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Joël GOOSSENS (U.L.B.) INFO-F404, Real-Time Operating Systems 1–36



Parallel algorithms

A) Parallel algorithms

Joël GOOSSENS (U.L.B.) INFO-F404, Real-Time Operating Systems 2–36



Introduction I

I In this introduction, we will see that there are limits to parallelizing
programs (regardless of whether we have an unlimited amount of
processors at our disposal).

I Parallelizing comes at a cost due to overheads related to
synchronization, message exchanges, etc.

I We’ll begin by defining the concept of speedup factor:

Definition 1 (Speedup factor)
The speedup factor S(n) is a measure of the relative performance
difference between the sequential and parallel versions of a program.
We define it as follows:

S(n) =
ts
tp

where ts denotes the execution time of the uniprocessor (sequential)
version and tp denotes the execution time of the multiprocessor
(parallel) version using n processors.
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Introduction II

I When comparing sequential and parallel versions of an algorithm,
we usually consider the fastest known sequential algorithm.

I The maximum speedup factor that can be gained using n
processors is n (linear speedup principle).

I If the speedup factor would be greater than n, it would mean that
the parallel algorithm could be “simulated” on a single processor,
contradicting the assumption that the original sequential algorithm
was the fastest known.
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Cost of parallelizing

I Parallelizing has several costs which we must consider:
I Instants when not all processors are busy. This includes instants

where only one processor is busy due to the intrinsic sequential
nature of a given step or part of the problem.

I Additional computations in the parallel version.
I Communication delays.
I Parallel algorithms are harder to design.
I etc.
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Maximum speedup — AMDAHL’s law

I Let f be the fraction of sequential computations of a parallel
program. (1− f) is thus the fraction of computations which can be
parallelized. Then, the total computation time required by the
program (assuming n processors are used) is f · ts + (1− f) · ts

n .
I Therefore, the speedup factor is:

S(n) =
ts

f · ts + (1− f) · ts
n

=
n

1 + (n− 1) · f

I This equation is known as AMDAHL’s law (AMDAHL, 1967).
I A corollary of the law is that the speedup factor has an upper

bound, even with an unlimited number of processors:

lim
n→∞

S(n) =
1
f

I For example, if only 5% of the computations are sequential, the
maximum speedup factor we can hope for is 20, regardless of the
number of processors.
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Rank Sort, sequential version

I During a Rank Sort, we compute the number of items smaller than
each item. This number is then the position (rank) of the given item
in the sorted array.

I The sequential version of this algorithm has a time complexity of
O(n2), making it a poor sequential sorting algorithm:

for (i=0; i<n; i++){ //for each number

x = 0;

for (j=0; j<n; j++)

if (a[i]>a[j]) x++;

b[x] = a[i];

}
I The algorithm above assumes the array only holds unique values.

Handling of duplicate values is left as an exercise.
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Rank Sort with n processors

I Each processor can determine the rank of a single item in O(n)
time:

for (i=0; i<n; i++){ //for each number in parallel

x = 0;

for (j=0; j<n; j++)

if (a[i]>a[j]) x++;

b[x] = a[i];

}
I The parallel version thus has a time complexity of O(n), which is

better than any sequential comparison sort.
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Bitonic sort I

These slides are based on reference [4].

Definition 2 (Bitonic sequence)
A sequence (a1, a2, . . . , a2k) is said to be bitonic iff:

I Either there is an integer j, 1 6 j 6 2k, such that

a1 6 a2 6 · · · 6 aj > aj+1 > aj+2 > a2k

I Or the sequence does not initially satisfy the previous condition,
but can be shifted cyclically until the condition is satisfied.

Definition 3 (Compare-and-swap)
The compare-and-swap instruction receives a distinct pair of elements as
input and produces an ordered pair (in either increasing or decreasing
order) as output in one time unit (will be used in time complexity
analysis).
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Bitonic sort II

Example 4
The following sequence: 3 5 8 9 7 4 2 1 is bitonic.

We assume that the length of the sequence to be sorted is an integer
power of 2.

Property 5
Let (a1, a2, . . . , a2k) be a bitonic sequence, and let di = min(ai, ak+i) and
ei = max(ai, ak+i), for i = 1, 2, . . . , k. The following properties hold:

I The sequences (d1, d2, . . . , dk) and (e1, e2, . . . , ek) are both bitonic
I max(d1, d2, . . . , dk) 6 min(e1, e2, . . . , ek)
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Sorting a Bitonic Sequence

Given a bitonic sequence (a1, a2, . . . , a2k), it can be sorted into a
sequence (c1, c2, . . . , c2k), arranged in nondecreasing order, by the
following algorithm Merge2k using nondecreasing compare-and-swaps:

Step 1 The two sequences (d1, d2, . . . , dk) and (e1, e2, . . . , ek)
are produced.

Step 2 These two bitonic sequences are sorted independently
and recursively, each by a call to Mergek.

Step 3 Sorted sequences (d′1, . . . , d
′
k) and (e′1, . . . , e

′
k) are

concatenated and returned.

Remarks:
I the two sequences can be sorted independently since no element

of (d1, d2, . . . , dk) is larger than any element of (e1, e2, . . . , ek);
I the recursion terminates when k = 2, using a single

compare-and-swap.
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Sorting an Arbitrary Sequence

Algorithm Merge2k assumes that the input sequence is bitonic.
Given an arbitrary sequence (a1, a2, . . . , an), consider the n/2
compare-and-swaps for the pairs (a1, a2), (a3, a4), . . . , (an−1, an). For
odd-numbered compare-and-swaps, place the smallest value first. For
even-numbered compare-and-swaps, place the largest value first.
At the end of the first stage, n/4 bitonic sequences of length 4 are
obtained. These sequences can be sorted using Merge4. Odd-numbered
instances get sorted by nondecreasing order, whereas even-numbered
instances get sorted by nonincreasing order. This yields n/8 bitonic
sequences, each of length 8.
The process repeats until a single bitonic sequence of length n is
obtained.
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Computational Complexity of the Bitonic Sort

Considering 2k = 2i, the time to complete Merge2k is given by the
following recurrence:

d(2) = 1

d(2i) = 1 + d(2i−1)

whose solution is d(2i) = i. Consequently, the total computational
complexity is:

log n∑
i=1

d(2i) =

log n∑
i=1

i =
(1 + log n) log n

2

I The computational complexity of the Bitonic Sort is O((log n)2).
I The maximal number of compare-and-swaps required is
O(n(log n)2) (see [4] for details).
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Parallelizing schedulability tests

I We will now study parallelizing of a tool we introduced during the
lectures on real-time scheduling.

I The vast majority of schedulability tests work by simulating the
system in a feasibility interval and checking whether any deadline
is missed.

I However, simulation is mostly a sequential notion.
I We will attempt to identify conditions under which a simulation

may be parallelized.
I These conditions (work-conservation, determinism and partial

memorylessness) are quite general and hold for most popular
uniprocessor scheduling algorithms.
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Assumptions

I We consider work-conserving schedulers. This implies that the
processor is never left idle as long as jobs are ready to run.

I We consider uniprocessor schedulers.
I We consider deterministic schedulers. Given an arbitrary set of

jobs, the algorithm generates a unique schedule.
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Idle instants

I As a reminder, x ∈ N is an idle instant if all jobs that arrived strictly
before instant x are completed before or at instant x.

I We consider partially memoryless schedulers. Let it denote the
latest idle instant strictly before instant t. A scheduler is partially
memoryless if the decisions taken at instant t only depend on the
schedule for instants in [it, t) and the system state at instant t.

I Let [t0, tk) be the feasibility interval for a given simulation and let
t1, t2, . . . , tk−1 be distinct idle instants in the schedule. If the
scheduler is deterministic, partially memoryless and
work-conserving, then each of the k intervals [t0, t1), [t1, t2), . . . ,
[tk−1, tk) can be simulated in parallel.
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Example

3 periodic tasks (T1 = 10,C1 = 7,O1 = 0; T2 = 15,C2 = 1,O2 =
4; T3 = 16,C3 = 3,O3 = 0)
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Problem

I It’s easy to determine idle instants for work-conserving schedulers
but in a sequential manner.

I As such, how can we hope to speedup execution through
parallelization?
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Theoretical foundations I

Lemma 6
Let J be an arbitrary set of jobs and let σ be the schedule produced by a
scheduler A. Let us assume that there is an idle instant t in σ. Let J′ be a
subset of J (J′ ⊆ J) and let σ′ be the schedule obtained with an arbitrary
but work-conserving scheduler B. Then, instant t is also idle in σ′.

(Proof: see uniprocessor chapter.)

σ′(J′ ⊆ J)

σ(J)

t

?
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Theoretical foundations II

Lemma 7 ([1])
Let J be an arbitrary set of jobs and let σ be the schedule produced by a
scheduler A. Let σ′ be the schedule produced by the same scheduler
but by only considering jobs arriving at or after instant t1. Let t2 be the
first idle instant strictly after t1 in schedule σ. If a deadline is missed at
instant t3 in σ′ where t3 > t2, then a deadline is missed in the initial
schedule σ at instant t3. Thus, system J is not schedulable.

σ′

σ

t1 t3

t2
6
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Reasonable schedulers I

I If a scheduler that successfully schedules a set of jobs J can also
successfully schedule any subset of J, the scheduler is said to be
reasonable.

I We’ve seen that popular uniprocessor schedulers are
work-conserving and deterministic. It can also be shown that they
are reasonable.

I Do note that some schedulers may not be. For example,
non-preemptive schedulers are usually not reasonable:

?

?

?
cc c

1

1

2

I For reasonable schedulers, we have a stronger property than
Lemma 7:

If a deadline is missed in σ′, then a deadline is missed in the initial
schedule σ. The system is thus unschedulable.
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Lemma 7 in practice

I Lemma 7 will allow us to parallelize our simulation on feasibility
interval [t0, tk) over k processors for deterministic, work-conserving
and partially memoryless schedulers. They need not necessarily be
reasonable.

I Let’s illustrate the main idea:

σ0
t0 t1

I0

σ1
t2

I1

σ2 . . .
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More formally

I Theorem 8
Let J be an arbitrary set of jobs and let σ be the schedule produced by a
work-conserving, deterministic and partially memoryless scheduler. Let
t0 be the first instant where a job of J appears in the system. Let t1, t2, . . .
be instants such that t0 6 t1 6 t2 6 · · · . Let σj (j > 0) be the schedule
obtained by only considering jobs of J that arrive at or after instant tj. Let
Ij (j > 0) be the first idle instant after instant tj+1 in σj. Let λj be defined
as follows:

λ0 = t0
λj = max

06`<j
{I`} , for j > 0

We then have that for all j > 0,

t > λj ⇒ (σj(t) = σ(t))
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Parallelizing the simulation

I k processors π0, π1, . . . , πk−1

I We pick (t0), t1, . . . , tk−1, (tk)
I Processor πj (0 6 j < k) will simulate the system by only

considering jobs arriving at or after instant tj.
I The simulation on πj may terminate (for feasible systems) after

having simulated an idle instant after tj+1, which is instant Ij by
definition.

I The system is unfeasible if and only if ∃πj · 0 6 j < k that simulates
a deadline miss in interval [λj, Ij).

I Note that if the scheduler is not reasonable and that we miss a
deadline on processor πj before instant λj, we cannot conclude that
the system is unfeasible!

I πj (j > 0) does not initially know λj. Therefore, πj must keep track
of the last missed deadline (if there is one at all).
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Pseudo-algorithm [2] I

1. Initially, the values of tj and tj+1 are communicated to processor πj

2. In addition, the parameters of all jobs of the real-time system that are
generated at or after instant tj must be communicated to processor πj –
note that for many task models (such as periodic tasks) this information
may be determined on line by πj during its generation of simulation γj, if
the parameters of the periodic tasks that comprise the real-time system are
communicated to πj beforehand.

3. πj simulates the behavior of the (deterministic, partially memoryless and
work-conserving) scheduling algorithm on its set of jobs until an idle
instant Ij at or after tj+1 is identified during the simulation. If
feasibility-analysis is the goal, then if deadline misses occur during this
simulation, πj records the time at which the latest deadline miss occurred
but continues the simulation – the exact scheduling rule used for
scheduling jobs that have missed deadlines is not important, other than
that it continue to conform to the property of being work-conserving. If
on-line admission control is the goal, then πj writes to the file Fj all the
idle times identified during this simulation.
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Pseudo-algorithm [2] II

4. Processor π0 knows the value of λ0 beforehand (since λ0 = t0 by
definition); for all j > 0, πj will receive the value of λj from πj−1.

5. Once πj knows λj and Ij, it computes λj+1 = {λj, Ij}, and communicates
this value to πj+1.
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Parallelizing a more specific problem I

I Scheduling of asynchronous periodic tasks under constrained
deadlines.

I A task τi is characterized by Ti (its period), Di (its relative deadline),
Ci (its worst-case execution time) and Oi (its offset).

I [t0 = min{Oi}, tk = max{Oi}+ 2 · lcm{Ti}) is a feasibility interval
for EDF.

I We can prove the following property:

Lemma 9
πj (j < k− 1) finishes its simulation at instant tj+1 + Lm at the latest,
where Lm is the length of the longest busy period.

I Lm corresponds to the first busy period in the synchronous
configuration:

Lm =
n∑

i=1

⌈
Lm

Ti

⌉
× Ci,

I Research has shown that Lm � P ([3])
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Parallelizing a more specific problem II

I Therefore, we can establish an upper bound on the time
complexity of the parallel version:

Theorem 10 ([1])
The maximal time complexity of the parallel feasibility test for
asynchronous periodic systems under constrained deadlines for any
work-conserving, deterministic and partially memoryless scheduler is
O
(
Lm + max

{
tj+1 − tj

∣∣ j = 0, . . . , k− 1
})

I The speedup factor yielded by parallelization is proportional to P
Lm .

I If the number of processors is bounded (i.e. is exactly k), the
maximal time complexity becomes O( P

k + Lm).
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Experimental evaluation

I Pseudo-random generation of asynchronous periodic task sets with
constrained deadlines.

I Ci ∈ [1, 20],Di ∈ [2, 170], Ti ∈ [3, 670]
I Order of magnitude of P was 109.
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Speedup distribution using 10 processors — tmono
tmulti
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MPI algorithms for reasonable schedulers I

I Algorithm executed by processor πk−1
Begin

feasible← Verification γk−1; {décrit supra}
MPIBarrier();
MPIIprobe();
If (message(s))
{

MPIRecv();
feasible← false;

}
Return feasible;

End.
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MPI algorithms for reasonable schedulers II

I Algorithm executed by processor πi (0 < i < k)
Begin

Verification γi;
MPIBarrier().; End.

I Verification algorithm γj

Input: n, Ti,Ci,Di,Oi, tj, tj+1, j

Local variables:
Natural Ij; {the first idle point after time tj+1}
Boolean simulationfails;
Natural t; {the current time}

Begin
t← tj;
simulationfails← false;
Ij ← tk;
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MPI algorithms for reasonable schedulers III

While ((¬simulationfails) ∧ (t < Ij))
{

Schedule until the next event;
{which implies the updating of t and Ij}
If (deadline miss)
{

simulationfails← true;
{stops the current simulation}
MPISend(); {stops all (running) simulations}

}
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MPI algorithms for reasonable schedulers IV

MPIIprobe();
If (message(s))
{

MPIRecv();
simulationfails← true;
{stops the current simulation}

}
} {While}
Return ¬simulationfails

End.
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Joël GOOSSENS (U.L.B.) INFO-F404, Real-Time Operating Systems 36–36


