
Introduction
Global DM

Incomparability
Partitioned Scheduling

Global Scheduling
References

INFO-F404, Operating Systems II
Multiprocessor real-time scheduling

Academic year 2013–2014

Joël GOOSSENS

Université Libre de Bruxelles

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 1–61



Introduction
Global DM

Incomparability
Partitioned Scheduling

Global Scheduling
References

Limited Parallelism
Taxonomy of Multiprocessor Platforms
Taxonomy of Multiprocessor Schedulers

Multiprocessor Scheduling

C) Multiprocessor Scheduling

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 2–61



Introduction
Global DM

Incomparability
Partitioned Scheduling

Global Scheduling
References

Limited Parallelism
Taxonomy of Multiprocessor Platforms
Taxonomy of Multiprocessor Schedulers

Context

I In this chapter, we consider platforms composed of several
processors/cores. Complex real-time applications require powerful,
costly and power-consuming uniprocessor platforms or — for
approximately the same computing power — cheaper and
power-efficient multiprocessor platforms. The reasons for this
paradigm shift (uni- to multiprocessor) is due to the cost and
difficulty nowadays to build integrated circuits with a high density
and at a high working frequency.

I In this framework, we consider strongly coupled systems, i.e. we
assume a common time reference and a common shared memory.

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 3–61



Introduction
Global DM

Incomparability
Partitioned Scheduling

Global Scheduling
References

Limited Parallelism
Taxonomy of Multiprocessor Platforms
Taxonomy of Multiprocessor Schedulers

Limited Parallelism

I The multiprocessor platform is obviously a parallel architecture but
the parallelism considered here is limited:

I at each instant, each processor executes one task at most
I at each instant, each task is executed on one processor at most, i.e.

we forbid task and job parallelism.

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 4–61



Introduction
Global DM

Incomparability
Partitioned Scheduling

Global Scheduling
References

Limited Parallelism
Taxonomy of Multiprocessor Platforms
Taxonomy of Multiprocessor Schedulers

Taxonomy of Multiprocessor Platforms I

I We can distinguish between at least three kinds of multiprocessor
platforms:

I Identical parallel machines. Platforms on which all the processors are
identical, in the sense that they have the same computing power.

I Uniform parallel machines. By contrast, each processor in a uniform
parallel machine is characterized by its own computing capacity. A
job that is executed on a processor πi with computing capacity si for t
time units will be completed after si × t units of execution.

I Unrelated parallel machines. In unrelated parallel machines, there is
an execution rate si,j associated with each job-processor pair. A job Ji
that is executed on a processor πj for t time units will be completed
after si,j × t units of execution.

I Notice that Identical ⊂ Uniform ⊂ Unrelated.

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 5–61



Introduction
Global DM

Incomparability
Partitioned Scheduling

Global Scheduling
References

Limited Parallelism
Taxonomy of Multiprocessor Platforms
Taxonomy of Multiprocessor Schedulers

Taxonomy of Multiprocessor Platforms II

I Identical platforms are homogeneous architectures

I Uniform and Unrelated ones are heterogeneous

I In this chapter, we consider the particular case of identical
multiprocessors composed of m processors: π1, π2, . . . , πm.

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 6–61



Introduction
Global DM

Incomparability
Partitioned Scheduling

Global Scheduling
References

Limited Parallelism
Taxonomy of Multiprocessor Platforms
Taxonomy of Multiprocessor Schedulers

Young research topic! (Master & PhD Thesis)

I The scheduling theory for real-time uniprocessor platforms is well
developed and has been covered extensively in the last 40 years.

I On the other hand, real-time multiprocessor scheduling theory is
much more recent and relatively few results are known so far.

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 7–61



Introduction
Global DM

Incomparability
Partitioned Scheduling

Global Scheduling
References

Limited Parallelism
Taxonomy of Multiprocessor Platforms
Taxonomy of Multiprocessor Schedulers

Taxonomy of Multiprocessor Schedulers I

I We can distinguish between at least two kinds of scheduling
techniques

I Partitioned Scheduling. This approach aims to find a strategy to
partition tasks on processors. Once a task is assigned to a processor, it
cannot migrate. A local (uniprocessor) scheduler is used on each
processor. Thus, once the distribution of tasks is done, a uniprocessor
scheduling feasibility condition is used to decide the schedulability of
the system.

I Global Scheduling. This approach aims to find a global strategy to
schedule jobs. Jobs are allowed to migrate between processors during
their lifetime, i.e. start their execution on one processor and later
resume on another processor.

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 8–61



Introduction
Global DM

Incomparability
Partitioned Scheduling

Global Scheduling
References

Limited Parallelism
Taxonomy of Multiprocessor Platforms
Taxonomy of Multiprocessor Schedulers

Illustrating partitioning

C T D
τ1 1 4 4
τ2 3 5 5
τ3 7 20 20

U(τ) = 1.2

I Nous pouvons ordonnancer τ1 et τ2 sur un seul processeur
I et τ3 sur un second processeur.

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 9–61



Introduction
Global DM

Incomparability
Partitioned Scheduling

Global Scheduling
References

Illustrating Global DM

Ci Ti Di

τ1 1 4 4
τ2 3 5 5
τ3 7 20 20

τ1 � τ2 � τ3

π2

0 2

τ2

4

τ3

5 7

τ2

10 12

τ2

15 17

τ2

π1

0

τ1

1 3

τ3

4

τ1

5 7

τ3

8

τ1

12

τ1

16

τ1

I Notice that τ3 migrates from π1 to π2 and from π2 to π1 for each job!
I Exercise: schedule the same task set according to global EDF

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 10–61



Introduction
Global DM

Incomparability
Partitioned Scheduling

Global Scheduling
References

Density
Necessary Definition

Partitioned and Global Scheduling are Incomparable I

I Partitioned scheduling (which forbids task migration and thus job
migration) is not a special case of global scheduling (which allows,
but does not require, migration).

I We will illustrate incomparability for the general class of FJP
schedulers.

I There are systems that global algorithms can schedule but which
partitioned algorithms fail to schedule (Lemma 1).

I Somewhat counter-intuitively, there are systems which partitioned
FJP algorithms can schedule, but which cannot be scheduled by
any global FJP algorithm (Lemma 2).

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 11–61



Introduction
Global DM

Incomparability
Partitioned Scheduling

Global Scheduling
References

Density
Necessary Definition

Partitioned and Global Scheduling are Incomparable II

Lemma 1 ([Baruah, 2007])
There are task systems that are scheduled using global FJP algorithms
that partitioned FJP algorithms cannot schedule.

Proof. Here’s an example task set scheduled on 2 processors
Ci Ti Di

τ1 2 3 2
τ2 3 4 3
τ3 5 12 12

Obviously all partitions fail: U(τi) + U(τj) > 1 ∀i 6= j.

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 12–61



Introduction
Global DM

Incomparability
Partitioned Scheduling

Global Scheduling
References

Density
Necessary Definition

Partitioned and Global Scheduling are Incomparable III

We can schedule the tasks with a global FJP algorithm which assigns the
lowest priority to τ3’s jobs. Since there are two processors, τ1 and τ2

meet all deadlines. For τ3, over any 12 contiguous slots, τ1 may execute
during at most 8 slots.

π1

0 1

τ1

3 4

τ1

6 7

τ1

9 10

τ1

12 13

τ1

If τ1 executes for fewer than 8 slots, τ3 is schedulable. If τ1 executes for
exactly 8 slots, τ1’s jobs must be arriving 3 time-units apart. Based upon
τ2’s parameters, we know it is impossible that τ2’s jobs execute in
parallel with τ1’s jobs. Consequently, we have at least one extra slot for
τ3 on the remaining processor.

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 13–61



Introduction
Global DM

Incomparability
Partitioned Scheduling

Global Scheduling
References

Density
Necessary Definition

Partitioned and Global Scheduling are Incomparable IV

Lemma 2 ([Baruah, 2007])
There are task systems that are scheduled using partitioned FJP
algorithms that global FJP algorithms cannot schedule.

Proof. Here’s an example task set scheduled on 2 processors
Ci Ti Di

τ1 2 3 2
τ2 3 4 3
τ3 4 12 12
τ4 3 12 12

This system may be partitioned: τ1 and τ3 on one processor and the
remaining tasks on the remaining processor, each processor being
scheduled using EDF.

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 14–61



Introduction
Global DM

Incomparability
Partitioned Scheduling

Global Scheduling
References

Density
Necessary Definition

Partitioned and Global Scheduling are Incomparable V

To show that no global FJP priority assignment can meet all deadlines,
consider the synchronous arrival over [0, 12). For feasibility’s sake, we
need to first serve all jobs of τ1 and τ2 (Ci = Di). Whichever of τ3 or τ4’s
job has lower priority ends up missing its deadline while one processor
goes idle over [11, 12).

π1

0 1

τ1

3 4

τ1

6 7

τ1

9 10

τ1

· · · ·

π2

0 2

τ2

4 6

τ2

8 10

τ2

· · ·

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 15–61



Introduction
Global DM

Incomparability
Partitioned Scheduling

Global Scheduling
References

Density
Necessary Definition

Density

A generalization of the concept of utilization is known as density:

Definition 3 (Density λ)
A task τi’s density λi is defined as follows: Ci/min(Di, Ti). The total
density λsum(τ) and the maximal density λmax(τ) are defined as follows:

λsum(τ)
def
= (
∑
τi∈τ

λi) λmax(τ)
def
= (max

τi∈τ
λi)

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 16–61



Introduction
Global DM

Incomparability
Partitioned Scheduling

Global Scheduling
References

Density
Necessary Definition

Necessary Conditions

For the scheduling of sporadic tasks upon m identical processors, the
following conditions are necessary:

λsum(τ) 6 m and λmax(τ) 6 1

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 17–61



Introduction
Global DM

Incomparability
Partitioned Scheduling

Global Scheduling
References

Introduction
Rate Monotonic
EDF

Partitioned Scheduling – A Short Introduction

I Remark: in this section concerning partitioned scheduling, we
consider implicit-deadline tasks.

I The partitioning problem is actually known as the Bin-Packing
problem: k objects of different sizes must be packed into a finite
number of bins of capacity B in a way that minimizes the number
of bins used.

I In our case, objects correspond to tasks and bins correspond to
processors. The processor (bin) size is the largest utilization known
for the scheduler, e.g. ln 2 under RM, 1 under EDF.

I The problem is known to be strongly NP-Complete. Many
heuristics have been developed, e.g. next-fit and best-fit. These are
fast, but often yield suboptimal solutions.

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 18–61



Introduction
Global DM

Incomparability
Partitioned Scheduling

Global Scheduling
References

Introduction
Rate Monotonic
EDF

Heuristics I

Greedy algorithm (build up a solution piece by piece).

I optional pre-processing which sorts the tasks
I Decreasing utilization
I Increasing utilization

I A rule to decide where to assign the current task:
I First-Fit
I Best-Fit
I Worst-Fit
I Next-Fit

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 19–61



Introduction
Global DM

Incomparability
Partitioned Scheduling

Global Scheduling
References

Introduction
Rate Monotonic
EDF

Heuristics II

Ui

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

NFD

π1 π2 π3 π4

τ1 τ2 τ3 τ4

τ5

Ui

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

FFD

π1 π2 π3 π4

τ1 τ2 τ3 τ4

τ5

τ6

τ7

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 20–61



Introduction
Global DM

Incomparability
Partitioned Scheduling

Global Scheduling
References

Introduction
Rate Monotonic
EDF

Heuristics III

Ui

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

WFD

π1 π2 π3 π4

τ1 τ2 τ3 τ4

τ5
τ6τ7

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 21–61



Introduction
Global DM

Incomparability
Partitioned Scheduling

Global Scheduling
References

Introduction
Rate Monotonic
EDF

Partitioned Rate Monotonic I

I For RM, the processor size could be the bound
U(τ) < nπ(21/nπ − 1) where nπ is the number of tasks on
processor π (nπ = #τ ).

I Notice that the bound is not tight enough to provide good
partitions. In the worst case, we can lose about 50% of the platform
capacity.

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 22–61



Introduction
Global DM

Incomparability
Partitioned Scheduling

Global Scheduling
References

Introduction
Rate Monotonic
EDF

Partitioned Rate Monotonic II

Example 4 ([Andersson, 2003])
Consider m + 1 tasks with Ti = 1 and Ci =

√
2− 1 + ε. Assume the

platform size is m. There must be a processor π` which schedules two
tasks. Upon that processor, the total utilization is 2 · (

√
2− 1 + ε),

which is larger than 2 · (
√

2− 1). Consequently, no partition can be
found with the chosen bound.
If we consider the limit case (i.e. ε→ 0 and m→∞), we cannot
guarantee schedulability above a utilization of

√
2− 1, i.e.

approximately 41%.

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 23–61



Introduction
Global DM

Incomparability
Partitioned Scheduling

Global Scheduling
References

Introduction
Rate Monotonic
EDF

Partitioned EDF: FFDU I

I For EDF, the bound is better (in fact, optimal) since we know that
U(τ) 6 1 is a necessary and sufficient condition for uniprocessor
schedulability.

I LOPEZ et al. proposed the First-Fit-Decreasing-Utilization (FFDU)
algorithm. The technique considers tasks by decreasing utilization
and uses first-fit as heuristic for the bin-packing problem. They
proved the following schedulability condition:

Theorem 5
A sporadic implicit-deadline task set τ is schedulable using FFDU (using
EDF as local scheduler) if

U(τ) 6 (m + 1)/2 and Umax 6 1

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 24–61



Introduction
Global DM

Incomparability
Partitioned Scheduling

Global Scheduling
References

No online optimal scheduler exists
Scheduling Anomalies
Sustainability
Periodic Implicit-Deadline Systems
Sporadic Arbitrary-Deadline Systems
Global EDF and Sporadic Implicit-Deadline Systems
EDF(k) Scheduling Algorithm

No online optimal scheduler exists — set of jobs I

A first very important, but unfortunately negative result is that no online
optimal scheduler exists.

Definition 6 (Online Schedulers)
Online schedulers take their scheduling decisions at runtime, based on
the characteristics of the jobs already released and without any
knowledge of future job releases.

Theorem 7 ([Hong and Leung, 1988])
For any m > 1, no online and optimal scheduling algorithm exists.

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 25–61



Introduction
Global DM

Incomparability
Partitioned Scheduling

Global Scheduling
References

No online optimal scheduler exists
Scheduling Anomalies
Sustainability
Periodic Implicit-Deadline Systems
Sporadic Arbitrary-Deadline Systems
Global EDF and Sporadic Implicit-Deadline Systems
EDF(k) Scheduling Algorithm

No online optimal scheduler exists — set of jobs II

Proof. We consider the case where m = 2 (the arguments used here
can be extended to any m > 2). The proof is made by contradiction. At
instant 0, three jobs J1, J2 and J3 are released with d1 = d2 = 4, d3 = 8,
e1 = e2 = 2 and e3 = 4. The algorithm schedules the jobs on two
processors starting at instant 0. We can distinguish between two kinds
of online schedulers:
Case 1: J3 executes during the interval [0, 2). In that case, at least one of
the other jobs (J1 or J2) will not complete at instant 2. WLOG, suppose
this is the case of J2. Now, assume that two new jobs (J4 and J5) are
released at instant 2 with d4 = d5 = 4 and e4 = e5 = 2. Obviously, the
online schedule fails to meet deadlines even though the system (the 5
jobs) is feasible. The scheduler should not have executed J3 in the
interval [0, 2). Unfortunately, that decision would not have been optimal
either (see Case 2).

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 26–61



Introduction
Global DM

Incomparability
Partitioned Scheduling

Global Scheduling
References

No online optimal scheduler exists
Scheduling Anomalies
Sustainability
Periodic Implicit-Deadline Systems
Sporadic Arbitrary-Deadline Systems
Global EDF and Sporadic Implicit-Deadline Systems
EDF(k) Scheduling Algorithm

No online optimal scheduler exists — set of jobs III

Case 2: J3 does not progress at all in the interval [0, 2). In that case, at
instant 4, the remaining execution requirement is at least two time units.
Now, consider that two new jobs (J′4 and J′5) are released at instant 4 with
d′4 = d′5 = 8 and e′4 = e′5 = 4. Once again, the online schedule fails to
meet the deadlines even though the system (the 5 jobs) is feasible. The
scheduler should have executed J3 during [0, 2).

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 27–61



Introduction
Global DM

Incomparability
Partitioned Scheduling

Global Scheduling
References

No online optimal scheduler exists
Scheduling Anomalies
Sustainability
Periodic Implicit-Deadline Systems
Sporadic Arbitrary-Deadline Systems
Global EDF and Sporadic Implicit-Deadline Systems
EDF(k) Scheduling Algorithm

Illustrating the proof

J3

0 3
e

J2

0 1
e

J1

0 1
e

J′5
4 7

e
J′4

4 7
e

J5

2 3
e

J4

2 3
e

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 28–61



Introduction
Global DM

Incomparability
Partitioned Scheduling

Global Scheduling
References

No online optimal scheduler exists
Scheduling Anomalies
Sustainability
Periodic Implicit-Deadline Systems
Sporadic Arbitrary-Deadline Systems
Global EDF and Sporadic Implicit-Deadline Systems
EDF(k) Scheduling Algorithm

Illustrating the proof

J3

0 3
e

J2

0 1
e

J1

0 1
e

J′5
4 7

e
J′4

4 7
e

J5

2 3
e

J4

2 3
e

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 28–61



Introduction
Global DM

Incomparability
Partitioned Scheduling

Global Scheduling
References

No online optimal scheduler exists
Scheduling Anomalies
Sustainability
Periodic Implicit-Deadline Systems
Sporadic Arbitrary-Deadline Systems
Global EDF and Sporadic Implicit-Deadline Systems
EDF(k) Scheduling Algorithm

Illustrating the proof

J3

0 3
e

J2

0 1
e

J1

0 1
e

J′5
4 7

e
J′4

4 7
e

J5

2 3
e

J4

2 3
e

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 28–61



Introduction
Global DM

Incomparability
Partitioned Scheduling

Global Scheduling
References

No online optimal scheduler exists
Scheduling Anomalies
Sustainability
Periodic Implicit-Deadline Systems
Sporadic Arbitrary-Deadline Systems
Global EDF and Sporadic Implicit-Deadline Systems
EDF(k) Scheduling Algorithm

Illustrating the proof

J3

0 3
e

J2

0 1
e

J1

0 1
e

J′5
4 7

e
J′4

4 7
e

J5

2 3
e

J4

2 3
e

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 28–61



Introduction
Global DM

Incomparability
Partitioned Scheduling

Global Scheduling
References

No online optimal scheduler exists
Scheduling Anomalies
Sustainability
Periodic Implicit-Deadline Systems
Sporadic Arbitrary-Deadline Systems
Global EDF and Sporadic Implicit-Deadline Systems
EDF(k) Scheduling Algorithm

No online optimal scheduler exists — set of sporadic
tasks I

I Hong’s counter-example concerns the scheduling of arbitrary jobs
and cannot be extended to show the non-existence of optimal
online multiprocessor scheduling algorithms for sporadic task
systems.

I In [Fisher et al., 2010], we have shown that the following sporadic
task system is feasible, but an optimal online scheduler for it
requires clairvoyance.

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 29–61



Introduction
Global DM

Incomparability
Partitioned Scheduling

Global Scheduling
References

No online optimal scheduler exists
Scheduling Anomalies
Sustainability
Periodic Implicit-Deadline Systems
Sporadic Arbitrary-Deadline Systems
Global EDF and Sporadic Implicit-Deadline Systems
EDF(k) Scheduling Algorithm

No online optimal scheduler exists — set of sporadic
tasks II

Ci Di Ti

τ1 2 2 5
τ2 1 1 5
τ3 1 2 6
τ4 2 4 100
τ5 2 6 100
τ6 4 8 100

I The challenge here is to show the feasibility of the task set.

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 30–61



Introduction
Global DM

Incomparability
Partitioned Scheduling

Global Scheduling
References

No online optimal scheduler exists
Scheduling Anomalies
Sustainability
Periodic Implicit-Deadline Systems
Sporadic Arbitrary-Deadline Systems
Global EDF and Sporadic Implicit-Deadline Systems
EDF(k) Scheduling Algorithm

Scheduling Anomalies — Definition

Definition 8 (Anomaly)
A scheduling anomaly occurs when an intuitively positive change
(Definition 9) of the system parameters (platform, tasks or jobs) may
jeopardize the system’s schedulability.

Informally, a schedulable system can become unschedulable even
though the system was schedulable before a seemingly helpful change.

Definition 9 (Intuitively positive change)
Any change which decreases the utilization factor of tasks: an increase
of the period, a decrease of the computation requirement or,
equivalently, an increase of the processor speeds.

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 31–61



Introduction
Global DM

Incomparability
Partitioned Scheduling

Global Scheduling
References

No online optimal scheduler exists
Scheduling Anomalies
Sustainability
Periodic Implicit-Deadline Systems
Sporadic Arbitrary-Deadline Systems
Global EDF and Sporadic Implicit-Deadline Systems
EDF(k) Scheduling Algorithm

Scheduling Anomalies – Example I

I Multiprocessor schedulers are subject to scheduling anomalies

I For instance, for global FTP scheduling, we can find systems that
are schedulable (for a given FTP-priority assignment), but where
increasing the period of a task will cause a deadline miss!

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 32–61



Introduction
Global DM

Incomparability
Partitioned Scheduling

Global Scheduling
References

No online optimal scheduler exists
Scheduling Anomalies
Sustainability
Periodic Implicit-Deadline Systems
Sporadic Arbitrary-Deadline Systems
Global EDF and Sporadic Implicit-Deadline Systems
EDF(k) Scheduling Algorithm

Scheduling Anomalies – Example II

This is the case of system τ1 = (T1 = 4,D1 = 2,C1 = 1), τ2 = (T2 =
5,D2 = 3,C2 = 3), τ3 = (T3 = 20,D3 = 8,C3 = 7)
The system is FTP-schedulable on 2 processors using global DM

(τ1 � τ2 � τ3)

P2

0 2

τ2

4

τ3

5 7

τ2

10 12

τ2

15 17

τ2

P1

0

τ1

1 3

τ3

4

τ1

5 7

τ3

8

τ1

12

τ1

16

τ1

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 33–61



Introduction
Global DM

Incomparability
Partitioned Scheduling

Global Scheduling
References

No online optimal scheduler exists
Scheduling Anomalies
Sustainability
Periodic Implicit-Deadline Systems
Sporadic Arbitrary-Deadline Systems
Global EDF and Sporadic Implicit-Deadline Systems
EDF(k) Scheduling Algorithm

Scheduling Anomalies – Example III

Unfortunately, if we increase the period of τ1 from 4 to 5, the same
scheduler (global DM) will cause τ3 to miss its deadline at instant 8.

P2

0 2

τ2

5 7

τ2

P1

0

τ1

1 4

τ3

5

τ1

6 7

τ3

6

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 34–61



Introduction
Global DM

Incomparability
Partitioned Scheduling

Global Scheduling
References

No online optimal scheduler exists
Scheduling Anomalies
Sustainability
Periodic Implicit-Deadline Systems
Sporadic Arbitrary-Deadline Systems
Global EDF and Sporadic Implicit-Deadline Systems
EDF(k) Scheduling Algorithm

Consequences of Scheduling Anomalies

I In order to check the schedulability of sporadic tasks, there is no
interest (at least it is not sufficient) to check the synchronous
periodic sub-case.

I That question is in fact an open question:

We have no idea what the critical instant is in the
context of multiprocessor scheduling

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 35–61



Introduction
Global DM

Incomparability
Partitioned Scheduling

Global Scheduling
References

No online optimal scheduler exists
Scheduling Anomalies
Sustainability
Periodic Implicit-Deadline Systems
Sporadic Arbitrary-Deadline Systems
Global EDF and Sporadic Implicit-Deadline Systems
EDF(k) Scheduling Algorithm

Sustainability I

Definition 10 (Sustainability [Baruah and Burns, 2006])
A schedulability test for a scheduling policy is sustainable if any system
deemed schedulable by the schedulability test remains schedulable
when the parameters of one or more individual jobs are changed in any,
some, or all of the following ways: (i) decreased execution
requirements; (ii) later arrival times; and (iii) larger relative deadlines.

In the framework of this chapter, we are focusing on sustainable
schedulers with respect to the execution requirement parameters (also
known as predictability).

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 36–61



Introduction
Global DM

Incomparability
Partitioned Scheduling

Global Scheduling
References

No online optimal scheduler exists
Scheduling Anomalies
Sustainability
Periodic Implicit-Deadline Systems
Sporadic Arbitrary-Deadline Systems
Global EDF and Sporadic Implicit-Deadline Systems
EDF(k) Scheduling Algorithm

Sustainability II

Definition 11 (Sustainable with Respect to the Execution
Requirements)
Let’s consider the sets of jobs J and J′ which differ only with regards to
their execution times: the jobs in J have execution times less than or
equal to the execution times of the corresponding jobs in J′. A
scheduling algorithm A is sustainable with respect to the execution
requirements if, when applied independently on J and J′, a job in J
finishes execution before or at the same time as the corresponding job
in J′.

I The sustainability property (with respect to the execution
requirements) is important in the design of real-time systems since
it allows the designers to focus on the worst-case execution times
(WCET).

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 37–61



Introduction
Global DM

Incomparability
Partitioned Scheduling

Global Scheduling
References

No online optimal scheduler exists
Scheduling Anomalies
Sustainability
Periodic Implicit-Deadline Systems
Sporadic Arbitrary-Deadline Systems
Global EDF and Sporadic Implicit-Deadline Systems
EDF(k) Scheduling Algorithm

Sustainability III

I Fortunately, FJP schedulers are sustainable (with respect to the
execution requirements)

Theorem 12 ([Cucu-Grosjean and Goossens, 2010])
FJP schedulers are sustainable (with respect to the execution
requirements) on unrelated platforms.

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 38–61



Introduction
Global DM

Incomparability
Partitioned Scheduling

Global Scheduling
References

No online optimal scheduler exists
Scheduling Anomalies
Sustainability
Periodic Implicit-Deadline Systems
Sporadic Arbitrary-Deadline Systems
Global EDF and Sporadic Implicit-Deadline Systems
EDF(k) Scheduling Algorithm

Periodic Implicit-Deadline Systems — Necessary and
Sufficient Condition I

Theorem 13
Any Periodic Implicit-Deadline System is feasible iff

U(τ) 6 m and Umax(τ) 6 1

The argument used for feasibility under those conditions is to consider
the “shared processor”schedule adapted to the multiprocessor context. It
can be obtained by partitioning the timeline into infinitesimal slots and
by scheduling a task τi for a fraction proportional to U(τi) in each slot.

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 39–61



Introduction
Global DM

Incomparability
Partitioned Scheduling

Global Scheduling
References

No online optimal scheduler exists
Scheduling Anomalies
Sustainability
Periodic Implicit-Deadline Systems
Sporadic Arbitrary-Deadline Systems
Global EDF and Sporadic Implicit-Deadline Systems
EDF(k) Scheduling Algorithm

Introduction to PFAIR I

I We will introduce the general notion of fairness that is the
cornerstone of the class of PFAIR schedulers.

I Fairness requires us to schedule each task at a quasi-constant rate.
I For periodic tasks, each task τi progresses approximately at a rate of

U(τi), at least if we consider large intervals. In small intervals, the
rate can vary a bit (we will formalize this aspect).

I For the particular case of synchronous implicit-deadline periodic
tasks, PFAIR is an optimal strategy.

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 40–61



Introduction
Global DM

Incomparability
Partitioned Scheduling

Global Scheduling
References

No online optimal scheduler exists
Scheduling Anomalies
Sustainability
Periodic Implicit-Deadline Systems
Sporadic Arbitrary-Deadline Systems
Global EDF and Sporadic Implicit-Deadline Systems
EDF(k) Scheduling Algorithm

PFAIR Scheduling

I We consider synchronous implicit-deadline periodic tasks and we
assume a quantum-based scheduler. The period of time for which a
process is allowed to run in a preemptive multitasking system is
generally called the time slice, or quantum. The scheduler is called
once every time slice to choose the next processes to run.

I The scheduler definition requires the formalization of the schedule:
a function S : τ × Z 7→ {0, 1}, where τ is a periodic task set.

I S(τi, t) = 1 means that τi is scheduled in the slice [t, t + 1) and
S(τi, t) = 0 means otherwise.

I In an ideal fair schedule, each task τi receives U(τi)× t processor
units during the interval [0, t) (which implies that all deadlines are
met). Notice that such a schedule is not necessarily possible using a
quantum-based (i.e. discrete) timeline.

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 41–61



Introduction
Global DM

Incomparability
Partitioned Scheduling

Global Scheduling
References

No online optimal scheduler exists
Scheduling Anomalies
Sustainability
Periodic Implicit-Deadline Systems
Sporadic Arbitrary-Deadline Systems
Global EDF and Sporadic Implicit-Deadline Systems
EDF(k) Scheduling Algorithm

Lag

I The idea behind PFAIR is to mimic the ideal fair schedule as closely
as possible. At any instant, the difference between the actual
schedule and the ideal fair schedule is formalized using the notion
of lag. The lag of task τi at time t, denoted lag(τi, t) is defined as
follows:

lag(τi, t)
def
= U(τi) · t−

t−1∑
`=0

S(τi, `). (1)

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 42–61



Introduction
Global DM

Incomparability
Partitioned Scheduling

Global Scheduling
References

No online optimal scheduler exists
Scheduling Anomalies
Sustainability
Periodic Implicit-Deadline Systems
Sporadic Arbitrary-Deadline Systems
Global EDF and Sporadic Implicit-Deadline Systems
EDF(k) Scheduling Algorithm

PFAIR Schedules I

Definition 14 (PFAIR Schedule)
A schedule has the PFAIR property iff

− 1 < lag(τi, t) < 1 ∀τi ∈ τ, t ∈ Z. (2)

I Informally speaking, Equation 2 requires that the difference with
the ideal fair schedule is not larger than the unity at any time, or
equivalently that τi must receive bU(τi) · tc or dU(τi) · te in the
interval [0, t).

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 43–61



Introduction
Global DM

Incomparability
Partitioned Scheduling

Global Scheduling
References

No online optimal scheduler exists
Scheduling Anomalies
Sustainability
Periodic Implicit-Deadline Systems
Sporadic Arbitrary-Deadline Systems
Global EDF and Sporadic Implicit-Deadline Systems
EDF(k) Scheduling Algorithm

PFAIR Schedules II

Theorem 15
PFAIRness implies that all deadlines are met.

Proof. Each periodic task τi must receive Ci processor units in each
interval [` · Ti, (`+ 1) · Ti), with ` ∈ N. At time t = ` · Ti,
U(τi) · t = (Ci/Ti) · ` · Ti = ` · Ci, a natural number. From Equation 2, we
have that at time t = ` · Ti, the allocation of PFAIR corresponds to the
ideal fair schedule. Since all deadlines are met in the ideal fair schedule,
it is also the case for PFAIR.

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 44–61



Introduction
Global DM

Incomparability
Partitioned Scheduling

Global Scheduling
References

No online optimal scheduler exists
Scheduling Anomalies
Sustainability
Periodic Implicit-Deadline Systems
Sporadic Arbitrary-Deadline Systems
Global EDF and Sporadic Implicit-Deadline Systems
EDF(k) Scheduling Algorithm

PFAIR Example

τ1

(1/2)
? ? ? ? ? ? ? ?

0 2 4 6 8 10 12 14

τ2

(1/3)

? ? ? ? ?

τ3

(1/3)

? ? ?

τ4

(1/5)

? ? ? ?

τ5

(1/10)

? ?

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 45–61



Introduction
Global DM

Incomparability
Partitioned Scheduling

Global Scheduling
References

No online optimal scheduler exists
Scheduling Anomalies
Sustainability
Periodic Implicit-Deadline Systems
Sporadic Arbitrary-Deadline Systems
Global EDF and Sporadic Implicit-Deadline Systems
EDF(k) Scheduling Algorithm

PFAIR Optimality I

Theorem 16 ([Baruah et al., 1996])
Let τ be a periodic synchronous implicit-deadline system. A PFAIR

schedule exists for τ on m processors iff

U(τ) 6 m and Umax 6 1. (3)

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 46–61



Introduction
Global DM

Incomparability
Partitioned Scheduling

Global Scheduling
References

No online optimal scheduler exists
Scheduling Anomalies
Sustainability
Periodic Implicit-Deadline Systems
Sporadic Arbitrary-Deadline Systems
Global EDF and Sporadic Implicit-Deadline Systems
EDF(k) Scheduling Algorithm

PFAIR Optimality II

I In other words, PFAIR schedules any schedulable system. Thus,
PFAIR is optimal.

I Notice this does not contradict Theorem 7 (non-existence of online
optimal schedulers) (Slide 25) since we only consider periodic tasks
in this case (as such, we know the release times of all future jobs).

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 47–61



Introduction
Global DM

Incomparability
Partitioned Scheduling

Global Scheduling
References

No online optimal scheduler exists
Scheduling Anomalies
Sustainability
Periodic Implicit-Deadline Systems
Sporadic Arbitrary-Deadline Systems
Global EDF and Sporadic Implicit-Deadline Systems
EDF(k) Scheduling Algorithm

PFAIR Schedulers

Concerning algorithms to generate PFAIR schedules, we can report the
following works: PF [Baruah et al., 1996], PD [Baruah et al., 1995] and
PD2 [Anderson and Srinivasan, 2000].

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 48–61



Introduction
Global DM

Incomparability
Partitioned Scheduling

Global Scheduling
References

No online optimal scheduler exists
Scheduling Anomalies
Sustainability
Periodic Implicit-Deadline Systems
Sporadic Arbitrary-Deadline Systems
Global EDF and Sporadic Implicit-Deadline Systems
EDF(k) Scheduling Algorithm

Sporadic Arbitrary-Deadline Systems

I First, it is easy to see that Theorem 13 (Slide 42) can be adapted by
replacing the utilization with the density to yield a sufficient test.

Theorem 17
The following condition is sufficient for feasibility of any sporadic
arbitrary-deadline system:

λsum(τ) 6 m and λmax(τ) 6 1

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 49–61



Introduction
Global DM

Incomparability
Partitioned Scheduling

Global Scheduling
References

No online optimal scheduler exists
Scheduling Anomalies
Sustainability
Periodic Implicit-Deadline Systems
Sporadic Arbitrary-Deadline Systems
Global EDF and Sporadic Implicit-Deadline Systems
EDF(k) Scheduling Algorithm

Global EDF and Sporadic Implicit-Deadline Systems

Theorem 18 ([Srinivasan and Baruah, 2002])
Any Sporadic Implicit-Deadline System is schedulable using global EDF

on m processors if
U(τ) 6 m− (m− 1)Umax

Notice that this test is very pessimistic if Umax ≈ 1. We will introduce
the EDF(k) algorithm which addresses this drawback.

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 50–61



Introduction
Global DM

Incomparability
Partitioned Scheduling

Global Scheduling
References

No online optimal scheduler exists
Scheduling Anomalies
Sustainability
Periodic Implicit-Deadline Systems
Sporadic Arbitrary-Deadline Systems
Global EDF and Sporadic Implicit-Deadline Systems
EDF(k) Scheduling Algorithm

EDF(k) Scheduling Algorithm I

I In order to simplify notations, we assume
U(τ1) > U(τ2) > · · · > U(τn) in the following.

I We also introduce the notation τ (i) to denote the set of the
(n− i + 1) tasks with the lowest utilization factors of τ :

τ (i)
def
= {τi, τi+1, . . . , τn}

I We can derive the following from Theorem 18:

m >

⌈
U(τ)−U(τ1)

1−U(τ1)

⌉
I We can adapt EDF slightly to require a smaller number of

processors than
⌈

U(τ)−U(τ1)
1−U(τ1)

⌉
.

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 51–61



Introduction
Global DM

Incomparability
Partitioned Scheduling

Global Scheduling
References

No online optimal scheduler exists
Scheduling Anomalies
Sustainability
Periodic Implicit-Deadline Systems
Sporadic Arbitrary-Deadline Systems
Global EDF and Sporadic Implicit-Deadline Systems
EDF(k) Scheduling Algorithm

EDF(k) Scheduling Algorithm II

Definition 19 (EDF(k))
I For all i < k, the jobs of τi receive the maximal priority (which can

be done by modifying their absolute deadlines to −∞).
I For all i > k, the jobs of τi are assigned priorities according to EDF.

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 52–61



Introduction
Global DM

Incomparability
Partitioned Scheduling

Global Scheduling
References

No online optimal scheduler exists
Scheduling Anomalies
Sustainability
Periodic Implicit-Deadline Systems
Sporadic Arbitrary-Deadline Systems
Global EDF and Sporadic Implicit-Deadline Systems
EDF(k) Scheduling Algorithm

EDF(k) Scheduling Algorithm III

I In other words, EDF(k) gives the highest priority to the jobs of the
k− 1 first tasks of τ and schedules the other tasks according to EDF.

I Notice that “pure” EDF corresponds to EDF(1).

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 53–61



Introduction
Global DM

Incomparability
Partitioned Scheduling

Global Scheduling
References

No online optimal scheduler exists
Scheduling Anomalies
Sustainability
Periodic Implicit-Deadline Systems
Sporadic Arbitrary-Deadline Systems
Global EDF and Sporadic Implicit-Deadline Systems
EDF(k) Scheduling Algorithm

EDF(k) Scheduling Algorithm IV

Theorem 20 ([Goossens et al., 2003])
A sporadic implicit-deadline system is schedulable on m processors
using EDF(k) if

m = (k− 1) +
⌈

U(τ (k+1))

1−U(τk)

⌉
(4)

I Informally, EDF(k) requires a processor (π1) for the jobs of τ1, π2 for
the jobs of τ2, . . . , πk−1 for the jobs of τk−1 and uses EDF for the
jobs of the others tasks τk, . . . , τn on additional processors
(πk, . . . , π

k−1+
⌈

U(τ(k+1))
1−U(τk)

⌉)

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 54–61



Introduction
Global DM

Incomparability
Partitioned Scheduling

Global Scheduling
References

No online optimal scheduler exists
Scheduling Anomalies
Sustainability
Periodic Implicit-Deadline Systems
Sporadic Arbitrary-Deadline Systems
Global EDF and Sporadic Implicit-Deadline Systems
EDF(k) Scheduling Algorithm

EDF(k) Scheduling Algorithm V

Corollary 21
A sporadic implicit-deadline system τ is schedulable on mmin processors
using EDF(mmin) with

mmin(τ)
def
=

n
min
k=1

{
(k− 1) +

⌈
U(τ (k+1))

1−U(τk)

⌉}
(5)

Let kmin(τ) be the k which minimizes Equation 5:

mmin(τ) = (kmin(τ)− 1) +
⌈

U(τ (kmin(τ)+1))

1−U(τkmin)

⌉

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 55–61



Introduction
Global DM

Incomparability
Partitioned Scheduling

Global Scheduling
References

No online optimal scheduler exists
Scheduling Anomalies
Sustainability
Periodic Implicit-Deadline Systems
Sporadic Arbitrary-Deadline Systems
Global EDF and Sporadic Implicit-Deadline Systems
EDF(k) Scheduling Algorithm

EDF(k) – Example I

Consider the system τ composed of 5 tasks:

τ = {(9, 10), (14, 19), (1, 3), (2, 7), (1, 5)};

we have: U(τ1) = 0.9, U(τ2) = 14/19 ≈ 0.737, U(τ3) = 1/3,
U(τ4) = 2/7 ≈ 0.286, et U(τ5) = 0.2; U(τ) ≈ 2.457.
We can see that Equation 5 is minimized for k = 3; thus, kmin(τ) = 3
and mmin(τ) is

(3− 1) +
⌈

0.286 + 0.2
1− 0.334

⌉
= 2 +

⌈
0.486
0.667

⌉
= 3

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 56–61



Introduction
Global DM

Incomparability
Partitioned Scheduling

Global Scheduling
References

No online optimal scheduler exists
Scheduling Anomalies
Sustainability
Periodic Implicit-Deadline Systems
Sporadic Arbitrary-Deadline Systems
Global EDF and Sporadic Implicit-Deadline Systems
EDF(k) Scheduling Algorithm

EDF(k) – Example II

Consequently, τ can be scheduled with EDF(3) on 3 processors.

On the other hand, Theorem 18 cannot guarantee schedulability below⌈
U(τ)−U(τ1)

1−U(τ1)

⌉
≈ d1.557/0.1e = 16 processors using “pure” EDF.

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 57–61



Introduction
Global DM

Incomparability
Partitioned Scheduling

Global Scheduling
References

References I

[Anderson and Srinivasan, 2000] Anderson, J. and Srinivasan, A.
(2000).
Early-release fair scheduling.
In 12th Euromicro Conference on Real-Time Systems, pages 35–43.

[Andersson, 2003] Andersson, B. (2003).
Static-priority scheduling on multiprocessors.
PhD thesis, Chalmers University of Technology.

[Baruah, 2007] Baruah, S. (2007).
Techniques for multiprocessor global schedulability analysis.
In Real-Time Systems Symposium, pages 119–128. IEEE Computer
Society.

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 58–61



Introduction
Global DM

Incomparability
Partitioned Scheduling

Global Scheduling
References

References II

[Baruah and Burns, 2006] Baruah, S. and Burns, A. (2006).
Sustainable scheduling analysis.
In 27th IEEE International Real-Time Systems Symposium, pages
159–168. IEEE Computer Society.

[Baruah et al., 1996] Baruah, S., Cohen, N., Plaxton, C. G., and Varvel,
D. (1996).
Proportionate progress: A notion of fairness in resource allocation.
Algorithmica, 15:600–625.

[Baruah et al., 1995] Baruah, S., Gehrke, J., and Plaxton, C. G. (1995).
Fast scheduling of periodic tasks on multiple resources.
In 9th International Parallel Processing, pages 280–288.

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 59–61



Introduction
Global DM

Incomparability
Partitioned Scheduling

Global Scheduling
References

References III

[Cucu-Grosjean and Goossens, 2010] Cucu-Grosjean, L. and Goossens,
J. (2010).
Predictability of fixed-job priority schedulers on heterogeneous
multiprocessor real-time systems.
Information Processing Letters, 110:399–402.

[Fisher et al., 2010] Fisher, N., Goossens, J., and Baruah, S. (2010).
Optimal online multiprocessor scheduling of sporadic real-time tasks
is impossible.
Real-Time Systems: The International Journal of Time-Critical
Computing, 45(1–2):26–71.

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 60–61



Introduction
Global DM

Incomparability
Partitioned Scheduling

Global Scheduling
References

References IV

[Goossens et al., 2003] Goossens, J., Funk, S., and Baruah, S. (2003).
Priority-driven scheduling of periodic task systems on
multiprocessors.
Real-Time Systems: The International Journal of Time-Critical
Computing, 25:187–205.

[Hong and Leung, 1988] Hong, K. and Leung, J. (1988).
On-line scheduling of real-time tasks.
In Real-Time Systems Symposium.

[Srinivasan and Baruah, 2002] Srinivasan, A. and Baruah, S. K. (2002).
Deadline-based scheduling of periodic task systems on
multiprocessors.
Information Processing Letters, 84:93–98.

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 61–61


	Introduction
	Limited Parallelism
	Taxonomy of Multiprocessor Platforms
	Taxonomy of Multiprocessor Schedulers

	Global dm
	Incomparability
	Density
	Necessary Definition

	Partitioned Scheduling
	Introduction
	Rate Monotonic
	edf

	Global Scheduling
	No online optimal scheduler exists
	Scheduling Anomalies
	Sustainability
	Periodic Implicit-Deadline Systems
	Sporadic Arbitrary-Deadline Systems
	Global edf and Sporadic Implicit-Deadline Systems
	edf(k) Scheduling Algorithm


