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Introduction

The idea behind LR parsing is the same as for bottom-up parsing:

Reduce a string of terminals and variables (pushed on a stack
at an earlier stage) into a variable.

We'll read the production rules "in reverse".

The right hand side of a rule, which will be used to reduce, is

called a handle.
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Example

S ′ → S$
S → Saa

S → a

S → ε

Stack Input Action Output

` aa$ R3

` S aa$ S 3

` Sa a$ S 3

` Saa $ R1 3

` S $ S 3,1

` S$ ε Accept 3,1

We've seen that choosing between shifting and reducing isn't

easy. . .
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LR(k) grammars

Let G = 〈V ,T ,P,S〉 be a grammar. Consider its augmented

version G ′ = 〈V ′,T ,P ′,S ′〉. G ′ is said to be LR(k) for k > 0 if

the following three conditions:

1 S ′
∗⇒G ′ γAx ⇒G ′ γαx

2 S ′
∗⇒G ′ δBy ⇒G ′ γαx

′

3 Firstk(x) = Firstk(x ′)

imply that γAx ′ = δBy (in other words, γ = δ, A = B and

x ′ = y).
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Canonical �nite state machine (CFSM)

We can build a canonical �nite state machine (CFSM) that

re�ects the decisions made by an LR parser.

Each state contains several items, which are production rules
where we add • that represent how far we've come in the
parsing process.

Part of these items form the kernel.

The other items are obtained by closure.

The state machine will allow us to build the action tables

needed by the parser.
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Example

Consider the following augmented grammar:

(0) S ′ → S$
(1) S → (L)
(2) S → x

(3) L → S

(4) L → L,S

Stolen from: "Modern compiler implementation in Java", A. W. Appel
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Example � recognise (x)

S ′ → •S$

1

���
�
�

12 // S ′ → S • $ 13 //___ S ′ → S$•

S → •(L) 2 //___ S ′ → (•L) 9 //

3

���
�
�

S ′ → (L•)
10

//___ S ′ → (L)•

11

ll

L→ •S 7 //

4

���
�
� L→ S•

8

gg

S → •x 5 //____ S → x•

6

gg

The • represents how far the parser has come.
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Example (ctd.)

S ′ → •S$
S → •(L)
S → •x

The • represents how far parsing has come.

We want to recognize a word that can be derived from S ′

We must thus consume S$. . .

But S isn't a terminal!

To recognize S , we have to start by consuming ( or x .
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Example (ctd.)

S ′ → •S$

S → •(L)
S → •x

The • represents how far parsing has come.

We want to recognize a word that can be derived from S ′

We must thus consume S$. . .

But S isn't a terminal!

To recognize S , we have to start by consuming ( or x .
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Example (ctd.)

S ′ → •S$

S → •(L)
S → •x

Kernel

The • represents how far parsing has come.

We want to recognize a word that can be derived from S ′

We must thus consume S$. . .

But S isn't a terminal!

To recognize S , we have to start by consuming ( or x .
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Example (ctd.)

S ′ → •S$

S → •(L)
S → •x

Kernel

The • represents how far parsing has come.

We want to recognize a word that can be derived from S ′

We must thus consume S$. . .

But S isn't a terminal!

To recognize S , we have to start by consuming ( or x .
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Example (ctd.)

S ′ → •S$

S → •(L)
S → •x

Closure

The • represents how far parsing has come.

We want to recognize a word that can be derived from S ′

We must thus consume S$. . .

But S isn't a terminal!

To recognize S , we have to start by consuming ( or x .
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Example (ctd.)

S ′ → •S$
S → •(L)
S → •x

Closure

The • represents how far parsing has come.

We want to recognize a word that can be derived from S ′

We must thus consume S$. . .

But S isn't a terminal!

To recognize S , we have to start by consuming ( or x .
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Example (ctd.)

Transitions

S ′ → •S$
S → •(L)
S → •x

(−→

S → (•L)
...
...

↓ x ↘ S

S → x•
...
...

S → S • $
...
...
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Example (ctd.)

Transitions

S ′ → •S$
S → •(L)
S → •x

(−→

S → (•L)
...
...

↓ x ↘ S

S → x•
...
...

S → S • $
...
...
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Example (ctd.)

Transitions

S ′ → •S$
S → •(L)
S → •x

(−→

S → (•L)
...
...

↓ x

↘ S

S → x•
...
...

S → S • $
...
...
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Example (ctd.)

Transitions

S ′ → •S$
S → •(L)
S → •x

(−→

S → (•L)
...
...

↓ x ↘ S

S → x•
...
...

S → S • $
...
...
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Example (ctd.)

S → (•L)

L→ •S
L→ •L,S
S → •(L)
S → •x

Kernel

We want to recognize a word that can be derived from L

Thus, we must consume L or S$. . .

We thus do another closure step!
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Example (ctd.)

S → (•L)
L→ •S
L→ •L,S

S → •(L)
S → •x

Closure (1)

We want to recognize a word that can be derived from L

Thus, we must consume L or S$. . .

We thus do another closure step!
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Example (ctd.)

S → (•L)
L→ •S
L→ •L,S
S → •(L)
S → •x

Closure (2)

We want to recognize a word that can be derived from L

Thus, we must consume L or S$. . .

We thus do another closure step!
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Example (ctd.)

S → x•
...
...

In this state, nothing needs to be added by closure.

If we get here, it means we have recognized S .

The parser can thus proceed with a Reduce action.
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Example (ctd.)
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Example (ctd.)

State Action

1 Shift

2 Reduce

3 Shift

4 Accept

5 Shift

State Action

6 Reduce

7 Reduce

8 Shift

9 Reduce
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LR(0) CFSM � algorithms

Closure(I) begin

repeat

I ′ ← I ;

foreach item [A→ α • Bβ] ∈ I ,B → γ ∈ G ′ do
I ← I ∪ [B → •γ] ;

until I ′ = I ;

return(I) ;
end

Transition(I ,X) begin
return(Closure({[A→ αX • β] | [A→ α • Xβ] ∈ I})) ;

end
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LR(0) CFSM � algorithms

Items(G ′) begin

C ←Closure({[S ′ → •S$]}) ;

repeat

C ′ ← C ;

foreach I ∈ C, X ∈ T ′ ∪ V ′ do
C ← C ∪ Transition(I ,X) ;

until C ′ = C ;

end
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LR(0) parser � algorithms

To build the action table, we use the following process:

foreach state s of the CFSM do

if s contains A→ α • aβ then
Action[s]← Action[s] ∪ Shift ;

else if s contains A→ α• that is the i th rule then
Action[s]← Action[s] ∪ Reducei ;

else if s contains S ′ → S$• then
Action[s]← Action[s] ∪Accept ;
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Exercise 1

(0) S ′→S$ (5) C→Fg

(1) S→aCd (6) C→CF

(2) S→bD (7) F→z

(3) S→Cf (8) D→y

(4) C→eD

Give the corresponding LR(0) CFSM and its action table.
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LR(0) parser � algorithm

The parser uses a stack on which it pushes symbols as well

as the current state number.

This allows it to return to the right state upon reductions.

The consumed string is accepted if we reach the �nal state

(whose sole action is to accept).

We represent an LR(0) parser's con�guration with a triplet :

〈stack, input, output〉.
Initially, we have 〈` 0, ω, ε⊥〉
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LR(0) parser � transitions

begin
Considering we have 〈` γs, ax , y⊥〉:
if Action[s] = Shift then

goto 〈` γsaSuccessor[s, a], x , y⊥〉 ;
else if Action[s] = Reducej par A→ α then

Having 〈` γs ′x1s1x2s2 . . . xns, x , y⊥〉 and α = x1x2 . . . xn :

goto 〈` γs ′ASuccessor[s ′,A], x , jy⊥〉 ;
else if Action[s] = Accept then

return( OK) ;

else return(Error) ;
end
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Example � recognizing (x)

Con�g.:
〈
1, (x)$,

〉
Action: Shift
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Example � recognizing (x)

Con�g.:
〈
1(3, x)$,

〉
Action: Shift
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Example � recognizing (x)

Con�g.:
〈
1(3x2, )$,

〉
Action: Reduce 2

Faculty of Sciences INFO-F403 � Exercises



Example � recognizing (x)

Con�g.:
〈
1(3S7, )$, 2

〉
Action: Reduce 3
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Example � recognizing (x)

Con�g.:
〈
1(3L5, )$, 2 3

〉
Action: Shift
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Example � recognizing (x)

Con�g.:
〈
1(3L5)6, )$, 2 3

〉
Action: Reduce 1
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Example � recognizing (x)

Con�g.:
〈
1S4, $, 2 3 1

〉
Action: Accept
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Exercise 2

Simulate the parser you built during the previous exercise on the

following string : aeyzzd
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Introducing LR(k) grammars

Di�erence with LR(0) : we must now account for the

lookahead symbols.

For example:

Consider the case where a CFSM state contains both

A→ α1 • α2 and B → γ•
We have a shift-reduce con�ict.

If we do not have the characters of First
k(α2) on input, we

know we should not attempt shifting.

In which context can we be sure we'll never make a mistake?
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Introducing LR(k) grammars

We have to remember a context.

The items of the CFSM will now have the following shape:

[A→ α1 • α2, u]

u represents the context, i.e. the set of strings of k terminals

that can follow productions of A→ α1α2.

We start o� with [S ′ → •S$, ε]
We have to adapt our algorithms, action tables, etc.
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LR(k) CFSM

Closure(I) begin

repeat

I ′ ← I ;

foreach item [A→ α • Bβ,σ] ∈ I ,B → γ ∈ G ′ do

foreach u ∈ First
k(βσ) do

I ← I ∪ [B → •γ,u];

until I ′ = I ;

return(I) ;
end

Transition(I ,X) begin
return(Closure({[A→ αX • β,u] | [A→ α • Xβ,u] ∈ I})) ;

end
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LR(k) action table

We build the action table as follows:

foreach state s of the CFSM do

if s contains [A→ α • aβ,u] then
foreach u ∈ First

k(aβu) do
Action[s,u]← Action[s,u] ∪ Shift ;

else if s contains [A→ α•, u ], that is the i th rule then
Action[s,u ]← Action[s,u] ∪ Reducei ;

else if s contains [S ′ → S$•,ε] then
Action[s,·]← Action[s,·] ∪Accept ;
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Exercise 3

Build the LR(1) parser for the following grammar:

(1) S ′→S$
(2) S→A

(3) A→bB

(4) A→a

(5) B→cC

(6) B→cCe

(7) C→dAf

Is the grammar LR(0)? Explain.
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Exercise 4

Build the LR(1) parser for the following grammar:

(1) S ′→S$
(2) S→SaSb

(3) S→c

(4) S→ε

Simulate it on the following input: abacb.
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