INFOF404: Operating Systems II
Project 2: The Ulam Spiral

Delhaye Quentin
December 2, 2013

1 Introduction

The aim of the project is to generate an Ulam spiral using the MPI C++ library on Hydra cluster.
When running the Makefile, please make sure that the required modules are loaded:

2 Alogrithm choice

The basic algorithm is the Eratosthenes sieve: beginning from two, we eliminate every multiple of the
integer up to the limit. Then we do the same for the next integer that as not been eliminated. Every
integer that have not been crossed are prime numbers.

The main flaw of this algorithm is that we will eliminate the same numbers several time. One of
the improvements made to this algorithm is the wheel sieve [?|. This will go trhough several passes,
generating the next prime numbers from the previously generated ones, avoiding the already discarded
number.

Although the theoretical time complexity of Eratosthenes’ algorithm (O(nloglogn) is higher than
wheel sieves’ (O(n/loglogn), |?] brought out that in practice, the distributed implementation of the
wheel sieve (as described in [?]) was more than 200 times slower than the distributed Eratosthenes
sieve on the same hardware, and for a limit of N = 1000000. The reason stated in the paper is that
the Eratosthenes sieve computes much easier operation, when the Wheel sieve is more complex.

There exists another improvement of Eratosthenes sieve: Atkin Sieve [?|. Instead of eliminating
all the multiples of previously computed prime number, it lays on a more complex mathematical
reasonning. The main idea is to select some numbers with specific properties up to the square root of
the limit, v/N, then eliminate all the multiple of their square.

The wikipedia page devoted to this sieve [?] proposes a sequential pseudocode implementation of
this algorithm. It served as a basis for this project implementation.

Beside the parallelization of the algorithm, the main modification is the adjustement of the different
passes bounds. The original implementation proposed to go from y =1 to y = /n, but since we have
422 +y? < n, we can limit y to: y < v/n —422. The same type of reasoning can be applied to the
second pass with 322 + y2 < n becomes y < v/n —3z2. The last thing to check then is that the
argument of the square root is positive or not; if it is, we set y to that bound, otherwise y = 1.

3 Implementation

First, the sequential algorithm needs to be splited and distributed among the processes. We choose
here a star layout: one process is the master and the others are its slaves.

The interval is the following: [5; N|, where N is the number of primes the client wants to generated,
squared. This ensure to have both a square and the number or prime numbers required.

Figure 1: Ulam spiral for the 22261 first prime numbers.

The master first splits the study interval this way: he first removes the remainder of the division
of the study interval by the amount of slaves and keep it as his local study interval. This way, the
remaining interval is congruent to 0 modulo number of slave.

The master then sends the upper and lower interval bounds to each slave. Once it’s done, everyone
does his work in his own study interval and sends it back to the master. The master receives all the
lists from the slaves and gather them in one big array. He then removes all the multiples of the squared
marked prime numbers.

The last step is then taken by the master: generating the image from the list. Basically, he begins
with the lower right corner of the spiral and paint it from the end up to the beginning.

The time calculation is done in two different ways:

e Computation time of each process using clock();
It is launched right after the MPI initilizations and stoped at the very and of the program, just
before the MPI_Finalize.

e Wall clock time using gettimeofday();
It is launched and stoped at the same time that the computation time.

4 Message passing

Almost all the messages are sent and received using blocking methods.
Hereunder is an sample of code representing the sending and receiving of an array:

int id, nbInstance;

MPI_Comm_rank (MPI_COMM_WORLD, &id);
MPI_Comm_size (MPI_COMM_WORLD, &nbInstance);
int BOUNDS_ARRAY = 0;//tag

MPI_Status status;

/**Matser ends the bounds to the slavesx*/

if(id == 0) {

for(int i=1;i<nbInstance;i++) {

int slavelLimit[2];

MPI_Send(slaveLimit, 2, MPI_INT, i, BOUNDS_ARRAY, MPI_COMM_WORLD) ;
}

}

/*xSlaves receive the bounds from the masterx*/

else {

int slavelLimit[2];

MPI_Recv(slaveLimit, 2, MPI_INT, O, BOUNDS_ARRAY, MPI_COMM_WORLD, &status);
}

There is only the last sending by the slaves, when they send their computation time, that is
nonblocking, and this hoping that they will not wait the master to be ready to receive their message
before initiating the sending.

5 Analysis

For some reason, it seems that when a lot of processes are used, some primes are not recognized, leading
to an incomplete prime set.

np = 2 np =4 np = 8 np = 12
4900 0 0.010 0 0.010 0.02 0.057 0.02 0.037
10000 0.010.138 | 0.010.017 | 0.03 0.042 0.01 0.056
49729 0.1 0.117 | 0.110.113 | 0.12 0.238 0.07 0.237
99225 0.3 0.347 | 0.30.316 | 0.24 0.500 0.28 0.684

250000 | 1.191.202 | 1.181.190 | 0.88 1.198 1.03 2.06

499849 | 3.313.326 | 3.223.229 | 1.96 3.678 2.88 5.816

749956 | 5.9 5.930 | 5.895.901 | 5.65 7.698 5.31 9.920

1000000 | 9.089.0877 | 9.289.29 | 12.0113.893 | 6.8513.7742

Table 1: Vertical: limit N, horizontal: number of processes involed.

6 Improvements

Study interval The study interval may be narrowed to a lower upper bound. Indeed, the current
implementation computes way more prime numbers than asked by the user.

Messages Instead of using MPI_Send and MPI_Recv, we may experiment the inpact of using MPI_Gather
instead.

PNG generation The file generation can not be done for very large set of prime numbers. The user
should at least be informed that the image will not be generated if he asks too many prime numbers.

References

[1] D. J. Berstein A. O. L. Atkin. Prime sieves using binary quadratic forms. Mathematics of Compu-
tation, 73(246):1023 — 1030, april 2003.

[2] Gabriel Paillard. Le crible de la roue en distribué. MAJECSTIC 2003 (MAnifestation des JEunes
Chercheurs en STIC), 2003.

[3] Gabriel Paillard. A fully distributed prime numbers generation using the wheel sieve. Parallel and
Distributed Computing and networks, 2005.

[4] Wikipedia. Sieve of atkin — wikipedia, the free encyclopedia. http://en.wikipedia.org/wiki/
Sieve_of_Atkin. Last revision: 25 November 2013 22:29 UTC.

http://en.wikipedia.org/wiki/Sieve_of_Atkin
http://en.wikipedia.org/wiki/Sieve_of_Atkin

