Introduction to Language Theory and Compilation: Exercises

Session 2: Regular expressions

Regular expressions (RE)

- Finite automata are an equivalent formalism to regular languages (for each regular language, there exists at least one FA that recognizes it, and each FA recognizes a regular language).
- Regular expressions are another formalism defined inductively just as regular languages.
- It can be proven that regular expressions and regular languages are equivalent (see lecture notes).

Regular expressions (RE) (ctd.)

Base cases:

RE	language
ϕ	Ø
arepsilon	$\{arepsilon\}$
a $(\forall a \in \Sigma)$	{a}

If p and q are regular expressions representing the languages P and Q respectively, then:

RE	language
p+q	$P \cup Q$
pq (or $p \cdot q$)	$P \cdot Q$
p^*	P*

Extended regular expression example: $p^+ \equiv pp^*$

RE examples

- 0 + 1 denotes the language $\{0, 1\}$
- a(b+c) denotes the language $\{a\} \cdot \{b, c\} = \{ab, ac\}$
 - ... which could also be denoted by ab + ac
- x^* denotes $\{x\}^*$
 - ... which could also be denoted by $\varepsilon + x + xxx^*$
- A regular expression is equivalent to one and one only regular language, but a regular language can have more than one corresponding regular expression.

Exercise 1

For each of the following languages (defined on the alphabet $\Sigma = \{0,1\}$), design a RE that recognizes it:

- The set of strings ending with 00.
- The set of strings whose 10th symbol, counted from the end of the string, is a 1.
- The set of strings where each pair of zeroes is followed by a pair of ones.
- The set of strings not containing 101.
- **5** The set of binary numbers divisible by 4.

$$(0+1)*00$$

3
$$(1+01+0011)^*(0+\varepsilon)$$

$$0*(1+00^+)*0*$$

$$(0+1)*00+0$$

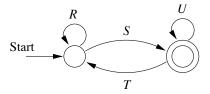
State elimination method

Given a DFA M, we can craft a corresponding regular expression using the *state elimination* method. The general idea is to label transitions in the automaton using regular expressions, pick a final state, then remove all other states step by step to finally reach a simple automaton which can then be used to easily determine a regular expression. There are two possible cases:

- **1** The start state of M is not final $(q_0 \notin F)$
- ② The start state of M is final $(q_0 \in F)$

State elimination method (ctd.)

In the case where $q_0 \notin F$, we reach a two state automaton:



The corresponding regular expression is:

$$(R + SU^*T)^*SU^*$$

State elimination method (ctd.)

In the case where $q_0 \in F$, we reach a single state automaton:

The corresponding regular expression is:

$$R^*$$

State elimination method (ctd.)

For each final state $q^F \in F$, one has to build such a simple automaton to derive a regular expression $RE(q^F)$ that expresses all possible inputs that are accepted when M stops in q^F . The actual regular expression that describes the language L(M) of the automaton M then simply becomes:

$$RE(q_1^F) + RE(q_2^F) + \ldots + RE(q_k^F)$$
 where $\{q_1^F, \ldots, q_k^F\} = F$

Algorithm

First, preprocess by labeling all transitions by a RE.

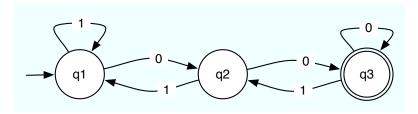
Then, for each state S_x to be eliminated, consider each transition (S_a, S_x) , (S_x, S_b) or (S_x, S_x) with respective labels A, B and X.

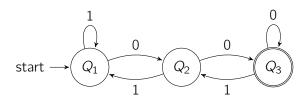
The transition (S_a, S_b) labeled by E becomes the absorbing transition $E + (AX^*B)$ and remove A, B, X and E.

Note: some transitions can be null. In that case, does not consider the transition. For instance, if $E = (S_a, S_b)$ cannot be generated by δ (the transition function, see definition), then the absorption transition will be AX^*B .

Exercise 2.1

Design a RE accepting the same language as:





Transition	$(\mathbf{Q}_{a},\mathbf{Q}_{x}):\mathbf{A}$	$(\mathbf{Q}_{x}, \mathbf{Q}_{b}) : \mathbf{B}$	$(\mathbf{Q}_{x}, \mathbf{Q}_{x}) : \mathbf{X}$
(Q_1, Q_1)	$(Q_1, Q_2): 0$	$(Q_2, Q_1): 1$	$(Q_2, Q_2): \emptyset$
(Q_1, Q_3)	$(Q_1, Q_2): 0$	$(Q_2, Q_3): 0$	$(Q_2, Q_2): \emptyset$
(Q_3, Q_3)	$(Q_3, Q_2): 1$	$(Q_2, Q_3): 0$	$(Q_2, Q_2): \emptyset$
(Q_3, Q_1)	$(Q_3, Q_2): 1$	$(Q_2, Q_1): 1$	$(Q_2, Q_2): \emptyset$

We search absorbing transitions (Q_a, Q_a) , (Q_a, Q_b) , (Q_b, Q_b) and (Q_b, Q_a) .

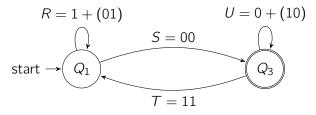
Transition	$(\mathbf{Q}_{a},\mathbf{Q}_{x}):\mathbf{A}$	$(\mathbf{Q}_{x},\mathbf{Q}_{b}):\mathbf{B}$	$(\mathbf{Q}_{x},\mathbf{Q}_{x}):\mathbf{X}$
(Q_1, Q_1)	$(Q_1, Q_2): 0$	$(Q_2, Q_1): 1$	$(Q_2, Q_2): \emptyset$
(Q_1, Q_3)	$(Q_1, Q_2): 0$	$(Q_2, Q_3): 0$	(Q_2, Q_2) : \emptyset
(Q_3, Q_3)	$(Q_3, Q_2): 1$	$(Q_2, Q_3): 0$	(Q_2, Q_2) : \emptyset
(Q_3, Q_1)	$(Q_3, Q_2): 1$	$(Q_2, Q_1): 1$	(Q_2, Q_2) : \emptyset

Applying the rule: $E + (AX^*B)$:

Absorbing transitions	(Q, Q1) : E	AX*B	Result
$(Q_1, Q_1) : R$	1	01	1 + (01)
$(Q_1, Q_3) : S$	Ø	00	00
$(Q_3, Q_3) : U$	0	10	0 + (10)
$(\mathbf{Q}_3,\mathbf{Q}_1):T$	Ø	11	11

Absorbing transitions	(Q, Q1) : E	AX*B	Result
$(\mathbf{Q}_1,\mathbf{Q}_1):R$	1	01	1+(01)
$(Q_1, Q_3) : S$	Ø	00	00
$(Q_3, Q_3) : U$	0	10	0 + (10)
$(Q_3, Q_1) : T$	Ø	11	11

Give the automaton:

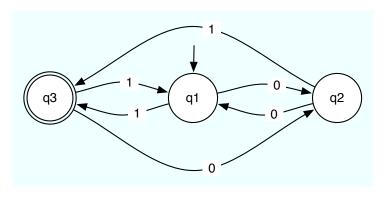


by applying the rule: $(R + SU^*T)^*SU^*$, the RE is:

$$((1+(01))+(00)(0+(10))^*(11))^*(00)(0+(10))^*$$

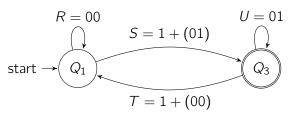
Exercise 2.2

Design a RE accepting the same language as:



Absorbing transitions	(Q, Q1) : E	AX*B	Result
$(\mathbf{Q_1},\mathbf{Q_1}):R$	Ø	00	00
$(Q_1, Q_3) : S$	1	01	1+(01)
$(Q_3, Q_3) : U$	Ø	01	01
$(\mathbf{Q}_3,\mathbf{Q}_1):T$	1	00	1+(00)

Give the automaton:



by applying the rule: $(R + SU^*T)^*SU^*$, the RE is:

$$((00) + (1 + (01))(01)^*(1 + (00)))^*(1 + (01))(01)^*$$

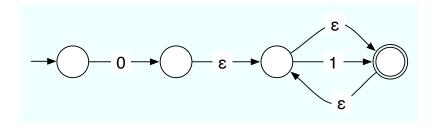
Exercise 3

Convert the following REs into ε -NFAs:

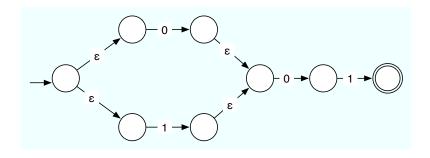
- **1** 01*
- (0+1)01
- $00(0+1)^*$

Recall:

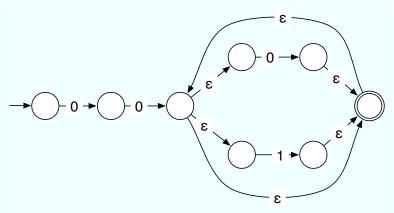
$$\begin{array}{l} \textit{AB} \;\; \mathsf{gives}\; (Q_1) \longrightarrow_{A} (Q_2) \longrightarrow_{B} (Q_3) \\ \textit{A} + \textit{B} \;\; \mathsf{gives}\; (Q_4) \longleftarrow_{\epsilon} (Q\prime_3) \longleftarrow_{A} (Q\prime_2) \longleftarrow_{\epsilon} (Q_1) \longrightarrow_{\epsilon} \\ (Q_2) \longrightarrow_{B} (Q_3) \longrightarrow_{\epsilon} (Q_4) \\ \textit{X*}\;\; (Q_2) \longleftarrow_{X} (Q_1) \longleftarrow_{\epsilon} (Q_2) \end{array}$$



Solution for exercise 3 (0+1)01



Solution for exercise 3 $00(0+1)^*$



Extended regular expressions (ERE)

- Very popular on UNIX-like tools (grep, find, etc.)
- Grant more flexibility than traditional regular expressions
- Typically used by scanner generators such as lex

ERE syntax

Expression	Accepted language
r*	0 or more rs
r+	1 or more rs
r?	0 or 1 r
[abc]	a or b or c
[a-z]	Any character in the interval az
	Any character except \n
[^s]	Any character but those in s
r{m,n}	Between m and n occurrences of r
r1 r2	The concatenation of r1 and r2

ERE syntax (ctd.)

Expression	Accepted language
r1 r2	r1 or r2
(r)	r
^r	r if it starts a line
r\$	r if it ends a line
"s"	The string s
\c	The character c
r1(?=r2)	r1 when it's followed by r2

Examples

Expression	Accepted language
[a-zA-Z]	Any letter (upper or lower case)
[0-9]	Any digit
a[^A-Za-z]b	An a followed by a non-alphabetical character and a b
^Silly	Silly if it starts a line
[a-zA-Z]([a-zA-Z] [0-9])*	An identifier in the Pascal language

Exercise 4

- Give an extended regular expression (ERE) that targets any sequence of 5 characters, including the newline character \n
- ② Give an ERE that targets any string starting with an arbitrary number of \ followed by any number of *
- UNIX-like shells (such as bash) allow the user to write batch files in which comments can be added. A line is defined to be a comment if it starts with a # sign. What ERE accepts such comments?
- Obesign an ERE that accepts numbers in scientific notation. Such a number must contain at least one digit and has two optional parts:
 - A "decimal" part : a dot followed by a sequence of digits
 - An "exponential" part: an E followed by an integer that may be prefixed by + or -
 - Examples: 42, 66.4E-5, 8E17, ...

Exercise 4

- Design an ERE that accepts "correct" phrases that fulfill the following criteria:
 - No prepending/appending spaces
 - The first word must start with a capital letter
 - The phrase must end with a full stop .
 - The phrase must be made of one or more words (made of the characters a...z and A...Z) separated by a single space
 - There must be one sentence per line

Punctuation signs other than a full stop are not allowed.

- Oraft an ERE that accepts old school DOS-style filenames (8 characters in a...z, A...Z and _) whose extension is .ext and that begin with the string abcde. We ask that the ERE only accept the filename without capturing the extension!
 - Example: on abcdeLOL.ext, the ERE must accept abcdeLOL

- $(.|n){5}$
- 2 ***
- 3 *#.*\$
- \bullet [0-9]+(\.[0-9]+)?(E[+-]?[0-9]+)?
- \bullet abcde [A-Za-z_] {3} (?=\.ext)

