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Public key encryption

A public key cryptosystem uses the public key of the
recipient to encrypt the plaintext and the recipient used
its private key to decrypt the ciphertext





Theorems

1. ∀n ≥ 2 : n = p
e1
1 . . . perr where, for i ∈ [1, r], the

pi are primes and ei ≥ 0 are integers

2. If a, b ∈ Z are not simultaneously equal to zero,
there exist u, v ∈ Z such that au + bv = (a, b)

where (a, b) denotes the gcd between a and b

(Bézout)

3. ax ≡ 1 (mod m)⇔ (a,m) = 1
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4. Ifm is prime and (a,m) = 1: am−1 ≡ 1 (mod m)

(Fermat)

5. Euler Phi function: we note Φ(n) the number of
integers smaller than n and that are prime with n.
Φ(n) = n ·

∏r
i=1

(
1− 1

pi

)

6. multiplicative group:
Z∗n = {a ∈ Zn such that (a, n) = 1}
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7. We consider a group composed by φ(n) elements
(n > 2), for an element a of this group we have
aΦ(n) = 1

8. We consider a group composed by φ(n) elements
(n > 2), for an element a of this group we have
that the order of a divides the order of the group
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Example 1

n = 7, Z∗7 = {1,2,3,4,5,6}, φ(7) = 6

order of 1 = 1 : 10 = 1, 11 = 1

order of 2 = 3 : 20 = 1, 21 = 2, 22 = 4, 23 = 1

order of 3 = 6 (generator) : 30 = 1, 31 = 3, 32 = 2,
33 = 6, 34 = 4, 35 = 5, 36 = 1

order of 4 = 3 : 40 = 1, 41 = 4, 42 = 2, 43 = 1

order of 5 = 6 (generator) : 50 = 1, 51 = 5, 52 = 4,
53 = 6, 54 = 2, 55 = 3, 56 = 1

order of 6 = 2 : 60 = 1, 61 = 6, 62 = 1
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Example 2

n = 9, Z∗9 = {1,2,4,5,7,8}, φ(9) = 6

order of 1 = 1 : 10 = 1, 11 = 1

order of 2 = 6 (generator) : 20 = 1, 21 = 2, 22 = 4,
23 = 8, 24 = 7, 25 = 5, 26 = 1

order of 4 = 3 : 40 = 1, 41 = 4, 42 = 7, 43 = 1

order of 5 = 6 (generator) : 50 = 1, 51 = 5, 52 = 7,
53 = 8, 54 = 4, 55 = 2, 56 = 1

order of 7 = 3 : 70 = 1, 71 = 7, 72 = 4, 73 = 1

order of 8 = 2 : 80 = 1, 81 = 8, 82 = 1
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Chinese remainder theorem

Si ∀1 ≤ i 6= j ≤ k : (mi,mj) = 1:
x ≡ a1 (mod m1)
...
x ≡ ak (mod mk)

has one and only one solution modulom = m1 . . .mk
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Chinese remainder theorem

The solution is unique

since x ≡ ai (mod mi) and y ≡ ai (mod mi) ∀i ∈
[1, k]:

x ≡ y (mod mi) ∀i ∈ [1, k],

mi divides x− y ∀i ∈ [1, k],

m divides x− y,

x ≡ y (mod m)
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Chinese remainder theorem

The solution exists

Let Mi = m
mi
∀i ∈ [1, k],

mi is prime with all mj (when i 6= j),

then mi is prime with Mi

therefore, it exists an integer ci such that ciMi ≡ 1
(mod mi)

Let x =
∑k
i=1 aiciMi,

We have x mod mi = aiciMi mod mi = ai

Indeed, Mj ≡ 0 (mod mi) when i 6= j and ciMi ≡
1 (mod mi)

x is a solution of the system
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Square roots of 1

n = pq xhere p et q are two primes, it exists four
square roots of 1 modulo n

These four square roots are computed from two square
roots of 1 modulo p (1 and -1) and two square roots
of 1 modulo q (1 and -1) that are combined using the
chinese remainder theorem
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Square roots of 1

Let p = 7, q = 3 (n = 21), we are looking for a x such that
x2 = 1 (mod n). The system of four equations is:

(1) x ≡ 1 (mod p) et x ≡ 1 (mod q) ;

(2) x ≡ −1 (mod p) et x ≡ 1 (mod q) ;

(3) x ≡ 1 (mod p) et x ≡ −1 (mod q) ;

(4) x ≡ −1 (mod p) et x ≡ −1 (mod q)

we solve them using the chinese remainder theorem wherem1 =
p, m2 = q, M1 = pq

p
= q, M2 = pq

q
= p, C1 = M−1

1 mod

m1 = 5 et C2 = M−1
2 mod m2 = 1

(1) x = a1C1M1 +a2C2M2 = 1 ·3 ·5 + 1 ·7 ·1 = 1 mod 21

(2) x = a1C1M1+a2C2M2 = (−1)·3·5+1·7·1 = 8 mod 21

(3) x = a1C1M1+a2C2M2 = 1·3·5+(−1)·7·1 = −8 mod 21

(4) x = a1C1M1+a2C2M2 = (−1)·3·5+(−1)·7·1 = −1 mod 21
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Quadratic residues

a ∈ Z∗n is a quadratic residue modulo n, if it exists x ∈
Z∗n such that x2 ≡ a (mod n). If such a x doesn’t
exists a is said to be a non quadratic residue modulo
n

The set of all the quadratic residues modulo n est
noted Qn. The set of all the non quadratic residues
modulo n is noted Q̄n

p−1
2 elements of Z∗p are squares modulo p and p−1

2 el-
ements of Z∗p are not squares (where p is a odd prime)
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Legendre symbol

Adrien-Marie Legendre

If p is an odd prime and a is an integer, then the Leg-
endre symbol:

(
a

p

)
=


0 si p divise a
1 si a ∈ Qp
−1 si a ∈ Q̄p

Moreover:
(
a
p

)
= a

p−1
2 mod p
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Legendre symbol

Proof :

If p divides a, it exists k such that a = kp and a ≡ 0

(mod p); therefore a
p−1

2 ≡ 0 (mod p)

if a ∈ Qp, it exists x ∈ Zp such that x2 ≡ a (mod p),
therefore

a
p−1

2 ≡ xp−1 ≡ 1 (mod p) (Fermat)
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Legendre symbol

If a ∈ Q̄p, we have (when p is prime) ap−1 ≡ 1

(mod p) (Fermat). Then ap−1 − 1 ≡ 0 (mod p)

and (
a
p−1

2 − 1
)(

a
p−1

2 + 1
)
≡ 0 (mod p)

Since a ∈ Q̄p we haven’t a
p−1

2 − 1 ≡ 0 (mod p)

(otherwise a would be in Qp)

Therefore we have a
p−1

2 + 1 = 0 (mod p), and

a
p−1

2 ≡ −1 (mod p) if a ∈ Q̄p
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Jacobi Symbol

Charles Gustave Jacob Jacobi

Let a be an interger and n an odd integer ≥ 3 such
that n = p

e1
1 . . . perr :

(
a

n

)
=

(
a

p1

)e1

. . .

(
a

pr

)er
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Theorem

1. a ∈ Qn⇔ a ∈ Qp et a ∈ Qq (where n = pq and
p, q are distinct primes)

2. If a ∈ Qp and a ∈ Q̄q, then
(
a
n

)
=

(
a
p

) (
a
q

)
=

1 · −1 = −1

3. Idem, if a ∈ Q̄p and ∈ Qq
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4. if a ∈ Qp and a ∈ Qq then
(
a
n

)
=

(
a
p

) (
a
q

)
=

1 · 1 = 1

5. But if a ∈ Q̄p and a ∈ Q̄q then we have
(
a
n

)
=(

a
p

) (
a
q

)
= −1 · −1 = 1

6. Therefore
(
a
n

)
= 1 does not allow to know whether

a ∈ Qn or a ∈ Q̄n
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Factorization

Having a positive integer n, we have to find its prime
factors:

n = p
e1
1 . . . pe

n

n

where pi are distinct and ei ≥ 1

Existing methods:

• ρ-Pollard

• p− 1-Pollard

• Crible quadratique

• Number field sieve
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RSA

Ronald Rivest - Adi Shamir - Leonard Adleman
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RSA

Keys generation

1. choose randomly two large distinct primes p and
q approximately of the same size

2. compute n = pq and φ(n) = (p− 1)(q − 1)

3. choose randomly an integer e ∈ ]1, φ(n)[ such
that (e, φ(n)) = 1

4. compute the unique d ∈ ]1, φ(n)[ such that e·d ≡
1 (mod φ(n))

The public key is (n, e)
The private key is d
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RSA

Encryption
Let x ∈ Zn the message to encrypt. We compute:

y = xe mod n

Decryption
y is decrypted by computing:

x = yd mod n
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RSA: keys usage

Knowing the public key (e, n) and the corresponding
private key d, n can be factorized

Proof: we have ed ≡ 1 (mod φ(n))

For every integer a ∈ Z∗n we have aed−1 ≡ 1 (mod n)

We can write: ed − 1 = 2st with t an odd integer
(a2st ≡ 1 (mod n))

If z = a2s−1t is a trivial square root of 1 modulo n we
choose another integer a

Otherwise (z being a non-trivial square roor of 1 mod-
ulo n) we have z2 ≡ 1 (mod n) and n divides z2−1,
therefore n divides (z − 1)(z + 1)
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RSA: keys usage

What are the values of (z − 1, n) and (z + 1, n) ?

These two gcd’s can have only the following values:
1, p, q or n

Neither can be equal to n, because if (z − 1, n) = n

then z−1 is a multiple of n, and z ≡ 1 (mod n) and
z is a trivial sqaure root of 1. The same reasoning is
valid if (z + 1, n) = n

These two gcd’s cannot be simultaneously equal to 1,
because if (z− 1, n) = 1 and (z+ 1, n) = 1 then n
does not divide z2 − 1

Conclusion: at least one of these two gcd’s is equal to
p ou q

Corollary: two RSA users cannot have the same n in
their public key
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RSA: cyclic attack

Alice sends to Bob a ciphertext y encrypted with his
RSA public key (eB, nB)

Oscar observes y (on the communication channel)
and knows that Bob is the recipient; Oscar can en-
crypt again the ciphertext with the public key of Bob
until he obtains a cycle:

yeB mod nB
(yeB)eB mod nB = ye

2
B mod nB

. . .

(ye
i−2
B )eB mod nB = ye

i−1
B mod nB

(ye
i−1
B )eB mod nB = ye

i
B mod nB

until ye
i
B mod nB = y

then Oscar retrieves x = ye
i−1
B mod nB
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Square root problem

On the basis of n where n = pq and p, q are primes,
and having a a quadratic residue modulo n, find a
square root of a modulo n

If p and q are known, it exists a solution that has a
polynomial complexity

The square root probleme is computationally equiva-
lent to the factorization problem
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Rabin

Michael Rabin
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Rabin

Keys generation
choose randomly two large distinct primes p and q ap-
proximately of the same size and compute n = pq

The public key is n
The private key is (p, q)

Encryption
Let x ∈ Zn the message to encrypt. We compute:

y = x2 mod n

Decryption
Compute the four square roots modulo n of y and
choose (possibly on the basis of a redundancy) the
square root that corresponds to the plaintext
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Computation of the four square roots

Suppose n = pq and p ≡ q ≡ 3 (mod 4)

• find the integers a and b such that ap + bq = 1
(Bezout)

• computer r = y
p+1

4 mod p

• computer s = y
q+1

4 mod q

• computer g = aps+ bqr mod n

• computer h = aps+ bq(−r) mod n

The four square roots of y modulo n are g, −g, h et
−h
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Rabin: chosen cipher text attack

Suppose that Oscar can access a decryption device
that decrypt all messages encrypted for Bob

Oscar chooses randomly x ∈ Zn and encrypts x for
Bob: y = x2 mod n. Then, he submits y to the de-
cryption device and obtains, as output, x′ (one of the
four square roots of y)

With a probability 1
2, this square root is different from

x and −x (otherwise Oscar restarts the process)

We have:

x de la forme aps+ bqr

x′ de la forme aps+ bq(−r)

Oscar computes:(
x− x′, n

)
= (2bqr, pq) = q
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Rabin: example

Let p = 277, q = 331
n = p · q = 91687

Bob’s public key: n = 91687
Bob’s private key: (p, q) = (227,331)

Alice wants to send the message x to Bob:

x0 = 1001111001

She adds a redundancy (duplication of the six last
bits):

x = x0111001 = 1001111001111001 = 40569

She computes:

y = x2 mod n = 405692 mod 91687 = 62111
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Rabin: example

To decrypt the ciphertext y, Bob computes the square
roots of y modulo n (Bob knows p and q):

√
y mod n =


x1 = 69654 = 10001000000010110

x2 = 22033 = 101011000010001

x3 = 40569 = 1001111001111001

x4 = 51118 = 1100011110101110

Only x3 has the correct redundancy therefore x0 =

1001111001
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Discrete logarithm problem

Suppose a prime p, a generator α ∈ Z∗p and β ∈ Z∗p;
find x, 0 ≤ x ≤ n− 1 such that αx = β

Existing methods:

• baby step, giant step

• ρ-Pollard for logarithms

• Pohlig-Hellman

• Index calculus
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El Gamal

Taher El Gamal

35



El Gamal

Keys generation

1. choose randomly a larte prime p

2. find a generator α of the multiplicative group Z∗p

3. choose randomly an integer a ∈ [1, p− 2]

4. compute β = αa mod p

The public key is (p, α, β)
The private key is a
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El Gamal

Encryption
To encrypt x ∈ Zp, choose randomly an integer k ∈
[1, p− 2] and compute:y1 = αk mod p

y2 = x · βk mod p

Decryption
Let (y1, y2) be the ciphertext:

x = y1
−a · y2 mod p
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Quadratic residuosity problem

Suppose an odd non prime integer n and a ∈ Z∗n such
that

(
a
n

)
= 1, is a a quadratic residue modulo n?

The quadratic residuosity problem ≤P the factoriza-
tion problem
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Goldwasser-Micali

Shafi Goldwasser - Silvio Micali
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Goldwasser-Micali

Keys generation

1. choose randomly two large distinct primes p and
q approximately of the same size

2. compute n = pq

3. choose z ∈ Zn such that z is a non-quadratic
residue modulo n and such that

(
z
n

)
= 1

The public key is (n, z)

The private key is (p, q)
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Goldwasser-Micali

Encryption
Let x be composed by t bits: x1 . . . xt

1. choose randomly ∀i ∈ [1, t]: ri

2. ∀i ∈ [1, t] : yi = zxi · ri2 mod n

Decryption
∀i ∈ [1, t], compute

(
yi
p

)
= ei

If ei = 1 then xi = 0, otherwise xi = 1

Remark : yi is a quadratic residue modulo n (n = pq)
if yi is a quadratic residue modulo p
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Goldwasser-Micali

Let p = 7, q = 3 and therefore n = 21) be the
private and public information of Bob

We look for a z ∈ Zn that is a non-quadratic residue
modulo n and such that

(
z
n

)
= 1

The quadratic residue modulo 21 are:
{1,4,7,9,15,16,17,18}

Let’s try z = 11 and compute
(

11
21

)
=
(

11
3

)
·
(

11
7

)
= (111 mod 3) · (113 mod 7) = −1 · 1 = −1.
Therefore z = 11 is not appropriate

Let’s try z = 5:
(

5
21

)
=
(

5
3

)
·
(

5
7

)
= (51 mod 3) ·

(53 mod 7) = −1 ·−1 = 1. Therefore z = 5 is ok
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Goldwasser-Micali

Alice wants to encrypt x = 10110 for Bob

she chooses randomly r1 = 4, r2 = 8, r3 = 13,
r4 = 5 and r5 = 4

She computes:
y1 = 5 · 42 = 80 = 17 mod 21

y2 = 82 = 1 mod 21

y3 = 5 · 132 = 845 = 5 mod 21

y4 = 5 · 52 = 125 = 20 mod 21

y5 = 42 = 16 mod 21

The cipher text is y = (17,1,5,20,16).
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Goldwasser-Micali

To decrypt y = (17,1,5,20,16) Bob computes the
following Legendre symbols:

(
y1
p

)
=

(
17
7

)
= 173 = 4913 = −1 mod 7 6=

1→ x1 = 1(
y2
p

)
=
(

1
7

)
= 13 = 1 mod 7→ x2 = 0(

y3
p

)
=

(
5
7

)
= 53 = 125 = −1 mod 7 6= 1 →

x3 = 1(
y4
p

)
=

(
20
7

)
= 203 = 8000 = −1 mod 7 6=

1→ x4 = 1(
y5
p

)
=
(

16
7

)
= 163 = 4096 = 1 mod 7→ x5 =

0

Bob retrieves x = 10110

44












