
Introduction to Language Theory and

Compilation: Exercises

Session 9: LR(0) and LR(k) parsing

Faculty of Sciences INFO-F403 � Exercises

Introduction

The idea behind LR parsing is the same as for bottom-up parsing:

Reduce a string of terminals and variables (pushed on a stack
at an earlier stage) into a variable.

We'll read the production rules "in reverse".

The right hand side of a rule, which will be used to reduce, is

called a handle.

Faculty of Sciences INFO-F403 � Exercises

Example

S ′ → S$
S → Saa

S → a

S → ε

Stack Input Action Output

` aa$ R3

` S aa$ S 3

` Sa a$ S 3

` Saa $ R1 3

` S $ S 3,1

` S$ ε Accept 3,1

We've seen that choosing between shifting and reducing isn't

easy. . .

Faculty of Sciences INFO-F403 � Exercises

LR(k) grammars

Let G = 〈V ,T ,P,S〉 be a grammar. Consider its augmented

version G ′ = 〈V ′,T ,P ′,S ′〉. G ′ is said to be LR(k) for k > 0 if

the following three conditions:

1 S ′
∗⇒G ′ γAx ⇒G ′ γαx

2 S ′
∗⇒G ′ δBy ⇒G ′ γαx

′

3 Firstk(x) = Firstk(x ′)

imply that γAx ′ = δBy (in other words, γ = δ, A = B and

x ′ = y).

Faculty of Sciences INFO-F403 � Exercises

Canonical �nite state machine (CFSM)

We can build a canonical �nite state machine (CFSM) that

re�ects the decisions made by an LR parser.

Each state contains several items, which are production rules
where we add • that represent how far we've come in the
parsing process.

Part of these items form the kernel.

The other items are obtained by closure.

The state machine will allow us to build the action tables

needed by the parser.

Faculty of Sciences INFO-F403 � Exercises

Example

Consider the following augmented grammar:

(0) S ′ → S$
(1) S → (L)
(2) S → x

(3) L → S

(4) L → L,S

Stolen from: "Modern compiler implementation in Java", A. W. Appel

Faculty of Sciences INFO-F403 � Exercises

Example � recognise (x)

S ′ → •S$

1

���
�
�

12 // S ′ → S • $ 13 //___ S ′ → S$•

S → •(L) 2 //___ S ′ → (•L) 9 //

3

���
�
�

S ′ → (L•)
10

//___ S ′ → (L)•

11

ll

L→ •S 7 //

4

���
�
� L→ S•

8

gg

S → •x 5 //____ S → x•

6

gg

The • represents how far the parser has come.

Faculty of Sciences INFO-F403 � Exercises

Example (ctd.)

S ′ → •S$
S → •(L)
S → •x

The • represents how far parsing has come.

We want to recognize a word that can be derived from S ′

We must thus consume S$. . .

But S isn't a terminal!

To recognize S , we have to start by consuming (or x .

Faculty of Sciences INFO-F403 � Exercises

Example (ctd.)

S ′ → •S$

S → •(L)
S → •x

The • represents how far parsing has come.

We want to recognize a word that can be derived from S ′

We must thus consume S$. . .

But S isn't a terminal!

To recognize S , we have to start by consuming (or x .

Faculty of Sciences INFO-F403 � Exercises

Example (ctd.)

S ′ → •S$

S → •(L)
S → •x

Kernel

The • represents how far parsing has come.

We want to recognize a word that can be derived from S ′

We must thus consume S$. . .

But S isn't a terminal!

To recognize S , we have to start by consuming (or x .

Faculty of Sciences INFO-F403 � Exercises

Example (ctd.)

S ′ → •S$

S → •(L)
S → •x

Kernel

The • represents how far parsing has come.

We want to recognize a word that can be derived from S ′

We must thus consume S$. . .

But S isn't a terminal!

To recognize S , we have to start by consuming (or x .

Faculty of Sciences INFO-F403 � Exercises

Example (ctd.)

S ′ → •S$

S → •(L)
S → •x

Closure

The • represents how far parsing has come.

We want to recognize a word that can be derived from S ′

We must thus consume S$. . .

But S isn't a terminal!

To recognize S , we have to start by consuming (or x .

Faculty of Sciences INFO-F403 � Exercises

Example (ctd.)

S ′ → •S$
S → •(L)
S → •x

Closure

The • represents how far parsing has come.

We want to recognize a word that can be derived from S ′

We must thus consume S$. . .

But S isn't a terminal!

To recognize S , we have to start by consuming (or x .

Faculty of Sciences INFO-F403 � Exercises

Example (ctd.)

Transitions

S ′ → •S$
S → •(L)
S → •x

(−→

S → (•L)
...
...

↓ x ↘ S

S → x•
...
...

S → S • $
...
...

Faculty of Sciences INFO-F403 � Exercises

Example (ctd.)

Transitions

S ′ → •S$
S → •(L)
S → •x

(−→

S → (•L)
...
...

↓ x ↘ S

S → x•
...
...

S → S • $
...
...

Faculty of Sciences INFO-F403 � Exercises

Example (ctd.)

Transitions

S ′ → •S$
S → •(L)
S → •x

(−→

S → (•L)
...
...

↓ x

↘ S

S → x•
...
...

S → S • $
...
...

Faculty of Sciences INFO-F403 � Exercises

Example (ctd.)

Transitions

S ′ → •S$
S → •(L)
S → •x

(−→

S → (•L)
...
...

↓ x ↘ S

S → x•
...
...

S → S • $
...
...

Faculty of Sciences INFO-F403 � Exercises

Example (ctd.)

S → (•L)

L→ •S
L→ •L,S
S → •(L)
S → •x

Kernel

We want to recognize a word that can be derived from L

Thus, we must consume L or S$. . .

We thus do another closure step!

Faculty of Sciences INFO-F403 � Exercises

Example (ctd.)

S → (•L)
L→ •S
L→ •L,S

S → •(L)
S → •x

Closure (1)

We want to recognize a word that can be derived from L

Thus, we must consume L or S$. . .

We thus do another closure step!

Faculty of Sciences INFO-F403 � Exercises

Example (ctd.)

S → (•L)
L→ •S
L→ •L,S
S → •(L)
S → •x

Closure (2)

We want to recognize a word that can be derived from L

Thus, we must consume L or S$. . .

We thus do another closure step!

Faculty of Sciences INFO-F403 � Exercises

Example (ctd.)

S → x•
...
...

In this state, nothing needs to be added by closure.

If we get here, it means we have recognized S .

The parser can thus proceed with a Reduce action.

Faculty of Sciences INFO-F403 � Exercises

Example (ctd.)

Faculty of Sciences INFO-F403 � Exercises

Example (ctd.)

State Action

1 Shift

2 Reduce

3 Shift

4 Accept

5 Shift

State Action

6 Reduce

7 Reduce

8 Shift

9 Reduce

Faculty of Sciences INFO-F403 � Exercises

LR(0) CFSM � algorithms

Closure(I) begin

repeat

I ′ ← I ;

foreach item [A→ α • Bβ] ∈ I ,B → γ ∈ G ′ do
I ← I ∪ [B → •γ] ;

until I ′ = I ;

return(I) ;
end

Transition(I ,X) begin
return(Closure({[A→ αX • β] | [A→ α • Xβ] ∈ I})) ;

end

Faculty of Sciences INFO-F403 � Exercises

LR(0) CFSM � algorithms

Items(G ′) begin

C ←Closure({[S ′ → •S$]}) ;

repeat

C ′ ← C ;

foreach I ∈ C, X ∈ T ′ ∪ V ′ do
C ← C ∪ Transition(I ,X) ;

until C ′ = C ;

end

Faculty of Sciences INFO-F403 � Exercises

LR(0) parser � algorithms

To build the action table, we use the following process:

foreach state s of the CFSM do

if s contains A→ α • aβ then
Action[s]← Action[s] ∪ Shift ;

else if s contains A→ α• that is the i th rule then
Action[s]← Action[s] ∪ Reducei ;

else if s contains S ′ → S$• then
Action[s]← Action[s] ∪Accept ;

Faculty of Sciences INFO-F403 � Exercises

Exercise 1

(0) S ′→S$ (5) C→Fg

(1) S→aCd (6) C→CF

(2) S→bD (7) F→z

(3) S→Cf (8) D→y

(4) C→eD

Give the corresponding LR(0) CFSM and its action table.

Faculty of Sciences INFO-F403 � Exercises

LR(0) parser � algorithm

The parser uses a stack on which it pushes symbols as well

as the current state number.

This allows it to return to the right state upon reductions.

The consumed string is accepted if we reach the �nal state

(whose sole action is to accept).

We represent an LR(0) parser's con�guration with a triplet :

〈stack, input, output〉.
Initially, we have 〈` 0, ω, ε⊥〉

Faculty of Sciences INFO-F403 � Exercises

LR(0) parser � transitions

begin
Considering we have 〈` γs, ax , y⊥〉:
if Action[s] = Shift then

goto 〈` γsaSuccessor[s, a], x , y⊥〉 ;
else if Action[s] = Reducej par A→ α then

Having 〈` γs ′x1s1x2s2 . . . xns, x , y⊥〉 and α = x1x2 . . . xn :

goto 〈` γs ′ASuccessor[s ′,A], x , jy⊥〉 ;
else if Action[s] = Accept then

return(OK) ;

else return(Error) ;
end

Faculty of Sciences INFO-F403 � Exercises

Example � recognizing (x)

Con�g.:
〈
1, (x)$,

〉
Action: Shift

Faculty of Sciences INFO-F403 � Exercises

Example � recognizing (x)

Con�g.:
〈
1(3, x)$,

〉
Action: Shift

Faculty of Sciences INFO-F403 � Exercises

Example � recognizing (x)

Con�g.:
〈
1(3x2,)$,

〉
Action: Reduce 2

Faculty of Sciences INFO-F403 � Exercises

Example � recognizing (x)

Con�g.:
〈
1(3S7,)$, 2

〉
Action: Reduce 3

Faculty of Sciences INFO-F403 � Exercises

Example � recognizing (x)

Con�g.:
〈
1(3L5,)$, 2 3

〉
Action: Shift

Faculty of Sciences INFO-F403 � Exercises

Example � recognizing (x)

Con�g.:
〈
1(3L5)6,)$, 2 3

〉
Action: Reduce 1

Faculty of Sciences INFO-F403 � Exercises

Example � recognizing (x)

Con�g.:
〈
1S4, $, 2 3 1

〉
Action: Accept

Faculty of Sciences INFO-F403 � Exercises

Exercise 2

Simulate the parser you built during the previous exercise on the

following string : aeyzzd

Faculty of Sciences INFO-F403 � Exercises

Introducing LR(k) grammars

Di�erence with LR(0) : we must now account for the

lookahead symbols.

For example:

Consider the case where a CFSM state contains both

A→ α1 • α2 and B → γ•
We have a shift-reduce con�ict.

If we do not have the characters of First
k(α2) on input, we

know we should not attempt shifting.

In which context can we be sure we'll never make a mistake?

Faculty of Sciences INFO-F403 � Exercises

Introducing LR(k) grammars

We have to remember a context.

The items of the CFSM will now have the following shape:

[A→ α1 • α2, u]

u represents the context, i.e. the set of strings of k terminals

that can follow productions of A→ α1α2.

We start o� with [S ′ → •S$, ε]
We have to adapt our algorithms, action tables, etc.

Faculty of Sciences INFO-F403 � Exercises

LR(k) CFSM

Closure(I) begin

repeat

I ′ ← I ;

foreach item [A→ α • Bβ,σ] ∈ I ,B → γ ∈ G ′ do

foreach u ∈ First
k(βσ) do

I ← I ∪ [B → •γ,u];

until I ′ = I ;

return(I) ;
end

Transition(I ,X) begin
return(Closure({[A→ αX • β,u] | [A→ α • Xβ,u] ∈ I})) ;

end

Faculty of Sciences INFO-F403 � Exercises

LR(k) action table

We build the action table as follows:

foreach state s of the CFSM do

if s contains [A→ α • aβ,u] then
foreach u ∈ First

k(aβu) do
Action[s,u]← Action[s,u] ∪ Shift ;

else if s contains [A→ α•, u], that is the i th rule then
Action[s,u]← Action[s,u] ∪ Reducei ;

else if s contains [S ′ → S$•,ε] then
Action[s,·]← Action[s,·] ∪Accept ;

Faculty of Sciences INFO-F403 � Exercises

Exercise 3

Build the LR(1) parser for the following grammar:

(1) S ′→S$
(2) S→A

(3) A→bB

(4) A→a

(5) B→cC

(6) B→cCe

(7) C→dAf

Is the grammar LR(0)? Explain.

Faculty of Sciences INFO-F403 � Exercises

Exercise 4

Build the LR(1) parser for the following grammar:

(1) S ′→S$
(2) S→SaSb

(3) S→c

(4) S→ε

Simulate it on the following input: abacb.

Faculty of Sciences INFO-F403 � Exercises

