
Introduction
Uniprocessor real-time systems

INFO-F404, Operating Systems II
Introduction & Uniprocessor real-time scheduling

Academic year 2013–2014

Joël GOOSSENS

Université libre de Bruxelles

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 1–88

Introduction
Uniprocessor real-time systems

Introduction

A) Introduction

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 2–88

Introduction
Uniprocessor real-time systems

The Speaker

Joël Goossens
Faculté des Sciences

Département d’Informatique
Campus de la Plaine

Building NO, 8th floor, room 2N8.114
E-mail: Joel.Goossens@ulb.ac.be

URL: parts.ulb.ac.be/goossens

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 3–88

Introduction
Uniprocessor real-time systems

Teaching organization

I Lectures: 2 hours/week
I Exercise sessions: Mr Nikita Veshchikov
I Assignments (A1&A2)
I Oral exam (O)
I Final note{

O if O < 10
3 ∗ A1/20 + 2 ∗ A2/20 + 15 ∗O/20 else.

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 4–88

Introduction
Uniprocessor real-time systems

Objectives of the course

I Introduction to the theoretical foundations, algorithms and tools for
the design of real-time and embedded systems

I Introduction to parallel and distributed programming

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 5–88

Introduction
Uniprocessor real-time systems

Uniprocessor real-time systems

B) Uniprocessor real-time systems

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 6–88

Introduction
Uniprocessor real-time systems

Course material

I Slides available on http://uv.ulb.ac.be

I For the first lesson: http://goo.gl/WyXUWM
I Important references

I Jane W.S. Liu, “Real-Time Systems”, Prentice Hall, 2000
I Joseph Y-T. Leung, “Handbook of Scheduling: Algorithms, Models,

and Performance analysis”, Chapman Hall, 2004. Specifically
Chapter 28, “Scheduling Real-Time Tasks: Algorithms and
Complexity” (Sanjoy Baruah & J. Goossens).

I J. Goossens, “Scheduling of Hard Real-Time Periodic Systems with
various kinds of deadline and offset constraints”, PhD Thesis, ULB,
1999.

I Reference in French:
I N. Navet, “Syst̀emes temps ŕeel, volume 2”, Hermès, 2006.

Specifically Chapter 1, “Ordonnancement temps réel
monoprocesseur” (P. Richard & F. Ridouart) and Chapter 2,
“Ordonnancement temps réel multiprocesseur” (J. Goossens).

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 7–88

http://uv.ulb.ac.be
http://goo.gl/WyXUWM

Introduction
Uniprocessor real-time systems

Real-time systems — A first definition I

I Real-time systems are defined as systems in which the correctness of
the system depends not only on the logical result of computations,
but also on the time at which the results are produced

I Typically, job parameters include a deadline
I Applications include air traffic control, power plant control,

multimedia communication, robotics, embedded systems, real-time
stock quotes. . .

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 8–88

Introduction
Uniprocessor real-time systems

Real-time systems — A first definition II

We can distinguish between at least three kinds of real-time constraints:

I Hard real-time: catastrophic consequences (ABS, aircraft control)

I Firm real-time: deadline misses must be limited, e.g. some quality
of service must be defined

I Soft real-time: deadline misses are not important

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 9–88

Introduction
Uniprocessor real-time systems

Existing Real-Time Operating Systems (RTOS)

Chibios

OSEK VDX

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 10–88

Introduction
Uniprocessor real-time systems

Modeling applications I

Applications are modeled using the concept of jobs and/or the concept
of tasks.

Definition 1 (Job)
A Job j is characterized by the tuple (a, e, d), symbolizing a release time
a, a computation requirement e and an absolute deadline d with the
interpretation that in the interval [a, d) the job must receive e CPU units.
A real-time instance is a collection of jobs J = {j1, j2, . . .}.
Very often, the critical portion of the software is characterized by
recurrent operations. More specifically, we shall consider periodic
and/or sporadic tasks.

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 11–88

Introduction
Uniprocessor real-time systems

Modeling applications II

Definition 2 (Periodic Task)
A periodic task is characterized by the tuple (Oi, Ti,Di,Ci), where

I Oi (the offset) corresponds to the release time of the first job of the
task

I Ci (the computation time) corresponds to the worst-case execution
requirement of the task

I Di (the relative deadline) corresponds to the time-delay between a
job release and the corresponding deadline of the task. A job
released at time t must be completed before or at time t + Di.

I Ti (the period) corresponds to the duration between two
consecutive task releases

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 12–88

Introduction
Uniprocessor real-time systems

Modeling applications III

Job Ji,k

I A periodic task τi = (Oi, Ti,Di,Ci) induces an infinite collection of
jobs: Ji,1, Ji,2, . . .

I Ji,k represents the kth job of τi

I Each job Ji,k has the same (worst-case) computation requirement Ci

I Ji,k is released at instant Oi + (k− 1) · Ti

I with an absolute deadline equal to Oi + (k− 1) · Ti + Di

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 13–88

Introduction
Uniprocessor real-time systems

Modeling applications IV

A periodic task

τ1 = (O1 = 0, T1 = 10,C1 = 3,D1 = 5)

ppppppppppp
pppp
ppppppppppp
pppp
ppppppppppp
pppp
ppppppppppp
pppp
ppppppppppp
pppp
ppppppppppp
pppp
ppppppppppp
pppp
ppppppppppp
pppp
ppppppppppp
pppp
ppppppppppp
pppp
ppppppppppp
pppp
ppppppppppp
pppp
ppppppppppp
pppp
ppppppppppp
pppp
ppppppppppp
pppp
ppppppppppp
pppp
ppppppppppp
pppp? ?f f

0 2

3

10 12

3

U(τ1) = 3/10

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 14–88

Introduction
Uniprocessor real-time systems

Modeling applications V

Definition 3 (Sporadic Task)
Sporadic tasks are quite similar to periodic tasks, the only difference
being that the period of a sporadic task denotes the minimum
inter-arrival time instead of the exact one.

A periodic/sporadic system is composed of a finite set of
periodic/sporadic tasks τ = {τ1, . . . , τn}.

Definition 4 (Utilization)
The task utilization is defined by U(τi)

def
= Ci/Ti. The system utilization

is the sum of all task utilizations: U(τ)
def
=
∑
τi∈τ U(τi)

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 15–88

Introduction
Uniprocessor real-time systems

Different kinds of periodic tasks

From a theoretical as well as a practical point of view, we distinguish the
following kinds of tasks:

implicit-deadline the deadline corresponds to the period, i.e. Di = Ti ∀i.
Each job must finish before the next arrival of the task.

constrained-deadline the deadline is explicit and not larger than the
period, i.e. Di 6 Ti ∀i.

arbitrary-deadline the general case: no constraint exists between the
period and the deadline.

synchronous the first job of every task is released simultaneously, i.e.
Oi = 0 ∀i.

asynchronous not synchronous.

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 16–88

Introduction
Uniprocessor real-time systems

Scheduling I

I Scheduling disciplines are algorithms used for distributing
resources among parties which simultaneously and asynchronously
request them. Scheduling disciplines are used in routers (to handle
packet traffic) as well as in operating systems (to share CPU time
among both threads and processes), disk drives (I/O scheduling),
printers (print spooler), most embedded systems, etc.

I The main purposes of scheduling algorithms are to minimize
resource starvation and to ensure fairness amongst the parties
utilizing the resources. Scheduling deals with the problem of
deciding which of the outstanding requests is to be allocated
resources. There are many different scheduling algorithms.

I In real-time environments, such as embedded systems for automatic
control in industry (e.g. robotics), the scheduler must also ensure
that processes meet deadlines; this is crucial for keeping the system
stable or safe.

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 17–88

Introduction
Uniprocessor real-time systems

Scheduling II

I The CPU scheduler decides which of the ready, in-memory
processes are to be executed (allocated a CPU) next following a
clock interrupt (an I/O interrupt, an operating system call or another
form of signal).

I This scheduler can be preemptive, implying that it is capable of
forcibly removing processes from a CPU when it decides to allocate
that CPU to another process. It may also be non-preemptive.

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 18–88

Introduction
Uniprocessor real-time systems

FTP, FJP & DP Schedulers

We distinguish between three kinds of scheduling algorithms:

I Fixed Task Priority (FTP): the scheduler does an offline assignment
of a unique priority to each task. During system execution, the
priority of each job is inherited from its task.

I Fixed Job Priority (FJP): a fixed and unique priority is assigned to
each job during system execution. Two jobs of a same task may
have distinct priorities.

I Unrestricted Dynamic Priority (DP): no restrictions are placed on
the priorities that may be assigned to jobs. A job may have different
priority levels during its lifetime.

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 19–88

Introduction
Uniprocessor real-time systems

Chapter Hypotheses

Unless we explicitly state the opposite, we make the following
assumptions in this chapter:

I We consider uniprocessor systems
I We consider hard real-time systems
I We consider preemptible tasks/jobs
I Preemption delays are negligible
I The scheduler is work-conserving: the CPU cannot be idle while

there exist active jobs
I Tasks are independent: save for the CPU, there is no other common

resource shared among tasks, nor any kind of precedence
constraint between tasks

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 20–88

Introduction
Uniprocessor real-time systems

An FTP Scheduler τ1 � τ2

2 periodic tasks:

τ = {τ1 = (T1 = 5,D1 = 4,C1 = 2), τ2 = (T2 = 4,D2 = 4,C2 = 2)}

τ1 � τ2 (τ1 has the highest priority), U(τ) = 2/5 + 1/2 = 9/10

ppppppppp
ppppppppp
ppppppppp
pppppppp

ppppppppp
ppppppppp
ppppppppp
pppppppp

ppppppppp
ppppppppp
ppppppppp
pppppppp

ppppppppp
ppppppppp
ppppppppp
pppppppp

ppppppppp
ppppppppp
ppppppppp
pppppppp

ppppppppp
ppppppppp
ppppppppp
pppppppp

ppppppppp
ppppppppp
ppppppppp
pppppppp

ppppppppp
ppppppppp
ppppppppp
pppppppp

ppppppppp
ppppppppp
ppppppppp
pppppppp

ppppppppp
ppppppppp
ppppppppp
pppppppp

ppppppppp
ppppppppp
ppppppppp
pppppppp

ppppppppp
ppppppppp
ppppppppp
pppppppp

ppppppppp
ppppppppp
ppppppppp
pppppppp

ppppppppp
ppppppppp
ppppppppp
pppppppp

ppppppppp
ppppppppp
ppppppppp
pppppppp

ppppppppp
ppppppppp
ppppppppp
pppppppp

ppppppppp
ppppppppp
ppppppppp
pppppppp

ppppppppp
ppppppppp
ppppppppp
pppppppp

ppppppppp
ppppppppp
ppppppppp
pppppppp

ppppppppp
ppppppppp
ppppppppp
pppppppp

ppppppppp
ppppppppp
ppppppppp
pppppppp

ppppppppp
ppppppppp
ppppppppp
pppppppp

ppppppppp
ppppppppp
ppppppppp
pppppppp

τ2

? ? ? ? ? ?g g g g g
2 3

2

4

1

7

1

8 9

2

12 13

2

17 18

2

τ1

? ? ? ? ?g g g g
0 1

2

5 6

2

10 11

2

15 16

2

20 21

2

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 21–88

Introduction
Uniprocessor real-time systems

Additional Definition & Observations

Definition 5 (Job Response Time)
The response time of a job is the completion time minus the release time

I priorities are fixed at task level
I tasks are preemptible
I the schedule is periodic
I the system is schedulable
I the response times of τ2: 4,4,2,2,3

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 22–88

Introduction
Uniprocessor real-time systems

An FJP Scheduler: EDF

Priority is based on the absolute deadline of the job: earliest deadline
first (EDF)

ppppppppp
ppppppppp
ppppppppp
pppppppp

ppppppppp
ppppppppp
ppppppppp
pppppppp

ppppppppp
ppppppppp
ppppppppp
pppppppp

ppppppppp
ppppppppp
ppppppppp
pppppppp

ppppppppp
ppppppppp
ppppppppp
pppppppp

ppppppppp
ppppppppp
ppppppppp
pppppppp

ppppppppp
ppppppppp
ppppppppp
pppppppp

ppppppppp
ppppppppp
ppppppppp
pppppppp

ppppppppp
ppppppppp
ppppppppp
pppppppp

ppppppppp
ppppppppp
ppppppppp
pppppppp

ppppppppp
ppppppppp
ppppppppp
pppppppp

ppppppppp
ppppppppp
ppppppppp
pppppppp

ppppppppp
ppppppppp
ppppppppp
pppppppp

ppppppppp
ppppppppp
ppppppppp
pppppppp

ppppppppp
ppppppppp
ppppppppp
pppppppp

ppppppppp
ppppppppp
ppppppppp
pppppppp

ppppppppp
ppppppppp
ppppppppp
pppppppp

ppppppppp
ppppppppp
ppppppppp
pppppppp

ppppppppp
ppppppppp
ppppppppp
pppppppp

ppppppppp
ppppppppp
ppppppppp
pppppppp

ppppppppp
ppppppppp
ppppppppp
pppppppp

ppppppppp
ppppppppp
ppppppppp
pppppppp

ppppppppp
ppppppppp
ppppppppp
pppppppp

τ2

? ? ? ? ? ?g g g g g
2 4

2

4 5

2

8 9

2

12 13

2

17 18

2

τ1

? ? ? ? ?g g g g
0 1

2

6 7

2

10 11

2

15 16

2

20 21

2

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 23–88

Introduction
Uniprocessor real-time systems

Observations

I priorities are dynamic at task level, fixed at job level
I the schedule is periodic
I the system is schedulable
I Many EDF schedules exist for this task set

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 24–88

Introduction
Uniprocessor real-time systems

A first necessary condition

There is no hope to schedule a task set with a utilization larger than 1.

Lemma 6
Let τ be a periodic (or sporadic) task set, then U(τ) 6 1 is a necessary
condition for system schedulability.

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 25–88

Introduction
Uniprocessor real-time systems

FTP Scheduling — Basics

I We will consider the scheduling of periodic (or sporadic) tasks
using a Fixed Task Priority Scheduler

I τi � τj means that τi has a higher priority than τj.
I We assume that each job generated by τi receives the priority of τi

and remains unchanged during the job’s execution.
I WLOG we consider the following total order: τ1 � τ2 � · · · � τn

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 26–88

Introduction
Uniprocessor real-time systems

FTP-Priority Assignment RM I

I The RM (Rate Monotonic) priority assignment is defined for
synchronous and implicit deadline systems.

I The priority rule is the following: the lower the period, the higher
the priority. Ties can be resolved arbitrarily but in a consistent
(deterministic) manner.

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 27–88

Introduction
Uniprocessor real-time systems

FTP-Priority Assignment RM II

I The offline time-complexity of the assignment is equivalent to
sorting the task set according to the periods: O(n log n)

I We will show that RM is optimal, but first we will give some basic
definitions and properties.

Definition 7 (FTP-feasibility)
A periodic task set is said to be FTP-feasible if a schedulable FTP-priority
assignment exists.

Definition 8 (FTP-optimality)
An FTP-priority assignment is FTP-optimal if the assignment schedules
all FTP-feasible task sets.

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 28–88

Introduction
Uniprocessor real-time systems

Critical Instant I

Definition 9 (Critical instant)
A critical instant of a task τi is an instant such that: the job of τi released
at this instant has the maximum response time of all the jobs in τi.

Informally, a critical instant of τi represents a worst-case scenario from
the standpoint of τi.

Lemma 10 ([Liu, 2000])
A critical instant of any task τi occurs when one of its jobs Ji,k is released
at the same time as a job of every higher priority task.

Proof. (This proof corrects a flaw published in [Liu, 2000])
I Let t′ be the release time of Ji,k
I Let t−1 be the latest idle instant for τ1, . . . , τi at or before t′

I Let tR denote the instant when Ji,k completes

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 29–88

Introduction
Uniprocessor real-time systems

Critical Instant II

τ1

τ2

τ3

τ4

t−1 t0 tR
I If we (artificially) redefine the release time of Ji,k to be t−1, then tR

remains unchanged (but the response time of Ji,k may increase)

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 30–88

Introduction
Uniprocessor real-time systems

Critical Instant III

I Assume τi releases a job at t−1 and some higher priority task τj

does not. If we “left-shift” τj so that its first job is released at time
t−1, then the response time of Ji,k is not decreased

I Starting with τ1, let us “left-shift” any task whose first job is released
after t−1 so that its first job released at t−1

I With each shift, the response time of τi does not decrease
I We have constructed a portion of the schedule that is identical to

the one which occurs at time t−1 (when τ1, . . . , τi all release jobs
synchronously)

I Moreover, the response time of τi is at least the one of τi’s job
released at t′

I This shows that asynchronous releases cannot cause larger response
time than synchronous releases

I Thus, if a job is released at the same time as jobs of all higher
priority tasks, that moment is a critical instant

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 31–88

Introduction
Uniprocessor real-time systems

Critical Instant IV

I It remains to show that the left-shift does not impact on t−1:
I No job shifts past t−1

I Every job that started after t−1 continues to do so after the shifts, by
construction

I Similarly, any job that started before t−1 continues to do so after the
shifts

I Consider any interval [x, t−1), x < t−1. No job shifts into this interval,
as no left-shifts cross t−1. Therefore, the total demand during [x, t−1]
cannot increase. Therefore, the last completion time prior to t−1

cannot be delayed

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 32–88

Introduction
Uniprocessor real-time systems

Work-Conservation I

Lemma 11
Let τ be a periodic task system, and let S1 and S2 be two schedules of
work-conserving schedulers for τ . Schedule S1 is idle at instant t iff
schedule S2 is idle at instant t, ∀t > 0.

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 33–88

Introduction
Uniprocessor real-time systems

Work-Conservation II

Proof. The proof is made by induction. Assume schedules S1 and S2

have an idle unit at instant t0− ε (infinitesimal ε —arbitrarily close to, but
greater than zero) and have idle units identical for all instants before t0.
Let t1 be the first idle unit (WLOG in S1) strictly after t0; assume the CPU
idles during [t1, t2). Since S1 is work-conserving, we know that all jobs
released before t2 have completed their execution. Since S2 is
work-conserving as well, we must have that the same work is executed
before t1 (possibly in a different order). Consequently, the CPU must be
idle in [t1, t2) in S2 as well.

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 34–88

Introduction
Uniprocessor real-time systems

RM Optimality I

Theorem 12
RM is an FTP-optimal priority assignment for synchronous and implicit
deadline tasks.

Proof. Let τ = {τ1, . . . , τn} be a periodic (or sporadic) implicit deadline
synchronous task set. We must prove that if a feasible FTP-priority
assignment exists, then the RM priority assignment is feasible as well.
Suppose the feasible FTP-assignment corresponds to τ1 � τ2 � · · · � τn.
Let τi and τi+1 be two adjacent priorities with Ti > Ti+1. Let us exchange
the priorities of τi and τi+1: if the task set is still schedulable, since any
rate monotonic priority assignment can be obtained from any priority
ordering by a sequence of such priority exchanges, we may deduce that
any rate monotonic priority assignment is also feasible (i.e. using the
bubble sort algorithm).
To show that such a priority exchange is feasible, we have 4 cases to
consider.

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 35–88

Introduction
Uniprocessor real-time systems

RM Optimality II

1. The priority exchange does not modify the schedulability of the
tasks with a higher priority than τi (i.e. τ1, . . . , τi−1).

2. Obviously, task τi+1 remains schedulable after the priority
exchange, since it may use all the free slots left by {τ1, τ2, . . . , τi−1}
instead of only those left by {τ1, τ2, . . . , τi−1, τi}.

3. Assuming that the requests of τi remain schedulable, from
Lemma 11 we have that the scheduling of each task τk, for
k = i + 2, i + 3, . . . , n is not altered since the idle periods left by
higher priority tasks are the same.

4. Hence, we must only verify that τi also remains schedulable. Using
Lemma 10, we can restrict this question to the first request of task
τi. Let ri+1 be the response time of the first request of τi+1 before
the priority exchange. Feasibility implies that ri+1 6 Di+1. It is not
difficult to see that during the interval [0, ri+1), the CPU (when left
free by higher priority tasks) is assigned first to the (first) request of
τi then to the (first) request of τi+1 (the latter is not interrupted by

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 36–88

Introduction
Uniprocessor real-time systems

RM Optimality III

subsequent requests of τi since Ti > Ti+1 = Di+1 > ri+1). Hence,
after the priority exchange, the CPU allocation is exchanged
between τi and τi+1, and it follows that τi ends its computation at
time ri+1 and thus meets its deadline since
ri+1 6 Di+1 = Ti+1 6 Ti = Di.

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 37–88

Introduction
Uniprocessor real-time systems

Response Time of the First Task Request I

From Lemma 10, for synchronous constrained deadline systems, only
the response time of the first request of each task must be considered to
conclude feasibility.
In the following, r1

i denotes the response time of the first request of τi.

Theorem 13
A synchronous constrained deadline system is FTP-schedulable iff

r1
i 6 Di ∀i

Audsley & Tindell [Audsley, 1991] proved that this value is the smallest
positive solution to the equation:

r1
i = Ci +

i−1∑
j=1

⌈
r1
i

Tj

⌉
Cj. (1)

Indeed, the interval [0, r1
i) includes

⌈
r1
i

Tj

⌉
higher priority requests of τj.

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 38–88

Introduction
Uniprocessor real-time systems

Response Time of the First Task Request II

Notice that r1
i occurs on both sides of the equation. The minimal

solution can be found by fixed-point iteration: w0
def
= Ci, (initialization)

wk+1
def
= Ci +

∑i−1
j=1

⌈
wk
Tj

⌉
Cj (iteration).

The iteration proceeds until wk = wk+1 or wk > Di.

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 39–88

Introduction
Uniprocessor real-time systems

Schedulable Utilization of RM I

Theorem 14 ([Leung, 2004])
A set of n implicit deadline synchronous periodic tasks can be feasibly
scheduled with RM if

U(τ) 6 n(
n
√

2− 1)

Notice that 0.69 < ln 2 < · · · < 0, 75 < 0, 77 < 0.83, hence:

Corollary 15
A set of n implicit deadline synchronous periodic tasks can be feasibly
scheduled with RM if

U(τ) 6 0.69

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 40–88

Introduction
Uniprocessor real-time systems

DM FTP-Priority Assignment

I The DM(Deadline Monotonic) FTP-priority assignment is
defined/used for synchronous constrained deadline task sets.

I The priority rule is the following: the lower the relative deadline,
the higher the priority. Ties can be resolved arbitrarily but in a
consistent (deterministic) manner.

I Notice that RM is a particular case of DM.

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 41–88

Introduction
Uniprocessor real-time systems

FTP-Optimality of DM

Theorem 16
DM is an FTP-optimal priority assignment for synchronous and
constrained deadline tasks.

Proof. The same argument used to prove RM FTP-optimality
(Theorem 12) can be used here.
Note that Lemma 10 concerns synchronous constrained deadline tasks.
Consequently, the lemma can be applied and we can check the
schedulability of DM by computing the response time of the first request
of each task.

r1
i 6 Di ∀i

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 42–88

Introduction
Uniprocessor real-time systems

Arbitrary Deadlines I

I To summarize what we’ve seen so far, RM concerns (synchronous)
implicit deadline tasks, whereas DM concerns (synchronous)
constrained deadline tasks.

I We will now consider (synchronous) arbitrary deadline tasks.
I First, we show that neither RM nor DM are optimal for such systems.

For instance, consider the system τ = {τ1 = {C1 = 52, T1 =
100,D1 = 110}, τ2 = {C2 = 52, T2 = 140,D2 = 154}}. In this
case, DM and RM are identical: τ1 � τ2. Using that FTP-priority
assignment, the first job of τ2 misses its deadline at instant 154:

τ1

? ?g
0 51

52

100 151

52

τ2

? ?

52 99

48 2

6
g

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 43–88

Introduction
Uniprocessor real-time systems

Arbitrary Deadlines II

I However, the system is FTP-feasible since the other FTP-assignment
(τ2 � τ1) is schedulable. We will see that for such systems, is not
sufficient to consider the first request of each task.

τ1
? ? ? ?f f

52 103

52

104 139

36

192

16

208 259

52

τ2
? ? ?f f

0 51

52

140 191

52

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 44–88

Introduction
Uniprocessor real-time systems

Arbitrary Deadlines — Important Phenomena

I Several jobs of the same task can be active simultaneously. In that
case, the scheduler considers only the older job, i.e. FIFO is used at
task level.

I In our example, this is the case during the time-interval [100, 102)

I Second phenomenon: the response time of the first request is not
necessarily the maximum (see the previous schedule where the
response time of the first job is 104 while the second one is larger
108)

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 45–88

Introduction
Uniprocessor real-time systems

Feasibility Interval I

Definition 17 (Feasibility Interval)
A feasibility interval is a finite interval of time such that, if no deadline
is missed considering only the jobs released within this interval, then we
can conclude that no deadline will ever be missed during the system’s
lifetime (i.e. the task set is feasible).

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 46–88

Introduction
Uniprocessor real-time systems

Feasibility Interval II

Theorem 18
For synchronous constrained deadline tasks, [0,max{Di | i = 1, . . . , n})
is a feasibility interval

Proof. A direct consequence of Lemma 10

I For (synchronous) arbitrary deadline tasks, we will show that the
first busy period is a feasibility interval.

I But first, a few additional definitions.

Definition 19 (Idle Point)
x ∈ N is an idle processor point of the schedule of a system if all
requests occurring strictly before x have completed their execution
before or at time x.

I If the CPU is idle in the interval [a, b), all the points in that interval
are idle points.

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 47–88

Introduction
Uniprocessor real-time systems

Feasibility Interval III

I Consider the system
{τ1 = {C1 = 2, T1 = 5}, τ2 = {C2 = 3, T2 = 10}} (idle points are
pictured using •). The system is idle in the interval [7, 10);
7, 8, 9, 10 are idle points ; 10 is an idle point which coincides with
new job arrivals.

ppppppppp
ppppppppp
ppppppppp
ppp

ppppppppp
ppppppppp
ppppppppp
ppp

ppppppppp
ppppppppp
ppppppppp
ppp

ppppppppp
ppppppppp
ppppppppp
ppp

ppppppppp
ppppppppp
ppppppppp
ppp

ppppppppp
ppppppppp
ppppppppp
ppp

ppppppppp
ppppppppp
ppppppppp
ppp

ppppppppp
ppppppppp
ppppppppp
ppp

ppppppppp
ppppppppp
ppppppppp
ppp

ppppppppp
ppppppppp
ppppppppp
ppp

ppppppppp
ppppppppp
ppppppppp
ppp

τ2

? ?

2 4

3

τ1

? ? ?

0 1

2

5 6

2

• • • • • •

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 48–88

Introduction
Uniprocessor real-time systems

Feasibility Interval IV

Definition 20 (Elementary Busy Period)
An elementary busy period is a time-interval [a, b) such that a and b are
idle points and the interval (a, b) does not contain any idle points.

Definition 21 (Level-i Busy Period)
A level-i busy period is an elementary busy period considering the
scheduling of tasks {τ1, . . . , τi} where τi executes at least one job.

Theorem 22
The largest response time for a request of task τi occurs during the first
level-i busy period [0, λi) in the synchronous case, λi being the first idle
point (after 0) in the synchronous schedule of the task subset
{τ1, . . . , τi}, and [0, λi) is the largest level-i busy period.

Proof. Let [a, b) be a level-i busy period considering the scheduling of
the task subset {τ1, . . . , τi}. Let a + ∆j be the instant of the first request
of τj after instant a (∆j > 0). By definition, ∆k = 0 for at least one k.
Suppose first that ∆i > 0. Only tasks with a higher priority than τi

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 49–88

Introduction
Uniprocessor real-time systems

Feasibility Interval V

execute in [a, a + ∆i). Thus, if we decrease ∆i, each job of τi in the
interval [a, b) will be completed at the same instant, thus increasing the
response time. Therefore, the maximum case corresponds to ∆i = 0.
Now, if ∆j > 0 (j < i), then decreasing ∆j increases (or does not change)
the demand of higher priority jobs in [a, b). This fact increases (or does
not change) the length of the busy period. Consequently, the worst case
corresponds to ∆1 = ∆2 = · · · = ∆i = 0.

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 50–88

Introduction
Uniprocessor real-time systems

Feasibility Interval VI

Theorem 23
For synchronous arbitrary deadline systems, [0, λn) is a feasibility
interval.

Proof. A direct consequence of λ1 < λ2 < · · · < λn.

λn is the smallest solution to the equation

λn =
n∑

i=1

⌈
λn

Ti

⌉
Ci (2)

and can be computed through fixed-point iteration.

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 51–88

Introduction
Uniprocessor real-time systems

Feasibility Interval VII

w0
def
=

n∑
i=1

Ci,

wk+1
def
=

n∑
i=1

⌈
wk

Ti

⌉
Ci.

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 52–88

Introduction
Uniprocessor real-time systems

Feasibility Interval for asynchronous constrained
deadline systems I

Unfortunately, feasibility intervals are larger for asynchronous systems.
We first introduce a few additional definitions.

P def
= lcm{Ti | i = 1, . . . , n} hyper-period

and
Omax

def
= max{Oi | i = 1, . . . , n}

Theorem 24 ([Leung and Whitehead, 1982])
For asynchronous constrained deadline systems, [Omax,Omax + 2P) is a
feasibility interval.

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 53–88

Introduction
Uniprocessor real-time systems

Feasibility Interval for asynchronous constrained
deadline systems II

We will now present an improved interval. First, observe that (feasible)
schedules are periodic:

Theorem 25
Feasible schedules of periodic tasks are periodic.

Proof. For any natural instant time t > Omax, we denote the
configuration of a feasible schedule by the tuple {(εi, δi)|1 6 i 6 n},
where εi is the cumulative CPU time used by the current job of τi, and δi

is the time elapsed since its last request. Since the configuration of the
schedule S at time t + 1 is unequivocally determined by the
configuration at time t > 0 and the fact that ∀i ∈ [1, n] 0 6 εi(t) 6 Ci,
0 6 δi(t) < Ti, there are finitely many possible configurations and we
may find two instants t1, t2(t1 < t2) with the same configuration. Hence,
from t1, the schedule will repeat periodically (with a period dividing
t2 − t1).

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 54–88

Introduction
Uniprocessor real-time systems

Feasibility Interval for asynchronous constrained
deadline systems III

Theorem 26
For any asynchronous constrained deadline system ordered by
decreasing priorities, let Si be inductively defined by S1 = O1,
Si = Oi + d (Si−1−Oi)

+

Ti
eTi (i = 2, 3, . . . , n); then, if the schedule is feasible

up to Sn + P, with x+ = max{x, 0}, it is feasible and periodic from Sn

with a period of P.

Proof. The proof is made by induction on n. The property holds in the
trivial case where n = 1: the schedule for τ1 is periodic of period T1

from the first release of τ1 (S1 = O1). Let us now assume that the
property is true up to i− 1 and the schedule of the first i tasks is feasible
up to Si + Pi, with Pi = lcm{Tj | j = 1, . . . , i}. Si is the first release of task
τi after (or at) Si−1; hence Si > Si−1, Pi > Pi−1, Si + Pi > Si−1 + Pi−1 and
by induction hypothesis, the schedule for the task subset {τ1, . . . , τi−1}
is feasible and periodic from Si−1 with period Pi−1. Since tasks are
ordered by priority, the periodicity of the first ones is unchanged by the

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 55–88

Introduction
Uniprocessor real-time systems

Feasibility Interval for asynchronous constrained
deadline systems IV

requests of task τi, and the schedule repeats at time Si + lcm{Pi−1, Ti}.
Hence, for the task set {τ1, . . . , τi}, the schedule is feasible and repeats
from Si with period Pi.

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 56–88

Introduction
Uniprocessor real-time systems

Feasibility Interval for asynchronous constrained
deadline systems V

It follows that [0, Sn + P) is a feasibility interval. The speedup in
comparison with Theorem 24 is 2.

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 57–88

Introduction
Uniprocessor real-time systems

Illustrating Sn I

3 periodic tasks
(T1 = 10,C1 = 7,O1 = 0; T2 = 15,C2 = 1,O2 = 4; T3 = 16,C3 = 3,O3 = 0),

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 58–88

Introduction
Uniprocessor real-time systems

Illustrating Sn II

U(τ) = 0.95417
τ1
? ? ? ? ? ? ?
0

7
10

7
20

7
30

7
40

7
50

7
60

7

τ3
? ? ? ? ?1 1 1 1 1

τ2
? ? ? ? ?

8
2

18
11

27
2

38
2 1 1

57
2

68
2

τ1
? ? ? ? ? ? ?
70

7
80

7
90

7
100

7
110

7
120

7
130

7

τ3
? ? ? ?1 1 1 1

τ2
? ? ? ? ?1 1

88
2

98
2 1 1

118
2 1 1 1 1

τ1
? ? ? ? ? ? ?

140
7

150
7

160
7

170
7

180
7

190
7

200
7

τ3
? ? ? ? ?1 1 1 1 1

τ2
? ? ? ?

148
2

157
3 1

178
2

187
3 1 1 1

τ1
? ? ? ? ? ?

210
7

220
7

230
7

240
7

250
7

τ3
? ?1 1

τ2
? ? ?

217
3

229
1

237
2

248
2

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 59–88

Introduction
Uniprocessor real-time systems

Optimal FTP assignment for asynchronous constrained
deadline systems I

Unfortunately, neither DM nor RM are optimal. Consider the system
τ1 = {C1 = 1, T1 = D1 = 12,O1 = 10},
τ2 = {C2 = 6, T2 = D2 = 12,O2 = 0},
τ3 = {C3 = 3, T3 = D3 = 8,O3 = 0}. The system is FTP-schedulable
with τ3 � τ2 � τ1.

ppppppppppppppp
ppppppppppppppp
ppppppppppppppp

ppppppppppppppp
ppppppppppppppp
ppppppppppppppp

ppppppppppppppp
ppppppppppppppp
ppppppppppppppp

ppppppppppppppp
ppppppppppppppp
ppppppppppppppp

ppppppppppppppp
ppppppppppppppp
ppppppppppppppp

ppppppppppppppp
ppppppppppppppp
ppppppppppppppp

ppppppppppppppp
ppppppppppppppp
ppppppppppppppp

ppppppppppppppp
ppppppppppppppp
ppppppppppppppp

ppppppppppppppp
ppppppppppppppp
ppppppppppppppp

ppppppppppppppp
ppppppppppppppp
ppppppppppppppp

ppppppppppppppp
ppppppppppppppp
ppppppppppppppp

ppppppppppppppp
ppppppppppppppp
ppppppppppppppp

ppppppppppppppp
ppppppppppppppp
ppppppppppppppp

ppppppppppppppp
ppppppppppppppp
ppppppppppppppp

ppppppppppppppp
ppppppppppppppp
ppppppppppppppp

ppppppppppppppp
ppppppppppppppp
ppppppppppppppp

ppppppppppppppp
ppppppppppppppp
ppppppppppppppp

ppppppppppppppp
ppppppppppppppp
ppppppppppppppp

ppppppppppppppp
ppppppppppppppp
ppppppppppppppp

ppppppppppppppp
ppppppppppppppp
ppppppppppppppp

ppppppppppppppp
ppppppppppppppp
ppppppppppppppp

ppppppppppppppp
ppppppppppppppp
ppppppppppppppp

ppppppppppppppp
ppppppppppppppp
ppppppppppppppp

ppppppppppppppp
ppppppppppppppp
ppppppppppppppp

ppppppppppppppp
ppppppppppppppp
ppppppppppppppp

ppppppppppppppp
ppppppppppppppp
ppppppppppppppp

ppppppppppppppp
ppppppppppppppp
ppppppppppppppp

ppppppppppppppp
ppppppppppppppp
ppppppppppppppp

ppppppppppppppp
ppppppppppppppp
ppppppppppppppp

ppppppppppppppp
ppppppppppppppp
ppppppppppppppp

ppppppppppppppp
ppppppppppppppp
ppppppppppppppp

ppppppppppppppp
ppppppppppppppp
ppppppppppppppp

ppppppppppppppp
ppppppppppppppp
ppppppppppppppp

ppppppppppppppp
ppppppppppppppp
ppppppppppppppp

ppppppppppppppp
ppppppppppppppp
ppppppppppppppp

ppppppppppppppp
ppppppppppppppp
ppppppppppppppp

ppppppppppppppp
ppppppppppppppp
ppppppppppppppp

ppppppppppppppp
ppppppppppppppp
ppppppppppppppp

ppppppppppppppp
ppppppppppppppp
ppppppppppppppp

ppppppppppppppp
ppppppppppppppp
ppppppppppppppp

ppppppppppppppp
ppppppppppppppp
pppppppppppppppτ3

?
0 2

3 ?d
8 10

3 ?d
16 18

3 ?d
24 26

3 ?d
32 34

3 ?

τ2
? ?d ?d ?d

3 7

5

11

1

15

4

19

2

27 31

5

35

1

τ1
? ?d ?

21

1 1

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 60–88

Introduction
Uniprocessor real-time systems

Optimal FTP assignment for asynchronous constrained
deadline systems II

The system is not schedulable with RM (nor, equivalently, DM)
τ3 > τ1 > τ2.

pppppppppppp
pppppppppppp
pppppppppppp
ppppppppp

pppppppppppp
pppppppppppp
pppppppppppp
ppppppppp

pppppppppppp
pppppppppppp
pppppppppppp
ppppppppp

pppppppppppp
pppppppppppp
pppppppppppp
ppppppppp

pppppppppppp
pppppppppppp
pppppppppppp
ppppppppp

pppppppppppp
pppppppppppp
pppppppppppp
ppppppppp

pppppppppppp
pppppppppppp
pppppppppppp
ppppppppp

pppppppppppp
pppppppppppp
pppppppppppp
ppppppppp

pppppppppppp
pppppppppppp
pppppppppppp
ppppppppp

pppppppppppp
pppppppppppp
pppppppppppp
ppppppppp

pppppppppppp
pppppppppppp
pppppppppppp
ppppppppp

pppppppppppp
pppppppppppp
pppppppppppp
ppppppppp

pppppppppppp
pppppppppppp
pppppppppppp
ppppppppp

pppppppppppp
pppppppppppp
pppppppppppp
ppppppppp

pppppppppppp
pppppppppppp
pppppppppppp
ppppppppp

pppppppppppp
pppppppppppp
pppppppppppp
ppppppppp

pppppppppppp
pppppppppppp
pppppppppppp
ppppppppp

pppppppppppp
pppppppppppp
pppppppppppp
ppppppppp

pppppppppppp
pppppppppppp
pppppppppppp
ppppppppp

pppppppppppp
pppppppppppp
pppppppppppp
ppppppppp

pppppppppppp
pppppppppppp
pppppppppppp
ppppppppp

pppppppppppp
pppppppppppp
pppppppppppp
ppppppppp

pppppppppppp
pppppppppppp
pppppppppppp
ppppppppp

pppppppppppp
pppppppppppp
pppppppppppp
ppppppppp

pppppppppppp
pppppppppppp
pppppppppppp
ppppppppp

pppppppppppp
pppppppppppp
pppppppppppp
ppppppppp

pppppppppppp
pppppppppppp
pppppppppppp
ppppppppp

pppppppppppp
pppppppppppp
pppppppppppp
ppppppppp

pppppppppppp
pppppppppppp
pppppppppppp
ppppppppp

pppppppppppp
pppppppppppp
pppppppppppp
ppppppppp

pppppppppppp
pppppppppppp
pppppppppppp
ppppppppp

pppppppppppp
pppppppppppp
pppppppppppp
ppppppppp

pppppppppppp
pppppppppppp
pppppppppppp
ppppppppp

pppppppppppp
pppppppppppp
pppppppppppp
ppppppppp

pppppppppppp
pppppppppppp
pppppppppppp
ppppppppp

pppppppppppp
pppppppppppp
pppppppppppp
pppppppppτ3

?

0 2

3 ?

8 10

3 ?

16 18

3 ?

24 26

3 ?

τ1
? ? ?

11

1

22

1

τ2
? ?

3 7

5

6

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 61–88

Introduction
Uniprocessor real-time systems

Audsley Algorithm I

A first naive but optimal priority assignment consists in considering all
possible (n!) FTP-priority assignments.
Audsley in [Audsley et al., 1993] proposed an efficient algorithm which
considers, in the worst-case, O(n2) FTP-priority assignments. The idea is
based upon the following property.

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 62–88

Introduction
Uniprocessor real-time systems

Audsley Algorithm II

Definition 27 (Lowest-priority viable)
A task τi is said to be lowest-priority viable iff all its jobs meet their
deadline when:

I task τi has the lowest priority
I the other tasks have any higher priority
I when scheduling tasks τj 6= τi, the scheduler considers deadlines as

soft, i.e. continues to schedule until completion

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 63–88

Introduction
Uniprocessor real-time systems

Audsley Algorithm III

Theorem 28
Suppose that τi is lowest-priority viable. Then, there exists a feasible
FTP-assignment for τ iff there exists an FTP-priority assignment for
τ \ {τi}.
Proof. First, we denote the task/priority assignment with p(τa) = b,
meaning that task τa has priority b.
Suppose that the following priority assignment p is feasible for τ :

p(τ1) = 1, p(τ2) = 2, . . . , p(τi) = i, p(τi+1) = i + 1, . . . , p(τn) = n

then a second priority assignment is feasible as well:

p′(τ1) = 1, . . . , p′(τi+1) = i, p′(τi+2) = i+1, . . . , p′(τn) = n−1, p′(τi) = n

Since τi is lowest-priority viable, we can assign the lowest priority to τi

p′(τi) = n. The tasks assigned to levels i + 1, . . . , n are promoted and

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 64–88

Introduction
Uniprocessor real-time systems

Audsley Algorithm IV

remain schedulable. Obviously, the tasks assigned to levels 1, . . . , i− 1
remain schedulable.
Theorem 28 suggests a procedure to assign task priorities:

1. First, determine a lowest-priority task

2. Apply recursively the same technique to the subset τ \ {τi} of
cardinality n− 1

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 65–88

Introduction
Uniprocessor real-time systems

Audsley Algorithm V

Audsley’s priority assignment:

procedure Audsley(τ)
if (there is no lowest-priority viable task)

return infeasible
else {

let τi be a lowest-priority viable task in τ
assign the lowest priority to τi

Audsley(τ \ {τi})
}
end Audsley

The procedure requires checking if a task is lowest-priority viable. This
can be checked by considering the interval [0, Sn + Pn).
Notice that Audsley’s algorithm will consider at most
n + (n− 1) + · · ·+ 2 + 1 = O(n2) distinct priority assignments.

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 66–88

Introduction
Uniprocessor real-time systems

FJP-Priority assignment EDF

I EDF is a Fixed Job Priority scheduler
I The priority rule is the following: the lower the absolute deadline,

the higher the priority. Ties can be resolved arbitrarily but in a
consistent (deterministic) manner.

An EDF-Schedule

ppppppppp
ppppppppp
ppppppppp
pppppppp

ppppppppp
ppppppppp
ppppppppp
pppppppp

ppppppppp
ppppppppp
ppppppppp
pppppppp

ppppppppp
ppppppppp
ppppppppp
pppppppp

ppppppppp
ppppppppp
ppppppppp
pppppppp

ppppppppp
ppppppppp
ppppppppp
pppppppp

ppppppppp
ppppppppp
ppppppppp
pppppppp

ppppppppp
ppppppppp
ppppppppp
pppppppp

ppppppppp
ppppppppp
ppppppppp
pppppppp

ppppppppp
ppppppppp
ppppppppp
pppppppp

ppppppppp
ppppppppp
ppppppppp
pppppppp

ppppppppp
ppppppppp
ppppppppp
pppppppp

ppppppppp
ppppppppp
ppppppppp
pppppppp

ppppppppp
ppppppppp
ppppppppp
pppppppp

ppppppppp
ppppppppp
ppppppppp
pppppppp

ppppppppp
ppppppppp
ppppppppp
pppppppp

ppppppppp
ppppppppp
ppppppppp
pppppppp

ppppppppp
ppppppppp
ppppppppp
pppppppp

ppppppppp
ppppppppp
ppppppppp
pppppppp

ppppppppp
ppppppppp
ppppppppp
pppppppp

ppppppppp
ppppppppp
ppppppppp
pppppppp

ppppppppp
ppppppppp
ppppppppp
pppppppp

ppppppppp
ppppppppp
ppppppppp
pppppppp

τ2

? ? ? ? ? ?g g g g g
2 4

2

4 5

2

8 9

2

12 13

2

17 18

2

τ1

? ? ? ? ?g g g g
0 1

2

6 7

2

10 11

2

15 16

2

20 21

2

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 67–88

Introduction
Uniprocessor real-time systems

EDF Optimality I

In the following, EDF.J denotes the schedule produced by EDF when
scheduling the job set J.

Definition 29 (Feasible Job Set)
A job set J is said to be feasible if there exists a schedule which meets all
the job deadlines of J.

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 68–88

Introduction
Uniprocessor real-time systems

EDF Optimality II

Theorem 30
If a job set J is feasible, then EDF feasibly schedules that set.

Proof. The proof is made by induction. Let ∆ > 0 be an infinitesimal
value. Consider a feasible schedule S for J, and let [t0, t0 + ∆) be the first
time where S differs from EDF.J. Suppose that the job j1 = (a1, e1, d1) is
scheduled in S in that interval while j2 = (a2, e2, d2) is scheduled in
EDF.J. Since S meets all the deadlines, it feasibly schedules j2 in [a2, d2)
(possibly preemptively) and j2 completes before d2. This implies that S
schedules j2 for a duration of ∆ before d2. By definition of EDF, d2 6 d1;
thus S schedules j2 for a duration of ∆ before d1 as well. The schedule
S1 — obtained by swapping the executions of j1 and j2 for a duration of
∆ in S — is identical to EDF.J in the interval [0, t + ∆). EDF optimality
follows by induction on t: S∞ = EDF.
In other words, EDF schedules everything that is schedulable!

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 69–88

Introduction
Uniprocessor real-time systems

Strong EDF Optimality I

Notice that the optimality of EDF is stronger than the one of RM (or DM).
EDF optimality concerns sets of jobs, whereas optimality concerns sets
of tasks for FTP-schedulers.
Consequently, EDF is also optimal for

I asynchronous systems

I arbitrary deadline systems

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 70–88

Introduction
Uniprocessor real-time systems

Implicit deadlines and EDF I

We have seen (Lemma 6) that U(τ) 6 1 is a necessary condition for
feasibility. We will see that for EDF and periodic implicit deadline tasks,
the condition is also sufficient.

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 71–88

Introduction
Uniprocessor real-time systems

Implicit deadlines and EDF II

Theorem 31
U(τ) 6 1 is a necessary and sufficient condition for the feasibility of
periodic implicit deadline tasks.

Proof. Let τ be a task set of n implicit deadline periodic tasks τ1, . . . , τn.
Consider a “processor sharing” schedule S obtained by partitioning the
timeline into infinitesimal slots and by scheduling the task τi for a
fraction of U(τi) in each slot. Since U(τ) 6 1, such a schedule can be
constructed. That schedule contains, for each job τi, exactly
U(τi)× Ti = Ci CPU units between the job’s arrival and its deadline.

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 72–88

Introduction
Uniprocessor real-time systems

Implicit deadlines and EDF III

Corollary 32
An implicit deadline periodic task set is EDF-feasible iff U(τ) 6 1.

Proof. This is a direct consequence of EDF optimality (Theorem 30) and
Theorem 31.

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 73–88

Introduction
Uniprocessor real-time systems

Synchronous and constrained deadlines and EDF I

First, notice that the synchronous periodic case remains the worst-case.
We have the following property as well:

Theorem 33
Let τ be a synchronous periodic arbitrary deadline system. If τ is
EDF-feasible, then all corresponding asynchronous periodic task sets and
all corresponding sporadic task sets are EDF-feasible as well.

Unfortunately, for EDF scheduling the response time of the first job in the
synchronous configuration is not the largest one anymore.
Consider the system
S = {τ1 = {C1 = 2,D1 = T1 = 4}, {C2 = 3,D2 = T2 = 7}}, the
response time of the first jobs of τ2 in the synchronous case are: 5, 5, 5,
6

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 74–88

Introduction
Uniprocessor real-time systems

Synchronous and constrained deadlines and EDF II

ppppppppppp
ppppppppppp
pppppppp

ppppppppppp
ppppppppppp
pppppppp

ppppppppppp
ppppppppppp
pppppppp

ppppppppppp
ppppppppppp
pppppppp

ppppppppppp
ppppppppppp
pppppppp

ppppppppppp
ppppppppppp
pppppppp

ppppppppppp
ppppppppppp
pppppppp

ppppppppppp
ppppppppppp
pppppppp

ppppppppppp
ppppppppppp
pppppppp

ppppppppppp
ppppppppppp
pppppppp

ppppppppppp
ppppppppppp
pppppppp

ppppppppppp
ppppppppppp
pppppppp

ppppppppppp
ppppppppppp
pppppppp

ppppppppppp
ppppppppppp
pppppppp

ppppppppppp
ppppppppppp
pppppppp

ppppppppppp
ppppppppppp
pppppppp

ppppppppppp
ppppppppppp
pppppppp

ppppppppppp
ppppppppppp
pppppppp

ppppppppppp
ppppppppppp
pppppppp

ppppppppppp
ppppppppppp
pppppppp

ppppppppppp
ppppppppppp
pppppppp

ppppppppppp
ppppppppppp
pppppppp

ppppppppppp
ppppppppppp
pppppppp

ppppppppppp
ppppppppppp
pppppppp

ppppppppppp
ppppppppppp
pppppppp

ppppppppppp
ppppppppppp
pppppppp

ppppppppppp
ppppppppppp
pppppppp

ppppppppppp
ppppppppppp
pppppppp

ppppppppppp
ppppppppppp
ppppppppτ1

? f
0 1

2 ? f
5 6

2 ? f
8 9

2 ? f
12 13

2 ? f
16 17

2 ? f
20 21

2 ? f
24 25

2 ?

τ2
? f

2 4

3 ? f
7

1

10 11

2 ? f
14 15

2

18

1 ? f
22 23

2

26

1 ?

Liu & Layland have “shown” (the property is correct but the proof is
flawed) that we cannot miss a deadline after an idle unit.

Theorem 34 ([Liu and Layland, 1973])
When EDF schedules a synchronous periodic constrained deadline
system, there are no idle units in the schedule before a deadline miss.

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 75–88

Introduction
Uniprocessor real-time systems

Synchronous and constrained deadlines and EDF III

That property can be extended by considering the notion of idle instant
(see Definition 19) and arbitrary deadlines.

Theorem 35 ([Goossens, 1999])
When EDF schedules a synchronous periodic arbitrary deadline system,
there are no idle instants in the schedule before a deadline miss.

Consequently, the interval [0, L) is a feasibility interval, where L
corresponds to the first idle instant (origin excepted) in the schedule.

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 76–88

Introduction
Uniprocessor real-time systems

Synchronous and constrained deadlines and EDF IV

L is the smallest positive solution to

L =
n∑

i=1

⌈
L
Ti

⌉
Ci

and can be computed by fixed-point iteration:

w0
def
=

n∑
i=1

Ci,

wk+1
def
=

n∑
i=1

⌈
wk

Ti

⌉
Ci.

Notice this is exactly the same value as λn introduced for FTP-schedulers
(see Equation (2)–slide 51)

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 77–88

Introduction
Uniprocessor real-time systems

Asynchronous Periodic Systems and EDF I

Definition 36 (Configuration)
Considering a periodic system R and a schedule S, we define the
configuration at instant t as follows:

CS(R, t) = ((γ1(t), α1(t), β1(t)), . . . , (γn(t), αn(t), βn(t)))

where
I γi(t) = (t−Oi) mod Ti is the time elapsed since the last request of
τi, if t > Oi ; γi(t) = t−Oi otherwise.

I αi(t) is the number of active jobs of τi.
I βi(t) is the cumulative CPU time used by the oldest active job of τi.

If αi(t) = 0, we let βi(t) = 0.

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 78–88

Introduction
Uniprocessor real-time systems

Asynchronous Periodic Systems and EDF II

Theorem 37
Let S be the EDF-schedule for the periodic asynchronous arbitrary
deadline system R. R is feasible iff (1) every deadline occurring in
[0,Omax + 2P] is met and (2) Cs(R,Omax + P) = Cs(R,Omax + 2P).

Notice that both conditions set out by Theorem 37 are necessary, as
shown by the following system.

Ti Di Ci Oi

τ1 4 4 2 0
τ2 4 7 3 2

We have P = 4 and Omax = 2; as we can see, all deadlines in the
interval [0, 10) are met but CS(R, 6) 6= CS(R, 10), since β2(6) = 2 and
β2(10) = 1. Actually, τ2 misses its deadline at time 21.

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 79–88

Introduction
Uniprocessor real-time systems

Asynchronous Periodic Systems and EDF III

ppppppppp
ppppppppp
ppppppppp
ppp

ppppppppp
ppppppppp
ppppppppp
ppp

ppppppppp
ppppppppp
ppppppppp
ppp

ppppppppp
ppppppppp
ppppppppp
ppp

ppppppppp
ppppppppp
ppppppppp
ppp

ppppppppp
ppppppppp
ppppppppp
ppp

ppppppppp
ppppppppp
ppppppppp
ppp

ppppppppp
ppppppppp
ppppppppp
ppp

ppppppppp
ppppppppp
ppppppppp
ppp

ppppppppp
ppppppppp
ppppppppp
ppp

ppppppppp
ppppppppp
ppppppppp
ppp

ppppppppp
ppppppppp
ppppppppp
ppp

ppppppppp
ppppppppp
ppppppppp
ppp

ppppppppp
ppppppppp
ppppppppp
ppp

ppppppppp
ppppppppp
ppppppppp
ppp

ppppppppp
ppppppppp
ppppppppp
ppp

ppppppppp
ppppppppp
ppppppppp
ppp

ppppppppp
ppppppppp
ppppppppp
ppp

ppppppppp
ppppppppp
ppppppppp
ppp

ppppppppp
ppppppppp
ppppppppp
ppp

ppppppppp
ppppppppp
ppppppppp
ppp

ppppppppp
ppppppppp
ppppppppp
ppp

τ1

? ? ? ? ?g g g g g
0 1

2

4 5

2

8 9

2

12 13

2

17 18

2

τ2

? ? ? ? ?g g g
2 3

2

6

1

7

1

10 11

2

14 16

3

19 20

2

6

Formally (see Definition 17), [0,Omax + 2P) is not a feasibility interval!
Notice that the condition U(τ) 6 1 is not satisfied by our system
(U = 5

4).
In fact, if U(τ) 6 1 holds, only the first condition of Theorem 37 must
be satisfied to conclude feasibility.

Corollary 38
[0,Omax + 2P) is a feasibility interval for periodic asynchronous
arbitrary deadline systems where U(τ) 6 1.

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 80–88

Introduction
Uniprocessor real-time systems

DP-Priority assignment LLF I

The Least Laxity First (LLF) is a job-level dynamic priority scheduler (DP,
see slide 19). LLF is also called the slack-time algorithm.
At each instant, the priority of each job depends on its laxity.

Definition 39 (Laxity)
Let J be a job characterized by the tuple (a, e, d) (see Definition 1,
slide 11). Let εJ(t) represent the cumulative CPU time used by J since its
release. The laxity (denoted by `J(t)) at instant t is defined as follows:

`J(t)
def
= d− t− (e− εJ(t))

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 81–88

Introduction
Uniprocessor real-time systems

DP-Priority assignment LLF II

The job laxity represents its degree of urgency:

I `J(t) > 0: the job can be feasibly delayed (with a maximum of `J(t)
time-units) before being scheduled

I `J(t) = 0: it is mandatory to schedule the job immediately and until
its deadline to ensure feasibility

I `J(t) < 0: the job will miss (or misses) its deadline for sure
I the laxity of a running job remains constant

Definition 40 (LLF)
At each instant, LLF gives the CPU to the job with the smallest laxity.
Ties can be resolved arbitrarily but in a consistent (deterministic)
manner.

Mok has shown, in the context of his PhD thesis, the optimality of LLF:

Theorem 41 ([Mok, 1983])
If a job set J is feasible, then LLF feasibly schedules that set.

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 82–88

Introduction
Uniprocessor real-time systems

EDF vs. LLF— number of preemptions I

LLF and EDF are both optimal schedulers: they schedule any feasible set
of jobs. However, they differ with regards to the number of preemptions
that occur during the schedule.
Consider the following system:

Ci Ti Di

τ1 4 10 8
τ2 5 10 9

The EDF-schedule is preemption-free:

ppppppppp
ppppppppp
ppppppppp
ppp

ppppppppp
ppppppppp
ppppppppp
ppp

ppppppppp
ppppppppp
ppppppppp
ppp

ppppppppp
ppppppppp
ppppppppp
ppp

ppppppppp
ppppppppp
ppppppppp
ppp

ppppppppp
ppppppppp
ppppppppp
ppp

ppppppppp
ppppppppp
ppppppppp
ppp

ppppppppp
ppppppppp
ppppppppp
ppp

ppppppppp
ppppppppp
ppppppppp
ppp

ppppppppp
ppppppppp
ppppppppp
ppp

ppppppppp
ppppppppp
ppppppppp
ppp

ppppppppp
ppppppppp
ppppppppp
ppp

τ1

? ?g
0 3

4

τ2

? ?g
4 8

5

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 83–88

Introduction
Uniprocessor real-time systems

EDF vs. LLF— number of preemptions II

The LLF-schedule, however, has 6 preemptions every 10 time-units.

ppppppppp
ppppppppp
ppppppppp
ppp

ppppppppp
ppppppppp
ppppppppp
ppp

ppppppppp
ppppppppp
ppppppppp
ppp

ppppppppp
ppppppppp
ppppppppp
ppp

ppppppppp
ppppppppp
ppppppppp
ppp

ppppppppp
ppppppppp
ppppppppp
ppp

ppppppppp
ppppppppp
ppppppppp
ppp

ppppppppp
ppppppppp
ppppppppp
ppp

ppppppppp
ppppppppp
ppppppppp
ppp

ppppppppp
ppppppppp
ppppppppp
ppp

ppppppppp
ppppppppp
ppppppppp
ppp

ppppppppp
ppppppppp
ppppppppp
ppp

τ1

? ?g
0

1

2

1

4

1

6

1

τ2

? ?g
1

1

3

1

5

1

7 8

2

In fact, a thrashing situation (situation where large amounts of computer
resources are used to do a minimal amount of work) can occur:
Suppose that at time t, two active jobs (J1 and J2) have the same and
minimal laxity `J1 (t) = `J2 (t). Assuming that LLF schedules J1 first, then at
instant t + 1 we have: `J1 (t + 1) = `J2 (t + 1) + 1. LLF must thus preempt
J1 and schedule J2. At instant t + 2, both laxities are identical once
more: `J1 (t + 2) = `J2 (t + 2). This scenario repeats while J1 and J2 are
active and have the minimal laxity of the system.

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 84–88

Introduction
Uniprocessor real-time systems

EDF vs. LLF — scheduler classes

To conclude about LLF, for the uniprocessor scheduling problem of
periodic real-time tasks, there are not benefits to consider the DP
scheduler class since they induce a lot of preemptions with no
additional properties (optimality exists for a “simpler” class — FJP).

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 85–88

Introduction
Uniprocessor real-time systems

References I

[Audsley et al., 1993] Audsley, N., Tindell, K., and Burns, A. (1993).
The end of the line for static cyclic scheduling?
In Proceedings of the EuroMicro Conference on Real-Time Systems,
pages 36–41.

[Audsley, 1991] Audsley, N. C. (1991).
Optimal priority assignment and feasibility of static priority tasks with
arbitrary start times.
Technical report.

[Goossens, 1999] Goossens, J. (1999).
Scheduling of hard real-time periodic systems with various kinds of
deadline and offsets contraints.
PhD thesis, Université Libre de Bruxelles.

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 86–88

Introduction
Uniprocessor real-time systems

References II

[Leung, 2004] Leung, J., editor (2004).
Handbook of Scheduling: Algorithms, Models, and Performance
Analysis.
Chapman Hall/CRC Press.
Chapter: Scheduling Real-time Tasks: Algorithms and Complexity.

[Leung and Whitehead, 1982] Leung, J. Y.-T. and Whitehead, J. (1982).
On the complexity of fixed-priority scheduling of periodic, real-time
tasks.
Performance Evaluation, 2:237–250.

[Liu and Layland, 1973] Liu, C. L. and Layland, J. W. (1973).
Scheduling algorithms for multiprogramming in a hard-real-time
environment.
Journal of the Association for Computing Machinery, 20(1):46–61.

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 87–88

Introduction
Uniprocessor real-time systems

References III

[Liu, 2000] Liu, J. W. S. (2000).
Real-Time Systems.
Prentice-Hall.

[Mok, 1983] Mok, A. K.-L. (1983).
Fundamental design problems of distributed systems for the
hard-real-time environment.
PhD thesis, Massachusetts Institute of Technology.

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 88–88

	Introduction
	Uniprocessor real-time systems

