INFO-F-404: Operating Systems II

1 Exercises

Exercise 1: Audsley

Task index	Release time	WCET	Deadline	Period
Task $ au_1$	100	10	20	30
Task $ au_2$	50	20	50	50
Task $ au_3$	0	30	100	150

Table 1: System of 3 periodic, asynchronous tasks with constrained deadline.

a) Find the study interval, use the expression $[O_{\text{max}}, O_{\text{max}} + 2 \cdot P]$.

Answer : First we have to find P and O_{max} , they are given by formulas:

$$P = lcm \{T_i \mid i = 1, \dots, n\}$$

$$O_{\max} = \max \{ O_i \mid i = 1, \dots, n \}$$

So, we have : P = lcm(30, 50, 150) = 150 and $O_{max} = max(100, 50, 0) = 100$

Now we can find the study interval : $[100,100+2\cdot 150]=[100,400]$

b) Plot the scheduling of these 3 tasks in the interval [0,400] using Audsley. Each job takes its worst case execution time (WCET) to end. Use Figure 1.

Answer : $\tau_1 > \tau_2 > \tau_3$.

c) Find the study interval, use the expression $[0, S_n + P]$.

Answer: In order to find the interval $[0, S_n + P)$ we have to find S_n (from previous exercise we already know that P = 150). S_n can be calculated using the following expression (Tasks are sorted by priority):

$$S_1 = O_1$$

$$S_i = \max \left\{ O_i, O_i + \left\lceil \frac{(S_{i-1} - O_i)^+}{T_i} \right\rceil \cdot T_i \right\}$$
 for $i = 2, \dots, n$

In our case we have $\tau_1 > \tau_2 > \tau_3$, so :

1.
$$S_1 = O_1 = 100$$
.

2.
$$S_2 = \max\{O_2, O_2 + \lceil \frac{S_1 - O_2}{T_2} \rceil \cdot T_2\} = \max\{50, 50 + 1 \cdot 50\} = 100.$$

3.
$$S_3 = \max\{O_3, O_3 + \lceil \frac{S_2 - O_3}{T_3} \rceil \cdot T_3\} = \max\{0, 0 + 1 \cdot 150\} = 150.$$

Now we can find the interval : [0, 150 + 150] = [0, 300].

Exercise 2 : Earliest Deadline First

Task index	Release time	WCET	Deadline	Period
Task $ au_1$	0	10	50	50
Task $ au_2$	0	20	40	80
Task $ au_3$	0	10	30	100
Task $ au_4$	0	50	150	200

Table 2: System of 4 periodic, synchronous tasks with constrained deadline.

a) Find the study interval for this system (for the EDF algorithm).

Answer : The study interval for EDF is [0, L), where L is given by :

$$L = \sum_{i=1}^{n} \left\lceil \frac{L}{T_i} \right\rceil \cdot C_i$$

L can be calculated using the following iterative approach:

$$W_0 = \sum_{i=1}^n C_i$$

$$W_{k+1} = \sum_{i=1}^n \left\lceil \frac{W_k}{T_i} \right\rceil \cdot C_i$$

In our case we have:

1.
$$W_0 = 10 + 20 + 10 + 50 = 90$$
,

2.
$$W_1 = \lceil \frac{90}{50} \rceil \cdot 10 + \lceil \frac{90}{80} \rceil \cdot 20 + \lceil \frac{90}{100} \rceil \cdot 10 + \lceil \frac{90}{200} \rceil \cdot 50 = 120,$$

3.
$$W_2 = \left\lceil \frac{120}{50} \right\rceil \cdot 10 + \left\lceil \frac{120}{80} \right\rceil \cdot 20 + \left\lceil \frac{120}{100} \right\rceil \cdot 10 + \left\lceil \frac{120}{200} \right\rceil \cdot 50 = 140,$$

4.
$$W_3 = \lceil \frac{140}{50} \rceil \cdot 10 + \lceil \frac{140}{80} \rceil \cdot 20 + \lceil \frac{140}{100} \rceil \cdot 10 + \lceil \frac{140}{200} \rceil \cdot 50 = 140$$

The fixed point is found, now we have our interval: [0, 140)

- **b)** Plot the scheduling of these 3 tasks in the interval [0,400] using EDF. Each job takes its worst case execution time (WCET) to end. Use Figure 1.
- c) Find a system of periodic tasks that could be scheduled using EDF, but not using DM.

Answer: see Table 3

Task index	Release time	WCET	Deadline	Period
Task $ au_1$	0	50	100	100
Task $ au_2$	0	50	130	200
Task $ au_3$	0	from 1 to 50	150	200

Table 3: Systeme schedulable by EDF but not by DM.

If DM is used, the task τ_3 misses its deadline at t=150.

Exercise 3: Least Laxity First

Task index	Release time	WCET	Deadline	Period
Task $ au_1$	0	10	50	50
Task $ au_2$	0	20	40	80
Task $ au_3$	0	10	30	100
Task $ au_4$	0	50	150	200

Table 4: System of 4 periodic, synchronous tasks with constrained deadline.

a) Plot the scheduling of these 4 tasks in the interval [0,200] using LLF. Consider the case when all priorities are recalculated every 10 time units. Each job takes its worst case execution time (WCET) to end. Use Figure 2.

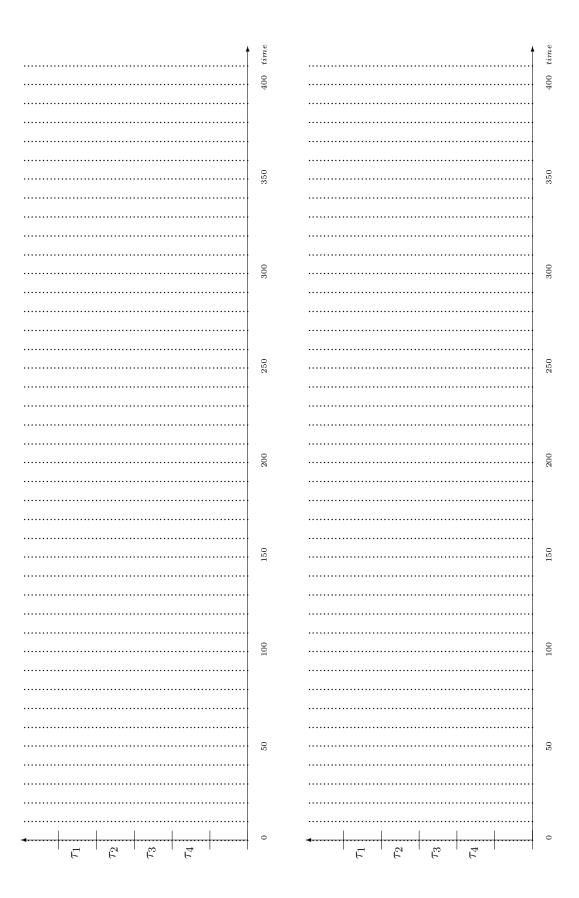


Figure 1: Scheduling.

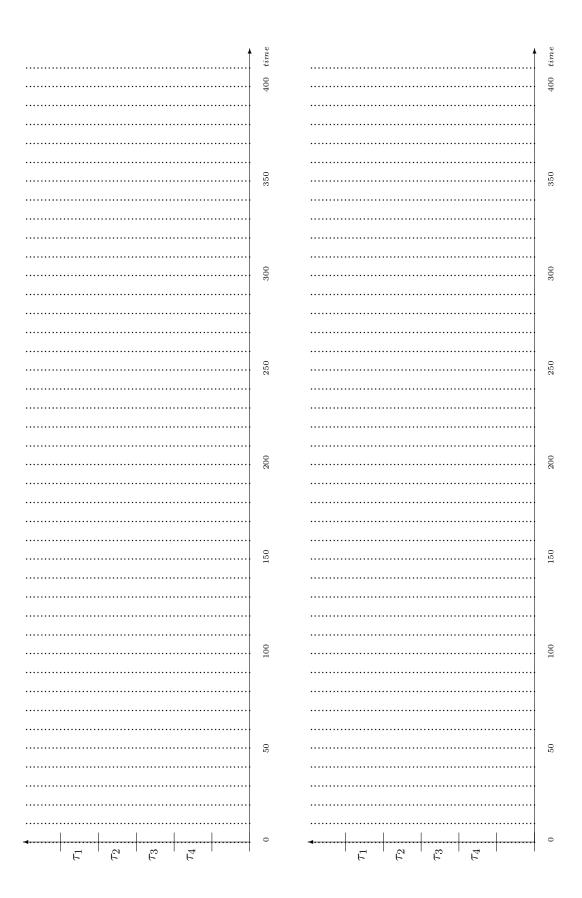


Figure 2: Scheduling.