INFO-F-404 : Operating Systems II

1 Exercises

Exercise 1 : Audsley

Let's consider the system represented by Table 1. These are all *periodic*, *asynchronous* tasks with *constrained deadline*. We will consider the case where these tasks (and jobs) are *independent* and *preemptible*.

Task index	Release time	WCET	Deadline	Period
Task $ au_1$	100	10	20	30
Task $ au_2$	50	20	50	50
Task τ_3	0	30	100	150

Table 1: System of 3 periodic, asynchronous tasks with constrained deadline.

- a) Find the study interval, use the expression $[O_{\text{max}}, O_{\text{max}} + 2 \cdot P]$.
- **b)** Plot the scheduling of these 3 tasks in the interval [0, 400] using Audsley. Each job takes its worst case execution time (WCET) to end. Use Figure 1.
- **c)** Find the study interval, use the expression $[0, S_n + P]$.

Exercise 2: Earliest Deadline First

Let's consider the system represented by Table 2. These are all *periodic*, *synchronous* tasks with *constrained deadline*. We will consider the case where these tasks (and jobs) are *independent* and *preemptible*.

Task index	Release time	WCET	Deadline	Period
Task $ au_1$	0	10	50	50
Task $ au_2$	0	20	40	80
Task $ au_3$	0	10	30	100
Task $ au_4$	0	50	150	200

Table 2: System of 4 periodic, synchronous tasks with constrained deadline.

- a) Find the study interval for this system (for EDF algorithm).
- **b)** Plot the scheduling of these 3 tasks in the interval [0,400] using EDF. Each job takes its worst case execution time (WCET) to end. Use Figure 1.
- c) Find a system of periodic tasks that could be scheduled using EDF, but not using DM.

Exercise 3: Least Laxity First

Let's consider the system represented by Table 3. These are all *periodic*, *synchronous* tasks with *constrained deadline*. We will consider the case where these tasks (and jobs) are *independent* and *preemptible*.

Task index	Release time	WCET	Deadline	Period
Task $ au_1$	0	10	50	50
Task $ au_2$	0	20	40	80
Task $ au_3$	0	10	30	100
Task $ au_4$	0	50	150	200

Table 3: System of 4 periodic, synchronous tasks with constrained deadline.

a) Plot the scheduling of these 4 tasks in the interval [0,200] using LLF. Consider the case when all priorities are recalculated every 10 time units. Each job takes its worst case execution time (WCET) to end. Use Figure 2.

Figure 1: Scheduling.

Figure 2: Scheduling.