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Concurrency

A) Concurrency
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Main reference

I M. BEN-ARI, “Principles of Concurrent and Distributed
Programming”, Addison-Wesley, 2006.

I The algorithms and diagrams shown in this chapter are mainly from
that book.
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Introduction

I An “ordinary” program is said to be sequential. After compilation,
it is made up of a sequence of instructions that are executed in
order. They may access main memory (RAM) or secondary
memory (disks).

I A “concurrent” program is a set of sequential programs that may be
executed in parallel.

I The word parallel is used to denote hardware architectures made
up of several processing units.

I The word concurrent is reserved for designating cases where there
can potentially be parallelism, i.e. cases where execution of
different programs may be interlaced (through time sharing).

I Concurrency is thus an abstraction.
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Concurrent execution I

I A concurrent program is a set of processes.
I A process is a sequence of atomic instructions (will be defined later)
I The execution of a concurrent program produces a sequence of

atomic instructions among all possible interleavings.
I Example: if a process p is made of instructions p1 and p2, and a

process q is made of instructions q1 and q2, the possible concurrent
execution scenarios of p and q are the following:

p1→q1→p2→q2,
p1→q1→q2→p2,
p1→p2→q1→q2,
q1→p1→q2→p2,
q1→p1→p2→q2,
q1→q2→p1→p2.
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Concurrent execution II

Let’s take a look at a first concurrent program:

Trivial concurrent program
integer n← 0

p q
integer k1← 1 integer k2← 2

p1: n← k1 q1: n← k2
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State diagrams I

I We shall describe concurrent program execution through the use of
state diagrams.

I Let’s first have a look at the particular case of a sequential program:

Trivial sequential program
integer n← 0
integer k1← 1
integer k2← 2

p1: n← k1
p2: n← k2

The following state diagram shows the possible states and state
transitions of the program:
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k1 = 1, k2 = 2
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�
�
�
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n = 1
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�
�
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n = 2

�
�
�
�- -

I For the previously shown concurrent algorithm, there were two
processes. The diagram shows all possible interleavings:
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State diagrams II
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Scenario

I A scenario is a sequence of states. We shall model them using
tables.

I In a given state, we may have to choose the instruction to be next
executed. We shall denote the choice by using bold text.

Process p Process q n k1 k2
p1: n←k1 q1: n←k2 0 1 2
(end) q1: n←k2 1 1 2
(end) (end) 2 1 2
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Atomic instructions I

I An instruction is atomic in the sense where it is always executed
completely without being interleaved with other processes.

I Consequently, if two atomic instructions are executed
simultaneously, the result will be the same as if they would be
executed sequentially, in any order.

I In the following algorithms, labeled instructions are assumed to be
atomic:

Atomic assignment statements
integer n← 0

p q
p1: n← n + 1 q1: n← n + 1
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Atomic instructions II

I There are two possible scenarios:
Process p Process q n
p1: n←n+1 q1: n←n+1 0
(end) q1: n←n+1 1
(end) (end) 2

Process p Process q n
p1: n←n+1 q1: n←n+1 0
p1: n←n+1 (end) 1
(end) (end) 2

I In both cases, the final value of n is 2. The algorithm is thus correct
under postcondition n = 2.

I Let’s change the algorithm slightly:

Assignment statements with one global reference
integer n← 0

p q
integer temp integer temp

p1: temp← n q1: temp← n
p2: n← temp + 1 q2: n← temp + 1

There are correct scenarios under postcondition n = 2. . .
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Atomic instructions III

Process p Process q n p.temp q.temp
p1: temp←n q1: temp←n 0 ? ?
p2: n←temp+1 q1: temp←n 0 0 ?
(end) q1: temp←n 1 0 ?
(end) q2: n←temp+1 1 0 1
(end) (end) 2 0 1

However, some scenarios violate that postcondition:

Process p Process q n p.temp q.temp
p1: temp←n q1: temp←n 0 ? ?
p2: n←temp+1 q1: temp←n 0 0 ?
p2: n←temp+1 q2: n←temp+1 0 0 0
(end) q2: n←temp+1 1 0 0
(end) (end) 1 0 0
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Atomic instructions IV

I In our study, assignment statements and evaluation of boolean
conditions will be considered atomic.

I This is unrealistic in practice, but gives us a simple model to
examine more complex cases where instruction interleaving occurs
at machine code (i.e. assembly language) level.
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Critical sections I

B) Critical sections
I The objective of this section is to solve the critical section problem

with two processes. We’ll study DEKKER’s algorithm in particular.

I DEKKER’s algorithm is seldom used in practice, but studying it will
allow us to showcase frequent design errors in concurrent
algorithms.
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Problem definition I

I Each of N processes executes an infinite loop split into two parts:
I critical section
I non-critical section

I A solution to the problem will be correct if the following properties
hold:

I Mutual exclusion: execution of critical sections must never be
interleaved;

I No deadlocks: we must avoid situations where processes wait for
each other.

I No starvation: each process wishing to enter its critical section must
be allowed to do so without having to wait indefinitely.

I To solve the problem, we will define synchronization mechanisms
made of a protocol that precedes the critical section (preprotocol)
and a second protocol that executes after the critical section
(postprotocol). The general structure is the following:
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Problem definition II

Critical section problem
global variables

p q
local variables local variables
loop forever loop forever

non-critical section non-critical section
preprotocol preprotocol
critical section critical section
postprotocol postprotocol
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First protocol attempt I

First attempt
integer turn← 1

p q
loop forever loop forever

p1: non-critical section q1: non-critical section
p2: await turn = 1 q2: await turn = 2
p3: critical section q3: critical section
p4: turn← 2 q4: turn← 1

I We can easily see that mutual exclusion is ensured.
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First protocol attempt II

I We can also check that deadlocks are avoided by reasoning over an
abbreviated version of the algorithm:

First attempt (abbreviated)
integer turn← 1

p q
loop forever loop forever

p1: await turn = 1 q1: await turn = 2
p2: turn← 2 q2: turn← 1

I We can also check the following state diagram:
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First protocol attempt III

I However, there are situations where p wishes to enter its critical
section but is forced to wait indefinitely (i.e. starves) because q stays
in its non-critical section, never setting the turn variable to 1.

I The issue arises because we’ve made no hypotheses on the
progression of non-critical sections.
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Second protocol attempt I

I Our first attempt was flawed due to the fact that both processes
assign and test the same global variable. If a process dies, the other
inevitably starves.

I To fix this problem, we’ll try introducing variables that are local to
each process (one per process).

I The boolean variable “wanti” indicates whether process i wishes to
enter its critical section.

I This variable remains true until the process exits its critical section.
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Second protocol attempt II

I This solution does not suffer from the starvation problem caused by
our first attempt:

Second attempt
boolean wantp← false, wantq← false

p q
loop forever loop forever

p1: non-critical section q1: non-critical section
p2: await wantq = false q2: await wantp = false
p3: wantp← true q3: wantq← true
p4: critical section q4: critical section
p5: wantp← false q5: wantq← false
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Second protocol attempt III

I Let’s have a look at the state diagram for the following abbreviated
version:

Second attempt (abbreviated)
boolean wantp← false, wantq← false

p q
loop forever loop forever

p1: await wantq = false q1: await wantp = false
p2: wantp← true q2: wantq← true
p3: wantp← false q3: wantq← false

6q
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Second protocol attempt IV

I The state diagram shows that our second attempt is flawed as well.
Indeed, mutual exclusion is violated, as can be seen in state
(p3,q3,true,true).
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Third protocol attempt I

I Our third attempt recognizes that the “await” instruction should be
part of the critical section, which amounts to moving the variable
assignment before the “await” instruction:

Third attempt
boolean wantp← false, wantq← false

p q
loop forever loop forever

p1: non-critical section q1: non-critical section
p2: wantp← true q2: wantq← true
p3: await wantq = false q3: await wantp = false
p4: critical section q4: critical section
p5: wantp← false q5: wantq← false
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Third protocol attempt II

I Unfortunately, this protocol causes deadlocks to arise:

Process p Process q wantp wantq
p1: non-critical section q1: non-critical section false false
p2: wantp←true q1: non-critical section false false
p2: wantp←true q2: wantq←true false false
p3: await wantq=false q2: wantq←true true false
p3: await wantq=false q3: await wantp=false true true

I Deadlocks are situations where the system is frozen. We can
distinguish them from livelocks where processes execute
instructions but are otherwise stuck (i.e. nothing useful gets done).
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Fourth protocol attempt I

I To fix the problem of our third attempt, we’ll try adding two
assignments in each process that make no sense in a sequential
program but that will allow to tell the other process the wish to
enter the critical section:

Fourth attempt
boolean wantp← false, wantq← false

p q
loop forever loop forever

p1: non-critical section q1: non-critical section
p2: wantp← true q2: wantq← true
p3: while wantq q3: while wantp
p4: wantp← false q4: wantq← false
p5: wantp← true q5: wantq← true
p6: critical section q6: critical section
p7: wantp← false q7: wantq← false

I We could show, through a state diagram, that mutual exclusion is
guaranteed and that no deadlocks can arise.
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Fourth protocol attempt II

I Unfortunately, this attempt also suffers from starvation:

?
q

p3: while wantq,

q3: while wantp,
true,true

�
�
�
� p3: while wantq,

q4: wantq←false,
true,true

�
�
�
� p4: wantp←false,

q4: wantq←false,
true,true

�
�
�
�

p4: wantp←false,

q5: wantq←true,

true,false

�
�
�
�p5: wantp←true,

q5: wantq←true,

false,false

�
�
�
�p5: wantp←true,

q3: while wantp,

false,true

�
�
�
�

- -

?

6

��

I If we have “perfect” interleaving, i.e. each instruction of p is
followed by an instruction of q and vice versa, then both processes
will starve indefinitely!
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DEKKER’s algorithm I

I DEKKER’s algorithm to solve the critical section problem is, in
essence, a combination of our first and fourth attempts:

DEKKER’s algorithm
boolean wantp← false, wantq← false ; integer turn← 1

p q
loop forever loop forever

p1: non-critical section q1: non-critical section
p2: wantp← true q2: wantq← true
p3: while wantq q3: while wantp
p4: if turn = 2 q4: if turn = 1
p5: wantp← false q5: wantq← false
p6: await turn = 1 q6: await turn = 2
p7: wantp← true q7: wantq← true
p8: critical section q8: critical section
p9: turn← 2 q9: turn← 1
p10: wantp← false q10: wantq← false
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DEKKER’s algorithm II

I DEKKER’s solution is similar to our fourth attempt. The algorithms
differ in the fact that the right to enter the critical section is
explicitly passed between processes.

I DEKKER’S algorithm is valid: it guarantees mutual exclusion and the
absence of both deadlocks and starvation.
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Critical sections with N processes

C) Critical sections with N processes
I We will study two algorithms that solve the critical section problem.
I These algorithms are important, as they give a solution for the

general case of an arbitrary number N of processes.
I These algorithms are the results of research by Leslie LAMPORT.

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 30–70



Bakery algorithm I

I The idea behind this algorithm is to give tickets to each process,
like a bakery would give numbered tickets to its clients to serve
them in order. The ticket numbers increase, and we serve the
waiting client whose ticket number is the smallest.

I We’ll first examine a simplified version for two processes:

Bakery algorithm (two processes)
integer np← 0, nq← 0

p q
loop forever loop forever

p1: non-critical section q1: non-critical section
p2: np← nq + 1 q2: nq← np + 1
p3: await nq = 0 or np ≤ nq q3: await np = 0 or nq < np
p4: critical section q4: critical section
p5: np← 0 q5: nq← 0
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Bakery algorithm II

I np and nq represent the ticket number of p and q respectively. A nil
value indicates that the process does not currently wish to enter its
critical section. If ticket numbers are identical (and not nil), we
arbitrarily choose to give p higher priority.

I The bakery algorithm is valid for two processes: it guarantees
mutual exclusion and the absence of both deadlocks and starvation.

I We will now look at the algorithm for N processes:

Bakery algorithm (N processes)
integer array[1..n] number← [0,. . . ,0]

loop forever
p1: non-critical section
p2: number[i]← 1 + max(number)
p3: for all other processes j
p4: await (number[j] = 0) or (number[i]� number[j])
p5: critical section
p6: number[i]← 0
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Bakery algorithm III

I Each process executes the same algorithm, with only the value of i
being different. i is a constant which acts as a process identifier.

I (number[i]� number[j]) is an abbreviation for (number[i] <
number[j]) or ((number[i] = number[j]) and (i<j)).

I Each process picks a number greater than the current maximum
ticket number.

I A process may enter its critical section if it has the smallest number.
In case of a tie, the process with the lowest identifier gets higher
priority.

I This version of the algorithm makes an unrealistic hypothesis by
assuming that computing the maximum value of an array is an
atomic instruction. We will lift this assumption at the cost of
simplicity:
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Bakery algorithm IV

Bakery algorithm without atomic assignment
boolean array[1..n] choosing← [false,. . . ,false]

integer array[1..n] number← [0,. . . ,0]
loop forever

p1: non-critical section
p2: choosing[i]← true
p3: number[i]← 1 + max(number)
p4: choosing[i]← false
p5: for all other processes j
p6: await choosing[j] = false
p7: await (number[j] = 0) or (number[i]� number[j])
p8: critical section
p9: number[i]← 0

I This version uses a boolean array. If choosing[i] is true, it implies
that process i is currently computing a ticket number. The other
processes have to wait until the number has been computed.
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Bakery algorithm V

I Each global variable is modified by one and one only process.
Thus, there cannot be any overlapping writes.

I However, reads may overlap. LAMPORT has proved that the
algorithm remains valid nonetheless (see [1] for details).
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Related course

In the “Software and Critical Systems Design” module, the following
course will expand on some aspects of this chapter:

I MA 1, INFO-F-412, Formal verification of computer systems,
MASSART, RASKIN.
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Semaphores

D) Semaphores
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Introduction

I The solutions presented in the previous chapter for the critical
section problem are dedicated to programs written in machine
language and used low-level constructs.

I In this chapter, we will study semaphores, which are higher-level
constructs used for concurrent program design.

I We will start by introducing the concept of process state.
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Process state

I We distinguish 5 possible states for a given process:
I Inactive: initial state;
I Ready: when the process gets activated;
I Running: when its computations are progressing;
I Blocked: a blocked process is not eligible to run;
I Completed: when the last instruction has been executed.

inactive ready running

blocked

completed- -
-

�

?

HH
H
HH

H
HY
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The semaphore data type I

I A semaphore S is made of two components:
I an unsigned integer S.V;
I a set of processes S.L.

I A semaphore must be initialized with a value k > 0 for S.V and
with the empty set for S.L:
semaphore S← (k, ∅)

I We have two atomic operations on a semaphore S: wait(S) and
signal(S). In the following, p denotes the process which executes
the operation.

I The original names for the operations, as given by Dijkstra, were
P(S) and V(S) respectively, from the Dutch proberen (to try) and
vrijgeven (to free).
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The semaphore data type II

I wait(S)
if S.V > 0

S.V← S.V - 1
else

S.L← S.L
⋃

p
p.state← blocked

I signal(S)
if S.L = ∅

S.V← S.V + 1
else

let q be an arbitrary element of S.L
S.L← S.L \ {q}
q.state← ready

I A semaphore whose integer component can take all possible
unsigned values is called a general semaphore.
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The semaphore data type III

I A semaphore whose integer component can only take values 0 and
1 is called a binary semaphore. In this particular case, the signal(S)
instruction can be adapted as such:
if S.V = 1

// undefined
else if S.L = ∅

S.V← 1
else // (as above)

let q be an arbitrary element of S.L
S.L← S.L \ {q}
q.state← ready
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Critical section with two processes I

I We shall use a binary semaphore to solve the critical section
problem;

I The preprotocol then maps to wait(S);
I The postprotocol maps to signal(S):

Critical section with semaphores (two processes)
binary semaphore S← (1, ∅)

p q
loop forever loop forever

p1: non-critical section q1: non-critical section
p2: wait(S) q2: wait(S)
p3: critical section q3: critical section
p4: signal(S) q4: signal(S)

I To convince ourselves of the validity of the protocol, we can reason
upon the following abridged version:
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Critical section with two processes II

Critical section with semaphores (two proc., abbrev.)
binary semaphore S← (1, ∅)

p q
loop forever loop forever

p1: wait(S) q1: wait(S)
p2: signal(S) q2: signal(S)

I The corresponding state diagram is the following:
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Critical section with N processes I

I Using a binary semaphore, the same protocol can be extended to
be used with an arbitrary number of processes:

Critical section with semaphores (N proc.)
binary semaphore S← (1, ∅)
loop forever

p1: non-critical section
p2: wait(S)
p3: critical section
p4: signal(S)

I A state diagram can be used to show that mutual exclusion is
guaranteed and deadlocks are avoided.

I However, due to our definition of signal(S), processes may starve
because we arbitrarily pick which process to wake up.

I Starvation can be avoided by changing the definition of signal(S) so
that it uses a queue (FIFO order) instead of an unordered set.
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Synchronization I

I The critical section problem is an abstraction of the
synchronization problem that arises when several processes
compete for a resource.

I Synchronization allows coordination of the execution order of the
processes’ diverse operations.

I For example, a merge sort can be broken up into 3 concurrent
processes:

I sort the first half of the array;
I sort the other half of the array;
I merge both halves of the array.

I the two sorting procedures are independent and do not require
synchronization. However, the merging procedure must wait for
the completion of the sorting procedures.

I The following is a solution using two binary semaphores:
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Synchronization II

Algorithm Mergesort
integer array A
binary semaphore S1← (0, ∅)
binary semaphore S2← (0, ∅)

sort1 sort2 merge
p1: sort 1st half of A q1: sort 2nd half of A r1: wait(S1)
p2: signal(S1) q2: signal(S2) r2: wait(S2)
p3: q3: r3: merge halves of A
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Producer-consumer problem I

I We now consider two kinds of processes:
I Producers that generate data and transmit them to consumers;
I Consumers that make use of the data transmitted by producers.

I The producer-consumer problem arises frequently is computer
systems:

Producer Consumer
Communications line Web browser
Web browser Communications line
Keyboard Operating system
Word processor Printer

I In general, communications between producers and consumers are
asynchronous and the communication channel has limited
capacity. Usually, buffers are used in this context.

I Let’s first consider the case of an infinite buffer (i.e. with unlimited
memory). In this case, we must only ensure that a consumer never
manages to read an empty buffer.
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Producer-consumer problem II

Producer-consumer (infinite buffer)
infinite queue of dataType buffer← empty queue

semaphore notEmpty← (0, ∅)
producer consumer

dataType d dataType d
loop forever loop forever

p1: d← produce q1: wait(notEmpty)
p2: append(d, buffer) q2: d← take(buffer)
p3: signal(notEmpty) q3: consume(d)

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 49–70



Producer-consumer problem with finite buffer I

I In the case where buffers are finite, we must also ensure that a
producer never writes into a full buffer.

I We will use another semaphore notFull whose integer component
is initialized with buffer size N:

Producer-consumer (finite buffer, semaphores)
finite queue of dataType buffer← empty queue

semaphore notEmpty← (0, ∅)
semaphore notFull← (N, ∅)

producer consumer
dataType d dataType d
loop forever loop forever

p1: d← produce q1: wait(notEmpty)
p2: wait(notFull) q2: d← take(buffer)
p3: append(d, buffer) q3: signal(notFull)
p4: signal(notEmpty) q4: consume(d)
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Distributed algorithms

E) Distributed algorithms
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Introduction I

I In this chapter, we consider loosely coupled and distributed
systems. Processes communicate by sending and receiving
messages through a communications network (see MPI paradigm).

I We may consider various distributed architectures such as clusters,
i.e. computers with “average” power connected through a
high-speed network (LAN).

I Another example of architecture is a computing grid, made by
connecting several clusters through a wide-area network (WAN).
This allows sharing of computational resources between
laboratories, universities and institutions throughout the world.

I We will use the notions of nodes and processes as abstractions in
this chapter.

I A node models a physical object such as a computer, whether it has
one or several processors. We assume synchronization between
processes within a node is ensured by way of shared memory.
Synchronization between processes belonging to different nodes is
done by sending and receiving messages.
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Introduction II

I Every node is connected via a bidirectional channel to all other
nodes. Channels are assumed to be perfect (no data loss) and
transmission delays are assumed to be bounded.

I The send(MessageType, Destination[, Parameters]) primitive models
a message send from one node to another with possible optional
parameters.

I The receive(MessageType, [, Parameters]) primitive models a message
receive with possible optional parameters.

Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 53–70



Introduction III

I Example:

node 5

send(request, 3, myID)

node 3

integer source
receive(request, source)

-
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Distributed critical section problem I

I In the context of distributed systems, the critical section problem
relates to a set of nodes. Updating a database could is an example
of an instance of the problem.

I Solutions to this problem are inspired by the bakery algorithm we
studied previously (see slide 31 and further). Nodes must pick
ticket numbers and the smallest number gains entrance to its critical
section.

I In a distributed system, ticket numbers cannot be compared directly
due to the absence of a shared memory. Messages must be
exchanged.

I We will present the solution in several steps. We’ll start with an
outline of the algorithm made of two parts:

I the process body
I the routine that handles the reception of a message
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Distributed critical section problem II
Ricart-Agrawala algorithm (outline)

integer myNum← 0
set of node IDs deferred← empty set

main
p1: non-critical section
p2: myNum← chooseNumber
p3: for all other nodes N
p4: send(request, N, myID, myNum)
p5: await reply’s from all other nodes
p6: critical section
p7: for all nodes N in deferred
p8: remove N from deferred
p9: send(reply, N, myID)

receive
integer source, reqNum

p10: receive(request, source, reqNum)
p11: if reqNum < myNum
p12: send(reply,source,myID)
p13: else add source to deferred
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Distributed critical section problem III

I We will now look at how a process should pick its ticket number.
Making an arbitrary choice can easily break the mutual exclusion
property (see exercise sessions).

I Indeed, ticket numbers must be monotonic. Each node must keep
track of the greatest number used so far in the system (through a
variable called highestNum).

I The algorithm assumes that nodes always reply to an incoming
message by way of an outgoing message. The “Main” process may
die at some point, but only outside of its critical section.

I We can now present the complete algorithm:
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Distributed critical section problem IV

Ricart-Agrawala algorithm
integer myNum← 0

set of node IDs deferred← empty set
integer highestNum← 0
boolean requestCS← false

Main
loop forever

p1: non-critical section
p2: requestCS← true
p3: myNum← highestNum + 1
p4: for all other nodes N
p5: send(request, N, myID, myNum)
p6: await reply’s from all other nodes
p7: critical section
p8: requestCS← false
p9: for all nodes N in deferred
p10: remove N from deferred
p11: send(reply, N, myID)
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Distributed critical section problem V

Ricart-Agrawala algorithm (continued)

Receive
integer source, requestedNum
loop forever

p1: receive(request, source, requestedNum)
p2: highestNum← max(highestNum, requestedNum)
p3: if not requestCS or requestedNum� myNum
p4: send(reply, source, myID)
p5: else add source to deferred
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Consensus I

I A recurring motivation behind the use of distributed systems is to
improve reliability by duplicating computations on several
independent processors.

I In this context, there are two desirable properties:

I fail-safety: one or more failures do not cause damage to the system or
its users.

I fault-tolerance: the system continues to fulfill its requirements even if
there are one or more failures.
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Consensus II

I This is a characteristic diagram of a reliable system:
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I Sensors and CPUs are duplicated. Results are filtered through a
comparator (which could be, for example, a majority vote
algorithm) and the final result is returned.

I We will study a specific problem called the consensus problem in
distributed systems.
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Consensus III

I Each node picks an initial value. It is then expected of all nodes to
agree on (find a consensus on) one of those values.

I If no failures arise, we can devise a simple solution to the problem.
Each node sends its choice to all other nodes. Then, a deterministic
vote algorithm makes a choice based on all votes (e.g. through a
majority vote). All nodes use the same algorithm and the same
source data, thus making the same final choice.

I We will consider two types of failures that could arise in practice:
I crash failure: a node ceases to send messages.
I byzantine failure: a node sends erroneous or arbitrary messages.
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Byzantine Generals problem I

I Let’s imagine several divisions of the Byzantine army besieging an
enemy city. Each division is led by its own general. We assume
generals can communicate through the use of messengers. After
observing enemy activity, all generals must agree on a common
plan of action: attack (“A”) or retreat (“R”). However, some generals
may be traitors and will attempt to cause loyal generals not to be
able to find a consensus.

I Thus, the generals must have a decision algorithm that guarantees
that:

1. All loyal generals agree on a plan of action.

Loyal generals will all do what the algorithm tells them to, but traitors
will do whatever they want. The algorithm must thus guarantee
condition 1, regardless of the course of action chosen by the traitors.

2. A “small” number of traitors cannot cause the loyal generals to pick
the wrong course of action.
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Byzantine Generals problem II

I In terms of distributed systems, generals model nodes and
messengers model communication channels.

I We shall consider two kinds of failures:

I crash failure: a traitor ceases to send messages.
I byzantine failure: a traitor sends arbitrary messages, not only those

required by the algorithm.

I A probable crash can be detected through the use of timeouts.
I Byzantine failures force us to consider malicious messages.
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Consensus — one-round algorithm I

I Let’s begin by looking at the aforementioned simple solution:

Consensus - one-round algorithm
planType finalPlan

planType array[generals] plan
p1: plan[myID]← chooseAttackOrRetreat
p2: for all other generals G
p3: send(G, myID, plan[myID])
p4: for all other generals G
p5: receive(G, plan[G])
p6: finalPlan← majority(plan)

I In case of a tie, the majority function returns “R” (retreat).
I Assume we have 3 generals. Zoe and Leo are loyal, whereas Basil

is a traitor. The following diagram illustrates what would happen if
Basil crashes after sending a message to Leo:
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Consensus — one-round algorithm II
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I The following tables show the data collected by both loyal generals.
They end up taking a different course of action!

Leo
general plan
Basil A
Leo R
Zoe A
majority A

Zoe
general plan
Basil –
Leo R
Zoe A
majority R
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Consensus — Byzantine Generals algorithm I

I The general solution to the Byzantine Generals problem is to use a
two-round algorithm. During the first round, every general
broadcasts his own plan. During the second round, every general
broadcasts the data received from all other generals. By definition,
loyal generals will keep all information intact. Thus, if they are
numerous enough, they will be able to make a common decision.

I The two-round solution follows:
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Consensus — Byzantine Generals algorithm II
Consensus - Byzantine Generals algorithm

planType finalPlan
planType array[generals] plan, majorityPlan
planType array[generals, generals] reportedPlan
p1: plan[myID]← chooseAttackOrRetreat
p2: for all other generals G // First round
p3: send(G, myID, plan[myID])
p4: for all other generals G
p5: receive(G, plan[G])
p6: for all other generals G // Second round
p7: for all other generals G’ except G
p8: send(G’, myID, G, plan[G])
p9: for all other generals G
p10: for all other generals G’ except G
p11: receive(G, G’, reportedPlan[G, G’])
p12: for all other generals G // First vote
p13: majorityPlan[G]← majority(plan[G] ∪ reportedPlan[*, G])
p14: majorityPlan[myID]← plan[myID] // Second vote
p15: finalPlan← majority(majorityPlan)
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Consensus — Byzantine Generals algorithm III

Leo
general plans reported by majority

Basil Zoe
Basil A A A
Leo R R
Zoe A R R
majority R
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Joël GOOSSENS (U.L.B.) INFO-F404, Operating Systems II 70–70


