))

The public key is (n, e)
The private key is d
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RSA

Encryption
Let x € Z,, the message to encrypt. We compute:

y=2x° modn

Decryption
y is decrypted by computing:

azzyd mod n
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RSA: keys usage

Knowing the public key (e,n) and the corresponding
private key d, n can be factorized

Proof: we have ed =1 (mod ¢(n))

For every integer a € Z* we have a¢~1 =1 (mod n)

We can write: ed — 1 = 25t with t an odd integer
(a2t =1 (mod n))

-1, ., ..
If z = a2 “tis a trivial square root of 1 modulo n we
choose another integer a

Otherwise (z being a non-trivial square roor of 1 mod-
ulo n) we have 22 = 1 (mod n) and n divides 22—1,

therefore n divides (z — 1)(z + 1)
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RSA: keys usage

What are the values of (z —1,n)and (z+ 1,n) ?

These two gcd’s can have only the following values:
1, p,gorn

Neither can be equal to n, because if (z —1,n) = n
then z — 1 is a multiple of n, and z = 1 (mod n) and
z is a trivial sqaure root of 1. The same reasoning is
validif (z 4+ 1,n) =n

These two gcd’s cannot be simultaneously equal to 1,
becauseif (z —1,n) =1and (z+1,n) = 1thenn
does not divide z2 — 1

Conclusion: at least one of these two gcd’s is equal to
pOuU g

Corollary: two RSA users cannot have the same n in
their public key
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RSA: cyclic attack

Alice sends to Bob a ciphertext y encrypted with his
RSA public key (eg,ng)

Oscar observes y (on the communication channel)
and knows that Bob is the recipient; Oscar can en-
crypt again the ciphertext with the public key of Bob
until he obtains a cycle:

y*B mod np ,
(y¢B)¢B mod ng = y°B mod np

—1
(yeB )eB mod ng = yeB mod np

(yeB )eB mod ng = vy B mod ng

until 8 mod ng =1y

. 1—1
then Oscar retrieves + = y°B mod npg
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Square root problem

On the basis of n where n = pqg and p, g are primes,
and having a a quadratic residue modulo n, find a
square root of ¢ modulo n

If p and ¢ are known, it exists a solution that has a
polynomial complexity

The square root probleme is computationally equiva-
lent to the factorization problem
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Rabin

Michael Rabin
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Rabin

Keys generation
choose randomly two large distinct primes p and g ap-
proximately of the same size and compute n = pq

The public key is n
The private key is (p, q)

Encryption
Let x € Zy, the message to encrypt. We compute:

y=af;2 mod n

Decryption

Compute the four square roots modulo n of y and
choose (possibly on the basis of a redundancy) the
square root that corresponds to the plaintext
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Computation of the four square roots

Supposen =pgandp=qg =3 (mod 4)

e find the integers a and b such that ap + bg = 1
(Bezout)

pt1
e computerr =y 4 modp

g+1
e computer s =y 4 mod g

e computer g = aps + bgr mod n
e computer h = aps + bg(—r) mod n

The four square roots of y modulo n are g, —g, h et
—h
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Rabin: chosen cipher text attack

Suppose that Oscar can access a decryption device
that decrypt all messages encrypted for Bob

Oscar chooses randomly = € Z,, and encrypts x for
Bob: y = 22 mod n. Then, he submits y to the de-
cryption device and obtains, as output, =’ (one of the
four square roots of y)

With a probability % this square root is different from
x and —x (otherwise Oscar restarts the process)

We have:
x de la forme aps + bgr

z’ de la forme aps + bg(—r)

Oscar computes:

(:c — n) = (2bqr,pq) = q
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Rabin: example
Letp = 277, q = 331
n=p-q= 91687

Bob’s public key: n = 91687
Bob’s private key: (p,q) = (227,331)

Alice wants to send the message x to Bob:

xg = 1001111001

She adds a redundancy (duplication of the six last
bits):

r =1x09111001 =1001111001111001 = 40569

She computes:

y = z° mod n = 40569° mod 91687 = 62111
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Rabin: example

To decrypt the ciphertext y, Bob computes the square
roots of y modulo n (Bob knows p and q):

Vy modn =

(r1 = 69654 = 10001000000010110

) 22 = 22033 = 101011000010001
13 = 40569 = 1001111001111001

(x4 = 51118 = 1100011110101110

Only z3 has the correct redundancy therefore xg =
1001111001
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Discrete logarithm problem

Suppose a prime p, a generator o € Zy and 8 € Zy;
findxz, 0 <x <n-—1suchthata? = 3

Existing methods:
e baby step, giant step
e p-Pollard for logarithms
e Pohlig-Hellman
e Index calculus
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El Gamal

Taher El Gamal
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El Gamal

Keys generation

1. choose randomly a larte prime p
2. find a generator « of the multiplicative group Z*,,

3. choose randomly an integer a € [1,p — 2]

4. compute 8 = a* mod p

The public key is (p, o, B)
The private key is a
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El Gamal

Encryption

To encrypt z € Zjp, choose randomly an integer k &

[1,p — 2] and compute:

yl—ozk mod p
yo=x-BF modp

Decryption
Let (y1,yo) be the ciphertext:

r=y; “-yp modp
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Quadratic residuosity problem

Suppose an odd non prime integer n and a € Z; such
that (%) — 1, is a a quadratic residue modulo n?

The quadratic residuosity problem <p the factoriza-
tion problem
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Goldwasser-Micali

Shafi Goldwasser - Silvio Micali
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Goldwasser-Micali

Keys generation

1. choose randomly two large distinct primes p and
g approximately of the same size

2. compute n = pq

3. choose z € Zj, such that z is a non-quadratic
residue modulo n and such that ( ) =1

z
n

The public key is (n, z)
The private key is (p, q)

40



Goldwasser-Micali

Encryption
Let x be composed by ¢ bits: x1 ...z

1. choose randomly Vi € [1,t]: r;
2. Vi e [1,t] 1y, = =z - 7“7;2 mod n

Decryption
Vi € [1,t], compute (%) = ¢;

If e, = 1 then z; = O, otherwise z; = 1

Remark : y; is a quadratic residue modulo n (n = pq)
if y; IS a quadratic residue modulo p
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Goldwasser-Micali

Let p = 7, ¢ = 3 and therefore n = 21) be the
private and public information of Bob

We look for a z € Z, that is a non-quadratic residue
modulo n and such that ( ) =1

z
n
The quadratic residue modulo 21 are:

{1,4,7,9,15,16,17,18}

Let's try z = 11 and compute (%) = (Q) : (%)

= (11! mod3)-(113 mod7) = -1-1 = —1.
Therefore z = 11 is not appropriate

Lets try z = 5: <%) = (%) : (%) = (5! mod 3)-
(53 mod 7) = —1-—1 = 1. Therefore z = 5 is ok
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Goldwasser-Micali

Alice wants to encrypt x+ = 10110 for Bob

she chooses randomly r{ = 4, ro = 8, r3 = 13,
rg =5and rg = 4

She computes:

y1 =5-42=80=17 mod 21
yo =82 =1 mod 21

y3 =5-132 =845 =5 mod 21
ys =552 =125 =20 mod 21
ys = 42 =16 mod 21

The cipher textisy = (17,1,5,20,16).

43



Goldwasser-Micali

To decrypt y = (17,1,5,20, 16) Bob computes the
following Legendre symbols:

(%1) — (1_77) = 173 = 4913 = -1 mod 7 #
1—>$1:1

(%):(%):13=1 mod 7 — 2o = 0
(%):(2)253:125:—1 mod7 # 1 —
rz3 =1

(%4) — (?) = 203 = 8000 = -1 mod 7 #
l —->x4=1

(%5):(¥>:163=4O96=1 mod 7 — x5 =
0

Bob retrieves x = 10110
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Algorithm Extended Euclidean algorithm

INPUT: two non-negative integers a and b with a > b.
OUTPUT: d = gcd(a, b) and integers x, y satisfying ax + by = d.
1. If 5 = 0 then set d<—a, z+1, y<+0, and return(d,z,y).

2. Set zo1, 210, yo0, y11.
3. While b > 0 do the following:
3.1 g+ |a/b|, re—a — gb, x+=x2 — qx1, Y<Y2 — qU1-
3.2 a+b, ber, xo+x1, T¢I, Y2+Yy1,and y,<+vy.
4. Setd<—a, x+xo, y<y2, and return(d,z,y).




Algorithm Computing multiplicative inverses in Z,,
INPUT: a € Z,.
OUTPUT: a~ ! mod n, provided that it exists.

1. Use the extended Euclidean algorithm (Algorithm 2.107) to find integers x and y such
that ax + ny = d, where d = gcd(a, n).

2. Ifd > 1, then a~ ! mod n does not exist. Otherwise, return(x).




Algorithm Repeated square-and-multiply algorithm for exponentiation in Z,,

INPUT: @ € Zp, and integer 0 < k < n whose binary representation is k = Z:ZU ki 28
OUTPUT: a* mod n.
1. Set b<—1. If k = 0 then return(b).
2. Set A+a.
3. If ky = 1 then set b¢—a.
4. For ¢ from 1 to t do the following:
4.1 Set A« A? mod n.
42 Ifk; = 1 thenset b+ A - b mod n.

. Return(b).
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Algorithm Finding square roots modulo a prime p

INPUT: an odd prime p and an integera, 1l <a < p— 1.
OUTPUT: the two square roots of @ modulo p, provided a 1s a quadratic residue modulo p.

L.

o o

N

Compute the Legendre symbol (%) using Algorithm 2.149. If (%) = —1 thenreturn(a
does not have a square root modulo p) and terminate.

Select integers b, 1 < b < p — 1, at random until one is found with (%) = —1. (bis
a quadratic non-residue modulo p.)

By repeated division by 2, write p — 1 = 2°¢, where ¢ 1s odd.

Compute a~! mod p by the extended Euclidean algorithm (Algorithm 2.142).

Set c<—b* mod p and r<—a®T1/2 mod p (Algorithm 2.143).

For ¢ from 1 to s — 1 do the following:

6.1 Computed = (r?-a™!) mod p.

6.2 If d = —1 (mod p) then set r<—r - ¢ mod p.
6.3 Set c+—c? mod p.

Return(r, —r).

23—12—1




Algorithm Finding square roots modulo n given its prime factors p and ¢

INPUT: an integer n, its prime factors p and ¢, and a € Q.
OUTPUT: the four square roots of a modulo n.

1. Use Algorithm 3.39 (or Algorithm 3.36 or 3.37, if applicable) to find the two square
roots  and —r of a modulo p.

2. Use Algorithm 3.39 (or Algorithm 3.36 or 3.37, if applicable) to find the two square
roots s and —s of a modulo gq.

3. Use the extended Euclidean algorithm (Algorithm 2.107) to find integers ¢ and d such
thatecp +dg = 1.

4. Set z<—(rdq + scp) mod n and y<—(rdq — scp) mod n.

5. Return(+2z mod n, £y mod n).




