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A prime number sieve is an algorithm that lists all prime numbers up to a given
bound n. Two parallel prime number sieves for an algebraic EREW PRAM model
of computation are presented and analyzed. The first sieve runs in O(log n) time
using O(n/(log nlog log n)) processors, and the second sieve runs in 0(\/;) time
using 0(\/% ) processors. The first sieve is optimal in the sense that it performs
work O(n/log log n), which is within a constant factor of the number of arithmetic
operations used by the fastest known sequential prime number sieves. However,
when both sieves are analyzed on the Block PRAM model as defined by Aggarwal,
Chandra, and Snir, it is found that the second sieve is more work-efficient when
communication latency is significant.  © 1994 Academic Press, Inc.

1. INTRODUCTION

A prime number sieve is an algorithm that lists all prime numbers up to
a bound n. The best-known prime number sieve, attributed to
Eratosthenes, finds the primes up to »n using O(nloglogn) arithmetic
operations on “small numbers.” Currently, the fastest known prime number
sieves use only O(n/log log n) arithmetic operations (see Mairson (1977)
and Pritchard (1981)). Parallel implementations of prime number sieves
have also been investigated (see Bokhari (1987) and Hikita and Kawai
(1980)), but little rigorous theoretical analysis has been done. We present
and analyze two parallel prime number sieves; one that performs best when
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communication latency is low, and one that performs best when
communication latency is high.

Our model of computation is the standard algebraic parallel random
access machine (PRAM) model with bounded word size, in which each
processor may read and write to a shared memory and perform arithmetic
operations on O(log n)-bit integers in one parallel step (we use the term
time for the number of parallel steps). The work performed by a parallel
algorithm is the product of the number of processors and the running time.
We say that a parallel algorithm is optimal if it satisfies two conditions: (1)
its running time is bounded above by a polynomial in logn, and (2) it
performs work proportional to the running time of the fastest known
sequential algorithm for the same problem. For more on parallel models
of computation and the PRAM, see Parberry (1987) and Karp and
Ramachandran (1990).

Our first sieve is a parallelization of a modified version of a linear sieve
due to Pritchard (1987, Algorithm 3.3). This algorithm runs in O(log n)
time using O(n/(log n log log n)) processors on an exclusive-read, exclusive-
write (EREW) PRAM. Since the fastest known sequential sieves use
©O(n/log log n) arithmetic operations, this parallel sieve is optimal. Our
second sieve is a parallelization of another linear sieve due to Pritchard
(1983) that only uses O(\/Z) space. This algorithm runs in O(\/;) time
using 0(\/;) processors on an EREW PRAM, and appeared in
Parberry (1981).

Although our first sieve is more work-efficient than our second sieve
(O(n/log log n) compared to O(n)), we believe that our second sieve is
more efficient in practice. To support this, we analyzed both parallel sieves
according to a more “realistic” model of parallel computation, the Block
PRAM (BPRAM) of Aggarwal ez al. (1989). In addition to the parameters
n (the input size) and p (the number of processors), the BPRAM has a
parameter / which is a measure of communication latency. A running time
cost of / is charged for copying a block of memory from the shared global
memory to private memory or vice versa. We show that if /= Q(log log n),
then on the BPRAM, our second sieve performs no more work than our
first sieve. If / is much larger (say /=log n), then our second sieve is in fact
superior. This phenomenon is due to the very fine grained parallelism used
by our first prime number sieve.

The remainder of this paper is divided into five sections. After we cover
some preliminaries in Section 2, we discuss our two parallel prime number
sieves in Sections 3 and 4. We then analyze the sieves on the BPRAM
model in Section 5, and conclude with a few remarks in Section 6.
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2. PRELIMINARIES

Our algorithms use the algebraic PRAM model of computation with an
O(log n) bound on the word size. Essentially, this model consists of a
potentially infinite number of synchronous processors, each of which can
read and write into a shared memory, perform indirect addressing, and
compute the sum, product, difference, or integer quotient of two O(log n)-
bit integers in constant time. There are various conventions for how
simultaneous accesses to the individual words of shared memory are hand-
led. In the Exclusive Read, Exclusive Write (EREW) model, simultaneous
access to a single word of memory is not permitted. In the Concurrent
Read, Exclusive Write (CREW) model, simultaneous reads are permitted,
but simultaneous writes are not. In the Concurrent Read, Concurrent
Write (CRCW) model, both simultaneous reads and writes are permitted.
In the latter case, two of the popular conventions for dealing with write
conflicts are the common CRCW PRAM, in which concurrent writes are
allowed only if all processors that write to a cell write the same value, and
the priority CRCW PRAM, in which the processor with the lowest pro-
cessor identification number has its value written to the contested cell.
Each processor knows its own identification number.

We make use of some well-known results from the literature (for a
survey and detailed references, see Karp and Ramachandran (1990) and
Parberry (1987)). These include the following:

1. Any CRCW PRAM algorithm using p(n) processors may be
simulated by an EREW PRAM using the same number of processors but
with a multiplicative increase of O(log p(n)) in the running time.

2. Any PRAM algorithm with ¢(#) running time and p(n) processors
may use fewer processors while performing the same amount of work
(simply have each real processor simulate multiple virtual processors). If
only f(n) processors are available, the running time increases to
O(t(n) p(n)/f(n)).

3. If“.” is an associative binary operation, the parallel prefix problem
is the following. Given x,, ..., x,,, compute y,, ..., ¥,, where y, = x, and for
2<i<n, y;=y;_;°x;. The parallel prefix problem can be solved in time
O(log n) on an EREW PRAM with O(n/log n) processors.

4. If .Q(\/f_l) processors are available, then I_\/r—z | can be computed in
time O(1) by a CREW PRAM (and hence in time O(log #) on an EREW
PRAM).

For most of the steps in our algorithms, it is a simple matter for a
processor to determine what task it is to perform. Usually, this involves
determining an array location or integer value as a function of the

643/114/1-9



118 SORENSON AND PARBERRY

processor’s identification number. However, occasionally the association of
a processor with its task (processor allocation) is not obvious. In this case,
we explicitly include a step in the algorithm for the allocation of processors.
This is done by specifying how many processors must be allocated to an
array location or an integer value. With this information, a table is
constructed using parallel prefix computations that allows each processor
to determine its task. We leave the details to the reader.

If r is a real number, let | r | denote the largest integer not exceeding r.
Let a and b be positive integers. We define a mod b to be the remainder
when a is divided by b, or amodb=a—|a/b|-b. We say that bla
(b divides a) if amod b=0. An integer p>1 is prime if the only positive
integers that divide p are itself and 1. The letters p and ¢ typically denote
primes, and p, denotes the kth prime, with p, =2. (We occasionally use p
to denote the number of processors; these instances are clearly noted, and
there should be no confusion.)

We use the following results from number theory (see Hardy and Wright
(1979)). Let n(x) denote the number of primes <x. Let log x denote the
natural logarithm of x. The Prime Number Theorem states that
n{x)~ x/log x. As corollaries, we have the following estimates involving
primes (the last estimate is Mertens’ Theorem):

Y log p~x,

PEX

1
Y —=loglog x + O(1),

PSX

pgr<1_;1>=0<lo;x)'

Two positive integers a and b are relatively prime if the largest integer
that divides both a and b is 1. This is written (a, b)=1. Euler’s totient
function ¢(m) counts the number of positive integers <m that are
relatively prime to m, and satisfies the following identity:

g(m)=m-[] (1—1)

plm p

Note that if m is the product of the first k primes, then logm=
2r<p l0g p~p, and so, using Mertens’ Theorem, ¢(m)= O(m/log p,)=
O(m/log log m).

We make use of the following elementary parallel algorithm.

THEOREM 2.1. On input a positive integer n, a list of primes up to n can
be computed on an EREW PRAM in O(log n) time using O(n*?) processors.
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Proof. For each x<n in parallel, simply trial divide x in parallel by
2,3, .., min{x—1, [_\/l;_]}. If a divisor is found, then x is not prime. This
takes O(1) time and O(n*?) processors (one for each divisor for each
candidate) on a CRCW PRAM, and O(log n) time on an EREW PRAM
with the same number of processors. ||

It is a simple matter to reduce the processor bound to O(n*?/log n) by
trial dividing by primes only, but Theorem 2.1 is sufficient for our
purposes. Also note that the set of primes up to n can be computed
sequentially using trial division, in O(log n) space on a Turing machine or
RAM or any other reasonable model of sequential computation.

We conclude our preliminary material with a discussion of the wheel, a
simple but useful data structure for prime number sieves pioneered for
sequential sieving algorithms by Pritchard (1981, 1982, 1983). It is used in
manipulating the set of integers relatively prime to the first k primes. Let
m be the product of the first k& primes (for example, if k=3 then
m=2.3.5=30). Then the kth wheel W, [ ] is an array of length m
(indexed by 0..-m— 1), where each array element consists of four fields:

W, [x].rp: This is 1 if x is relatively prime to m, and O otherwise.

W, [x].dist: This is d, where x + d is the smallest integer > x that is
relatively prime to m.

W, [x].pos: If x is relatively prime to m, this is the number of integers
< x that are relatively prime to m. Otherwise, it is O.

W, [x].inv: If x=0, this is —1. If 1 <x<¢@(m), it is the xth integer
relatively prime to m. If x = ¢(m), it is O.

For example, Table 1 shows the second wheel (m = 6), and Table 2 shows
the third wheel (m = 30).
The kth wheel has the following two useful properties:

e x is relatively prime to m (and hence the first k primes) iff
W [xmodm].rp=1.

TABLE 1
The Second Wheel, W,, for Which m=6

WLl 1: 0 1 2 3 4 5
rp 0 1 0 0 0 1
dist 1 4 3 2 1 2
pos 0 1 0 0 0 2

1 1 0 0 0 0

inv —
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TABLE 2
The Third Wheel, W, for Which m =30

Wil I 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
rp 0 1 0 o o O o0 1 O 0 O 1 0 1 0
dist 1 6 35 4 3 2 1 4 3 2 1 2 1 4 3
pos 0 1 0 o 0 o o0 2 0 0 0 3 0 4 O
inv -1 1 7 11 13 17 19 23
Wil 1: 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
rp 0 0 1 0 1 0 0 0 1 o o0 0 0 o0 1
dist 2 1 2 1 4 3 2 1 5 4 3 2 1 2
pos 0 0 5 6 6 0 O O 7 O 0O O 0 0 B8

o The smallest integer larger than x relatively prime to m is
x + W, [x mod m].dist.

Let r,(x) be the number of integers < x that are relatively prime to m. Then
if (x, m)=1 we have

t(x)=¢(m)-| x/m]+ W, [x mod m].pos,
and in general,
t(x)=¢(m)-| x/m]+ W, [(x+ W, [x mod m].dist) mod m].pos — 1.

Note that ¢, is invertible on the set of integers relatively prime to m. 1.’s
inverse, 7, '(x), gives the xth positive integer relatively prime to m:

t(x)=m-| x/p(m) |+ W,[x mod ¢(m)].inv.

Both ¢, and ¢, ' are computable in constant time, and may be used to
reduce the storage requirement of a prime number sieve as follows. Let
s[ ] be a bit vector of length h=1t,(n)=O((¢(m)/m)-n). Then s{ ] can
represent a subset S of the integers <» that are relatively prime to m by
setting s[#,(x)] to 1 iff xe S for (x,m)= L.

If S is the set of primes up to » that are relatively prime to m, then a list
of all primes up to » can be constructed by using a parallel prefix computa-
tion, applying ¢, ', and inserting the first k primes. Assuming that the kth
wheel and the first & primes are available, this implies that if any of the
following three problems can be solved in O(log n) time using O(h/log h)
processors on an EREW PRAM, then they all can:

(1) List all the prime numbers <n.
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(2) Construct a bit string of length kb representing the set of prime
numbers <n relatively prime to m.

(3) Compute n(x) for all integers x, with 1 < x<n and (x, m)=1.

We leave verification of this to the reader.
The following result explains how to compute wheels efficiently in
parallel:

LeMMA 2.2. The first k primes, m=p,p,---p,, and the kth wheel
W[ ] can be constructed by an EREW PRAM algorithm in O(log m) time
using O(m log mflog log m) processors.

Proof. Recall that logm~p,, and note that by the prime number
theorem, p, = &(k log k), so k = O(log m/log log m). Computing the first k
primes takes O(log k) time using k°) processors (by Theorem 2.1). Then
m can be computed in O(log k) time using O(k) processors in a binary tree
arrangement.

To compute the rp field, first write a 1 in each array location in parallel.
Then for each x <m in parallel, divide x by each of the first & primes. If
a divisor is found, write a 0 in position x. This takes O(1) time using
O(mk) processors on a common CRCW PRAM. Simulating this on an
EREW PRAM takes O(log mk)= O(log m) time with the same processor
count.

Using parallel prefix, set the pos field in position x to the sum of the rp
fields of all positions <x. At this point, W, [x].pos gives the number of
integers < x that are relatively prime to m, for all x <m. (This field is set
to 0 for those x with (x, m)> 1 at a later step.) This takes O(log m) time
using O(m/log m) processors.

The inv field is computed as follows. For each x<m, initialize
W [x].inv to 0, and set W, [0].inv to —1. Then, for each x<m—1, if
W, [x].rp is 1, then write x in position W [x].pos. (W,[m—1].inv is set
to 0 in the following step.)

To compute the dist field, W, [m —1].dist is set to 2, and for every
x<m-—1, set W, [x].dist to W, [W,[x].pos+1].inv —x. Finally, if
W, [x].rp=0, set W, [x].posto 0, and set W, [m—1].inv to 0. This takes
O(1) time using O(m) processors on a common CRCW PRAM. Simulating
this on an EREW PRAM takes O(log m) time with the same processor
count. J

3. AN OPTIMAL PARALLEL ALGORITHM

In this section we describe the first of our two parallel prime number
sieves. This parallel sieve is optimal (as defined in Section 2), and it is
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based on a sequential sieve due to Pritchard. We begin by reviewing
Pritchard’s sieve.

3.1. Pritchard’s Linear Sieve

Pritchard’s linear sieve (1987, Algorithm 3.3) uses O(») arithmetic opera-
tions to compute a bit vector s[ ] that represents the set of primes up to
n. This linear sieve exploits the fact that every integer x can be uniquely
represented in the form x = pf, where p is the least prime factor of x and
f=x/p. We write Ipf(x) for the least prime factor of x. Note that Ipf(x)=x
if and only if x is prime, and if x is composite then Ipf(x) < \/J—C The algo-
rithm proceeds by first initializing s[ ] to all 1's, and then every unique
representation pf up to n is generated and s[ pf] is set to 0. This is done
by looping over all valid f’s, and for each f, looping over all primes p such
that p <Ipf(f) and p <n/f. Algorithm P below gives the details.

ALGORITHM P.
Input: a positive integer n.

Find the primes up to l_\/;_l;

For x :=2 to n do:
s[x]:=1;

For f:=2 to n/2 do:
For each prime p <Ipf(f) with pf <n do:

s[pf1:=0;

Note that to determine the primes p <Ipf(f) it is not necessary to
explicitly compute 1pf(f); simply use the primes p=2, 3, ... until p| f. For
details, see the paper by Pritchard (1987).

Since each composite integer is “crossed off” the bit vector s[ ] exactly
once, and the number of composite integers up to » is at most n, the
running time of Algorithm P is O(n). By using a wheel of size m = n° where
0<c<14, this can be reduced to O(n/log log n). Below is Algorithm P,
which is Algorithm P using a wheel of size m ~ n'/,

ALGORITHM P .
Input: a positive integer n.
Find the primes up to I_\/;J;
Choose k£ maximal such that p, < (log n)/4;
Compute m=p, p,---p,=n"*+°" and the kth wheel W,[ ];
For x :=p, ., to n step W, [x mod m].dist do:
sla(x)] =15
For f:=p, ., to n/p, . step W,.[f mod m].dist do:
For each prime p, p, <p <Ipf(f) with pf <n do:
s[4(pf)] :=0;
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At the conclusion of Algorithm P, the vector s[ ] represents the set of
primes up to n that are relatively prime to m (see Section 2). To list all the
primes up to n, the vector s[ ] must be converted to a list of primes and
the first k primes must be added. We leave this detail to the reader.

Algorithm P, uses O((¢(m)/m)-n) arithmetic operations. By the choice
of k, this is O(n/log log n) (again, see Section 2).

3.2. A Parallel Version

The main difficulty in parallelizing Pritchard’s algorithm lies in deter-
mining a list of primes for each value of f in the main loop. It is possible
to overcome this difficulty by first computing Ipf( /) for all f <n/p, . ,.

As a first step we present Algorithm 3.1 which computes Ipf{x) for all
x €< n. The algorithm stores these values in an array a[ ] of length n. The
method used is essentially a parallel version of the Sieve of Eratosthenes.

ALGORITHM 3.1.
Input: a positive integer n.
1. Compute L\/l—’l_] and a list of primes up to \/r;
2. Allocate | n/p_| processors to each prime p < \/;;
(to be used in Step 4)
3. For x:=1 to n in parallel do:
a[x] :=x;
4. For each prime p< \/r; in parallel do:
For f:=p to [ .n/p| in parallel do:
al pf] :=p with priority p;

LemMma 3.1, Algorithm 3.1 computes a[x]=Ipl(x) for all x<n in
O(log n) time using O(nloglog n) processors on an EREW PRAM.

Proof. In Step 3 of the algorithm, a[x] is set to x. If x is prime, then
a[x] 1s not changed in Step 4, and so a[x] =Ipf(x). If x is composite, in
Step 4 a[x] is overwritten concurrently by each prime p < \/; dividing x,
and since the smallest such p has highest priority, we have af x] =Ipf(x).

Step 1 takes O(log n) time using O(n**) processors (by Theorem 2.1).
Step 2 can be done using parallel prefix computations in O(logn) time
using O(n/log n) processors. Step 3 takes O(1) time using O(n) processors.
Finally, Step 4 takes O(1) time using 3,/ (n/p + O(1))= O(nlog log n)
processors on a priority CRCW PRAM, which can be simulated on an
EREW PRAM in O(logn) time with the same processor count (see
Section 2). |

Next, we assume that Ipf(x) is computed for all x <n/p,,,. Algorithm
3.2 computes an array b[ ] of length » such that b[x] =1pf(x) for all x <n
with (x, m)=1. Using the invertible mapping ¢, discussed in Section 2,
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b[ ] needs only O((¢(m)/m)-n) memory cells. We assume that ¢, and its
inverse are being used without being explicit.

ALGORITHM 3.2,
Input: positive integers n, &, and lpf(x) for x <n/p, ,, with (x, m)= 1.
1. Compute m=p, p,---p; and the kth wheel W, [ 1;
2. Compute n(x) for 2<x<n/p,,, and (x, m)=1, and from this
construct a list of primes up to n/p,, ;;
3. Allocate min{n(lpf(/)), n(n/f)} processors
to each f<| n/p, .| with (f,m)=1;
(to be used in Step 5)
4. For x:=2 to n with (x, m)=1 in parallel do:
b[x] :=x;
5. For f:=p,,, to Ln/pr, | with (f, m)=1 in parallel do:
For each prime p, p, <p <min{lpf(f), L»/f |} in parallel do:
blpf]:=p;

LEMMA 3.2, Assume k is small enough so that m= O(nflog®>n). On
input positive integers n, k, and Ipf(x) for all x<n/p,,, with (x,m)=1,
Algorithm 3.2 computes 1pf(x) for all x <n with (x, m)=1 in O(log n) time
using O(n/(log nlog p,}) processors on an EREW PRAM.

Proof. After Step 4, we have b[x] =x for all x<n with (x, m)=1. So
if x is prime, we have b[x] =Ipl(x). If x is composite, then x =pf where
p=Ipf(x) and /= x/p. Since x is relatively prime to m, p and f must be as
well, and p > p,. Therefore, in Step 5, for every composite integer x <n
with (x,m)=1, b[x] is set to p, where p=Ipf(x). This implies that the
algorithm is correct.

Step 1 takes O(logm) time using O(mlog m/loglogm) processors
by Lemma 2.2. By the bound on m, this is O(logn) time using
O(n/(log® nlog log n)) = O(n/log> n) processors. Using parallel prefix
computations, Steps 2 and 3 take Q(log n) time using O((¢(m)/m) - n/log n)
processors. Since ¢(m)/m=O(l/log p,), this is O(n/(lognlog p.))
processors. Step 4 takes O(1) time when using O(n/log p,) processors. By
using only O(n/(log nlog p,)) processors, this takes O(log n) time. Finally,
Step 5 takes O(1) time when using one processor for each composite
integer of the form pf, where (f,m)=1 and p>p,, which is
O((¢(m)/m) -n)=O(n/log p,) processors. Again, by using only
O(n/(log nlog p,)) processors, this takes O(logn) time. Combining the
times and processor counts for all steps completes the proof. ||

Our main result of this section is Algorithm 3.3, which combines
Algorithms 3.1 and 3.2 to compute the set of primes up to »n in O(logn)
time using only O(n/(log n log log n)) processors.
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ALGORITHM 3.3,
Input: positive integer n.

1. Choose k maximal such that p, < (log n)/4;
Let m=p,p,---ps;

2. Using Algorithm 3.1, compute Ipf(x) for all x <<n/p;, ,;

3. Using the output from the previous step and Algorithm 3.2,
compute Ipf(x) for all x <n/p, ., with (x, m)=1;

4. Again, using the output from the previous step and
Algorithm 3.2, compute Ipf(x) for all x<#» with (x, m)=1;
Mark x as prime if Ipf(x) = x;

5. Use parallel prefix to construct a list of primes up to » that are
relatively prime to m, and add p,, ..., p, to this list;

THEOREM 3.3. On input a positive integer n, Algorithm 3.3 computes a
list of primes up to n in O(log n) time using O(n/(log n log log n)) processors
on an EREW PRAM.

Proof. Correctness follows from Lemmas 3.1 and 3.2.

Using Algorithm P to find the primes below log », Step 1 takes O(log »)
time with one processor. Step2 takes Of(logn) time using
O((n/p; , ,) loglog n)= O(n log log n/(log n)?) processors by Lemma 3.1.
Steps3 and 4 take O(logr) time wusing O(n/(lognlogp,))=
O(n/(log nloglog n)) processors. Step 5 takes Of(logn) time using
O((¢(m)/m) - nflog n) = O(n/(log n log log n)) processors. |}

Note that an O(log n/log log n) time algorithm for the CRCW PRAM
with the same work bound can be obtained by using the algorithm of Cole
and Vishkin (1989) for the parallel prefix computations in Algorithms 3.1,
3.2, and 3.3.

4. A PRACTICAL PARALLEL ALGORITHM

In this section, we present a parallel prime number sieve with an 0(\/;)
running time using O(ﬁ) processors. This parallel algorithm is a
straightforward parallelization of a segmented version of the Sieve of
Eratosthenes using a wheel. This algorithm appeared previously without
formal analysis in Parberry (1981).

The basic idea is as follows. The interval from 1 to n is broken down into
segments of length 4 =[n/p7], where p is the number of processors. Each
processor finds all the primes in its assigned interval using the Sieve of
Eratosthenes. With the addition of a wheel to speed the sieve, this takes
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each processor O(4) time, assuming that the intervals are sufficiently large.
Note that this same idea, when applied to sequential algorithms, leads to
segmented sieves that use only 0(\/;) work space. Using the invertible
map mentioned in Section 2, the work space can be further reduced to
0(\/;1/10g log n). For sequential versions of this algorithm, we refer the
reader to the papers of Bays and Hudson (1977) and Pritchard (1983).
The details are given in Algorithm 4.1 below. This algorithm uses a
globally shared bit array s[ ] of length n, which at the conclusion of the
algorithm represents the set of primes up to n. We leave the details
involved in listing the primes up to » using the vector s[ ] to the reader.

ALGORITHM 4.1.
Input: positive integers k, n.
Note: one processor executes the Precomputation and Cleanup
phases; every processor executes the Main Loop in parallel.

Precomputation (sequential):

1. Find the first k& primes p,, ..., pi, their product m, and compute
the kth wheel W, [ 1];

2. Find the primes up to ./n;

3. 4:=[n/p7, where p is the number of processors;

Main Loop (parallel):
4. I:'=id-A4+1 and r:=min{(id+1)4,n}, where id is the
processor’s identification number, 0 < id < p;
5. For x:=1tor do:
s{x] =W, [xmod m].rp;
6. For each prime ¢, p, <g<./n do:
Compute the smallest [ so that (gf,m)=1 and
qf zmax{/, ¢°}:
fi=max{q—L,Tljg]—1};
f:=f+ W,.[fmod m].dist,
Remove the multiples of q:
While gf <r do:
s[qf]:=0;
fi=f4+ W, [f mod m].dist,
Cleanup (sequential):
7. Fori:=1 to k do:
slp] =1,
8. s[1]:=0;

THEOREM 4.1.  Let k be maximal so that p, < {log n)/4. Then on inputs n
and k, Algorithm 4.1 computes the set of primes up to n in O(n/p) time using

p= 0(\/;) processors on an EREW PRAM.
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Proof. We begin by demonstrating the correctness of the algorithm.
The proof is broken down according to whether or not (x,m)=1. If x is
not relatively prime to m, then in Step 5, s[x] is set to 0. If x is not prime,
s[x] remains 0. If x is prime, then x must be one of the first k primes, in
which case s[x] is set to 1 in Step 7. Thus the algorithm sets s[ x] correctly
when x is not relatively prime to m. If (x, m)=1 and x > 1, then in Step 5,
s[x] is initialized to 1. If x is not prime, then x has a prime divisor ¢ with
Pr<g< \/;, and x/q must be relatively prime to m. Hence in Step 6 an f
is found such that gf = x, and s[x] is set to 0. If x is prime, s[x] remains
1. Thus the algorithm sets s[x] correctly when (x, m)= 1, completing the
proof that on termination of Algorithm 4.1, s{x] =1 iff x is prime, for all
2<x<n.

The time and processor requirements of the algorithm are as follows.

Precomputation. Using a linear sequential prime number sieve (such as
Algorithm P) and Lemma 2.2 with one processor, this phase takes 0(\/;)
time.

Main Loop. Step 4 takes O(1) time, and Step 5 takes O(4)=O(n/p)
time. For each prime g, the body of the loop in Step 6 takes time
O(1)+ O({(¢(m)/m) - 4/q). Summing over all the primes S\/;, this gives a
running time of O(\/r_z/logn+(¢(m)/m)~Alog log n) (see Section 2). By
our choice of k, ¢(m)/m=0O(1/loglogn), giving a running time of
O(\/;/log n+ n/p) for Step 6.

Cleanup. This takes O(k)= O(log m)= O(log n) time.
The total running time for all phases is O(n/p + \/;) which is O(n/p) for
p=0(/n). 1

Note that if Step 2 were done in parallel (say using Theorem 2.1), then
Algorithm 4.1’s runping time could be reduced to O(\/;/log n) using
0(\/5 log n) processors.

5. ANALYSIS ON THE BLock PRAM

When we compare Algorithm 3.3 to Algorithm 4.1, there are two things
we observe:

1. Algorithm 3.3 is theoretically more efficient than Algorithm 4.1; it
performs less work by a factor of @(loglogn), and it permits more
processors for a running time as low as O(log »).

2. Algorithm 3.3 uses very fine-grained parallelism in its main loop,
whereas Algorithm 4.1 does not. Since the current generation of parallel
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computers does not support complex, fine-grained parallelism efficiently, it
follows that in practice Algorithm 3.3 requires significantly more overhead
than Algorithm 4.1, and as a result Algorithm 4.1 may actually be more
efficient.

In this section our goal is to formalize our second observation by analyzing
both algorithms on a more “realistic” model of parallel computation: the
Block PRAM (or BPRAM) of Aggarwal er al. (1989).

The BPRAM is an EREW PRAM with two modifications. The first
modification is to memory: in addition to the infinite, globally shared
memory of the standard PRAM, each processor has an infinite local
memory which is only accessible to that processor. The only operations
permitted on the global memory are copying blocks of global memory to
local memory and vice versa. Each processor does all its work locally. The
second modification is the addition of a parameter / that models the
communication latency inherent in a globally shared memory. For a single
processor to copy a block of » memory cells to or from global memory
takes time /+ n. Thus, the running time of a BPRAM algorithm depends
on three parameters: the input size », the number of processors p, and the
communication latency parameter /.

The value of / as a function of p (or n) is implementation dependent. For
example, if the access to the shared memory is provided by a shared bus,
then /= @(p) is appropriate, while if access to the shared memory is by an
interconnection network, then /= ©@(log p) is appropriate. If /= 0(1), then
the analysis on the BPRAM yields the same results as the standard PRAM.
The analysis of Algorithms 3.3 and 4.1 on a BPRAM f{ollows.

Algorithm 3.3. Algorithm 3.3’s running time is O((r/loglog n)/p) for
p=0(n/(lognloglogn)) on the standard EREW PRAM. In Step 6 of
the second invocation of Algorithm 3.2, each processor writes to
@((n/log log n)/p) global memory locations, no two of which are adjacent,
so that the time for this step on the BPRAM is @(/(n/log log n)/p). Since
a multiplicative factor of / is the most an algorithm’s running time can
increase from the PRAM to BPRAM, the total time on the BPRAM is
O(/(n/log log n)/p) using p = O(n/(log n log log n)) processors.

When /= 0(p), all parallel speedup is cancelled, giving a running time of
O(n/loglogn) no matter how many processors are used. When
I=©(log p) = O(log n), the running time is O(n log n/( p log log n)).

Algorithm 41. On the standard EREW PRAM, Algorithm 4.1’s
running time is O(n/p) for p= O(\/-r;). If each processor copies its interval
of length 4 into local memory before the main loop and back to global
memory afterwards, the total number of accesses to global memory is
constant for each processor. This gives a total running time of O(n/p + /)
for p= 0(\/;) PIocessors.
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When /=6(p), the running time is O(n/p+p)=C(nfp) when
p=0(\/;). Thus, the running time of Algorithm 4.1 is not particularly
sensitive to /.

Note that if /=6©(loglogn), then the total work done by both
algorithms is the same, namely O(n). If / becomes significantly larger than
this, then Algorithm 4.1 is more efficient in its total work, We conclude
that Algorithm 4.1 is probably much more efficient in practice.

6. CONCLUSION AND OPEN PROBLEMS

We have presented two parallel prime number sieves for the EREW
PRAM: Algorithm 3.3 with optimal work O(n/loglogn) and a more
practical Algorithm 4.1 with work O(n). Algorithm 4.1 is in a sense more
practical than Algorithm 3.3. A similar result is true about two closely
related sequential algorithms (see Sorenson (1991)).

Our PRAM model used the full arithmetic instruction set of Parberry
(1987). This could be viewed as too powerful an instruction set, were it
not for the fact that we have limited the word size of the shared and
local memory. (For more discussion of instruction sets on PRAMs with
unbounded word size, see Parberry (1986, 1987), and Trahan et al. (1988,
1989)). It is common to define a PRAM with the fundamental operations
at the bit level (see, for example, Goldschlager (1982)). Under this model,
Algorithm 3.3 is no longer optimal; Pritchard gave a sequential prime
number sieve which utilizes a dynamic wheel and takes only O(n/log log n)
additions and subtractions (see Pritchard (1981, 1982)). Algorithms P,
and 3.3 use a large number of multiplications. It is an open problem
whether it is possible to remove the multiplications from Algorithm 3.3
without a significant performance cost, or to parallelize Pritchard’s
dynamic wheel sieve efficiently to yield an optimal algorithm. One of the
stumbling blocks in a parallelization of Pritchard’s dynamic wheel sieve is
that each iteration of the algorithm’s main loop uses a data structure
modified by every previous loop iteration.
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