
INFO-F-404 : Operating Systems II

1 Exercises

Exercise 1: Let’s consider the following protocol of management of critical sections.

First try
integer turn← 1

p q
loop forever loop forever

p1: non-critical section q1: non-critical section
p2: await turn = 1 q2: await turn = 2
p3: critical section q3: critical section
p4: turn← 2 q4: turn← 1

a) Show that this protocol can not be used in order to manage mutex sections. Use this simplified
version of the protocol in order to minimize the size of diagrams.

First try (simplified)
integer turn← 1

p q
loop forever loop forever

p1: await turn = 1 q1: await turn = 2
p2: turn← 2 q2: turn← 1

b) Use the state diagram in order to show that this protocol guarantees the absence of deadlock.

c) Show that this first protocol could lead to livelock (if the time that one process passes in the
critical section is not limited).

Answer : Exercise 1 (a) and (b) : see Figure 1
Exercise 1 (c): If the process p quit with an error during its critical section, it will never assign

the value 2 to the variable turn⇒ q is at livelock.

1



Figure 1: Answer : Exercise 1 (a) and (b)

Exercise 2: Let’s consider the following protocol of management of critical sections.

Second try
boolean wantp← false, wantq← false

p q
loop forever loop forever

p1: non-critical section q1: non-critical section
p2: await wantq = false q2: await wantp = false
p3: wantp← true q3: wantq← true
p4: critical section q4: critical section
p5: wantp← false q5: wantq← false

a) Show that this protocol can not guarantee mutual exclusion.

Second try (simplified)
boolean wantp← false, wantq← false

p q
loop forever loop forever

p1: await wantq = false q1: await wantp = false
p2: wantp← true q2: wantq← true
p3: wantp← false q3: wantq← false

b) Could we have a deadlock and/or livelock ?

Answer : Exercise 2 (a) : see Figure 2.
Exercise 2 (b): see Table 1

2



Figure 2: Answer : Exercise 2 (a)

p q wantp wantq
p1 q1 False False
p2 q1 False False
p2 q2 False False
p3 q2 True False
p3 q3 True True

Table 1: Exercise 2 (b).

Exercise 3: Let’s consider the following protocol of management of critical sections.

Third try
boolean wantp← false, wantq← false

p q
loop forever loop forever

p1: non-critical section q1: non-critical section
p2: wantp← true q2: wantq← true
p3: await wantq = false q3: await wantp = false
p4: critical section q4: critical section
p5: wantp← false q5: wantq← false

a) Write a simplified version of this protocol.

3



b) Create a state diagram of this protocol and verify that we have mutual exlusion.

c) Show that this protocol could lead to a deadlock.

d) Describe a scenario that can lead to a deadlock.

Answer : Exercise 3 (a): see Figure 3.
Exercise 3 (b) and (c): see Figure 4.
Exercise 3 (d): see Table 2.

Third try : simplified
boolean wantp← false, wantq← false

p q
loop forever loop forever

p1: wantp← true q1: wantq← true
p2: await wantq = false q2: await wantp = false
p3: wantp← false q3: wantq← false

Figure 3: Exercise 3 (a).

Figure 4: Answer : Exercise 3 (b) and (c)

4



p q wantp wantq
p1 q1 False False
p2 q1 True False
p2 q2 True True

Table 2: Exercise 3 (d).

Exercise 4: Let’s consider the following protocol of management of critical sections. This proto-
col guarantees the absence of deadlocks and mutual exclusion.

Fourth try
boolean wantp← false, wantq← false

p q
loop forever loop forever

p1: non-critical section q1: non-critical section
p2: wantp← true q2: wantq← true
p3: while wantq q3: while wantp
p4: wantp← false q4: wantq← false
p5: wantp← true q5: wantq← true
p6: critical section q6: critical section
p7: wantp← false q7: wantq← false

a) Use state diagram and show that this protocol could lead to livelock.

?

s
p3: while wantq
q3: while wantp

true, true

'

&

$

%
b) Why is it a livelock (and not a deadlock) ?

Answer : Exercise 4 (a): see Figure 5.
Exercise 4 (b): Processes could be scheduled in a bad order.

Exercise 5: Consider Lamport’s algorithm for mutex sections.

5



Figure 5: Answer : Exercise 4 (a).

Bakery algorithm (2 proces)
integer np← 0, nq← 0

p q
loop forever loop forever

p1: non-critical section q1: non-critical section
p2: np← nq + 1 q2: nq← np + 1
p3: await nq = 0 or np ≤ nq q3: await np = 0 or nq < np
p4: critical section q4: critical section
p5: np← 0 q5: nq← 0

a) Use a state diagram in order to show that this algorithm is correct.

Answer : Exercise 5 (a): see Figure 6.

Exercise 6: Let’s consider the system represented by Table 3. These are all periodic, asyn-
chronous tasks with constrained deadline.

Task index Release time WCET Deadline Period
Tâche τ1 0 40 60 150
Tâche τ2 50 70 100 150
Tâche τ3 100 30 150 150

Table 3: System of 3 periodic, asynchronous tasks with constrained deadline.

a) Use a distributed algorithm in order to verify that this system can be scheduled on a single
processor platform.

6



Figure 6: Answer : Exercise 5 (a).

7


